Skip to main content

Advertisement

Log in

Echocardiographic Left Ventricular Mass Estimation: Two-Dimensional Area-Length Method is Superior to M-Mode Linear Method in Swine Models of Cardiac Diseases

  • Original Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Echocardiography offers rapid and cost-effective estimations of left ventricular (LV) mass, but its accuracy in patients with cardiac disease remains unclear. LV mass was measured by M-mode-based linear method and two-dimensional echocardiography (2DE)-based area-length method in pig models and correlation with actual LV weight was assessed. Twenty-six normal, 195 ischemic heart disease (IHD), and 33 non-IHD HF pigs were included. A strong positive linear relationship to the actual LV weight was found with 2DE-based area-length method (r = 0.82, p < 0.001), whereas a moderate relationship was found with M-mode method in the overall population (r = 0.68, p < 0.001). Two correlation coefficients were significantly different (p < 0.001), and were driven mainly by incremental overestimation of LV mass in heavier hearts using the M-mode method. IHD and LV dilation were the factors contributing to overestimation using M-mode method. 2DE-based area-length method provides a better estimation of LV weight in swine models of HF, particularly in those with IHD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Drazner, M. H., Rame, J. E., Marino, E. K., Gottdiener, J. S., Kitzman, D. W., Gardin, J. M., Manolio, T. A., Dries, D. L., & Siscovick, D. S. (2004). Increased left ventricular mass is a risk factor for the development of a depressed left ventricular ejection fraction within five years: the cardiovascular health study. Journal of the American College of Cardiology, 43(12), 2207–2215. https://doi.org/10.1016/j.jacc.2003.11.064.

    Article  PubMed  Google Scholar 

  2. Gardin, J. M., McClelland, R., Kitzman, D., Lima, J. A., Bommer, W., Klopfenstein, H. S., Wong, N. D., Smith, V. E., & Gottdiener, J. (2001). M-mode echocardiographic predictors of six- to seven-year incidence of coronary heart disease, stroke, congestive heart failure, and mortality in an elderly cohort (the Cardiovascular Health Study). The American Journal of Cardiology, 87(9), 1051–1057.

    Article  CAS  PubMed  Google Scholar 

  3. Gidding, S. S., Carnethon, M. R., Daniels, S., Liu, K., Jacobs Jr., D. R., Sidney, S., & Gardin, J. (2010). Low cardiovascular risk is associated with favorable left ventricular mass, left ventricular relative wall thickness, and left atrial size: the CARDIA study. Journal of the American Society of Echocardiography, 23(8), 816–822. https://doi.org/10.1016/j.echo.2010.05.023.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Gupta, S., Berry, J. D., Ayers, C. R., Peshock, R. M., Khera, A., de Lemos, J. A., Patel, P. C., Markham, D. W., & Drazner, M. H. (2010). Left ventricular hypertrophy, aortic wall thickness, and lifetime predicted risk of cardiovascular disease: the Dallas Heart Study. JACC: Cardiovascular Imaging, 3(6), 605–613. https://doi.org/10.1016/j.jcmg.2010.03.005.

    Article  PubMed  Google Scholar 

  5. Verdecchia, P., Carini, G., Circo, A., Dovellini, E., Giovannini, E., Lombardo, M., Solinas, P., Gorini, M., Maggioni, A. P., & Group MS. (2001). Left ventricular mass and cardiovascular morbidity in essential hypertension: the MAVI study. Journal of the American College of Cardiology, 38(7), 1829–1835.

    Article  CAS  PubMed  Google Scholar 

  6. Verma, A., Meris, A., Skali, H., Ghali, J. K., Arnold, J. M., Bourgoun, M., Velazquez, E. J., McMurray, J. J., Kober, L., Pfeffer, M. A., Califf, R. M., & Solomon, S. D. (2008). Prognostic implications of left ventricular mass and geometry following myocardial infarction: the VALIANT (VALsartan In Acute myocardial iNfarcTion) echocardiographic study. JACC: Cardiovascular Imaging, 1(5), 582–591. https://doi.org/10.1016/j.jcmg.2008.05.012.

    Article  PubMed  Google Scholar 

  7. Lang, R. M., Badano, L. P., Mor-Avi, V., Afilalo, J., Armstrong, A., Ernande, L., Flachskampf, F. A., Foster, E., Goldstein, S. A., Kuznetsova, T., Lancellotti, P., Muraru, D., Picard, M. H., Rietzschel, E. R., Rudski, L., Spencer, K. T., Tsang, W., & Voigt, J. U. (2015). Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Journal of the American Society of Echocardiography, 28(1), 1–39 e14. https://doi.org/10.1016/j.echo.2014.10.003.

    Article  PubMed  Google Scholar 

  8. Marwick, T. H., Gillebert, T. C., Aurigemma, G., Chirinos, J., Derumeaux, G., Galderisi, M., Gottdiener, J., Haluska, B., Ofili, E., Segers, P., Senior, R., Tapp, R. J., & Zamorano, J. L. (2015). Recommendations on the use of echocardiography in adult hypertension: a report from the European Association of Cardiovascular Imaging (EACVI) and the American Society of Echocardiography (ASE). Journal of the American Society of Echocardiography, 28(7), 727–754. https://doi.org/10.1016/j.echo.2015.05.002.

    Article  PubMed  Google Scholar 

  9. Mor-Avi, V., Sugeng, L., Weinert, L., MacEneaney, P., Caiani, E. G., Koch, R., Salgo, I. S., & Lang, R. M. (2004). Fast measurement of left ventricular mass with real-time three-dimensional echocardiography: comparison with magnetic resonance imaging. Circulation, 110(13), 1814–1818. https://doi.org/10.1161/01.CIR.0000142670.65971.5F.

    Article  PubMed  Google Scholar 

  10. Kusunose, K., Kwon, D. H., Motoki, H., Flamm, S. D., & Marwick, T. H. (2013). Comparison of three-dimensional echocardiographic findings to those of magnetic resonance imaging for determination of left ventricular mass in patients with ischemic and non-ischemic cardiomyopathy. The American Journal of Cardiology, 112(4), 604–611. https://doi.org/10.1016/j.amjcard.2013.04.028.

    Article  PubMed  Google Scholar 

  11. Gopal, A. S., Schnellbaecher, M. J., Shen, Z., Akinboboye, O. O., Sapin, P. M., & King, D. L. (1997). Freehand three-dimensional echocardiography for measurement of left ventricular mass: in vivo anatomic validation using explanted human hearts. Journal of the American College of Cardiology, 30(3), 802–810.

    Article  CAS  PubMed  Google Scholar 

  12. Chuang, M. L., Beaudin, R. A., Riley, M. F., Mooney, M. G., Mannin, W. J., Douglas, P. S., & Hibberd, M. G. (2000). Three-dimensional echocardiographic measurement of left ventricular mass: comparison with magnetic resonance imaging and two-dimensional echocardiographic determinations in man. International Journal of Cardiac Imaging, 16(5), 347–357.

    Article  CAS  PubMed  Google Scholar 

  13. Oe, H., Hozumi, T., Arai, K., Matsumura, Y., Negishi, K., Sugioka, K., Ujino, K., Takemoto, Y., Inoue, Y., & Yoshikawa, J. (2005). Comparison of accurate measurement of left ventricular mass in patients with hypertrophied hearts by real-time three-dimensional echocardiography versus magnetic resonance imaging. The American Journal of Cardiology, 95(10), 1263–1267. https://doi.org/10.1016/j.amjcard.2005.01.065.

    Article  PubMed  Google Scholar 

  14. Kuhl, H. P., Bucker, A., Franke, A., Maul, S., Nolte-Ernsting, C., Reineke, T., Hoffmann, R., Gunther, R. W., & Hanrath, P. (2000). Transesophageal 3-dimensional echocardiography: in vivo determination of left ventricular mass in comparison with magnetic resonance imaging. Journal of the American Society of Echocardiography, 13(3), 205–215.

    Article  CAS  PubMed  Google Scholar 

  15. Devereux, R. B., Alonso, D. R., Lutas, E. M., Gottlieb, G. J., Campo, E., Sachs, I., & Reichek, N. (1986). Echocardiographic assessment of left ventricular hypertrophy: Comparison to necropsy findings. The American Journal of Cardiology, 57(6), 450–458.

    Article  CAS  PubMed  Google Scholar 

  16. Park, S. H., Shub, C., Nobrega, T. P., Bailey, K. R., & Seward, J. B. (1996). Two-dimensional echocardiographic calculation of left ventricular mass as recommended by the American Society of Echocardiography: correlation with autopsy and M-mode echocardiography. Journal of the American Society of Echocardiography, 9(2), 119–128.

    Article  CAS  PubMed  Google Scholar 

  17. Reichek, N., Helak, J., Plappert, T., Sutton, M. S., & Weber, K. T. (1983). Anatomic validation of left ventricular mass estimates from clinical two-dimensional echocardiography: Initial results. Circulation, 67(2), 348–352.

    Article  CAS  PubMed  Google Scholar 

  18. Woythaler, J. N., Singer, S. L., Kwan, O. L., Meltzer, R. S., Reubner, B., Bommer, W., & DeMaria, A. (1983). Accuracy of echocardiography versus electrocardiography in detecting left ventricular hypertrophy: comparison with postmortem mass measurements. Journal of the American College of Cardiology, 2(2), 305–311.

    Article  CAS  PubMed  Google Scholar 

  19. Jenkins, C., Bricknell, K., Hanekom, L., & Marwick, T. H. (2004). Reproducibility and accuracy of echocardiographic measurements of left ventricular parameters using real-time three-dimensional echocardiography. Journal of the American College of Cardiology, 44(4), 878–886. https://doi.org/10.1016/j.jacc.2004.05.050.

    Article  PubMed  Google Scholar 

  20. van den Bosch, A. E., Robbers-Visser, D., Krenning, B. J., McGhie, J. S., Helbing, W. A., Meijboom, F. J., & Roos-Hesselink, J. W. (2006). Comparison of real-time three-dimensional echocardiography to magnetic resonance imaging for assessment of left ventricular mass. The American Journal of Cardiology, 97(1), 113–117. https://doi.org/10.1016/j.amjcard.2005.07.114.

    Article  PubMed  Google Scholar 

  21. Caiani, E. G., Corsi, C., Sugeng, L., MacEneaney, P., Weinert, L., Mor-Avi, V., & Lang, R. M. (2006). Improved quantification of left ventricular mass based on endocardial and epicardial surface detection with real time three dimensional echocardiography. Heart, 92(2), 213–219. https://doi.org/10.1136/hrt.2005.060889.

    Article  CAS  PubMed  Google Scholar 

  22. Chuang, M. L., Salton, C. J., Hibberd, M. G., Manning, W. J., & Douglas, P. S. (2007). Relation between number of component views and accuracy of left ventricular mass determined by three-dimensional echocardiography. The American Journal of Cardiology, 99(9), 1321–1324. https://doi.org/10.1016/j.amjcard.2006.12.045.

    Article  PubMed  Google Scholar 

  23. Riehle, T. J., Mahle, W. T., Parks, W. J., Sallee 3rd, D., & Fyfe, D. A. (2008). Real-time three-dimensional echocardiographic acquisition and quantification of left ventricular indices in children and young adults with congenital heart disease: comparison with magnetic resonance imaging. Journal of the American Society of Echocardiography, 21(1), 78–83. https://doi.org/10.1016/j.echo.2007.05.021.

    Article  PubMed  Google Scholar 

  24. Takeuchi, M., Nishikage, T., Mor-Avi, V., Sugeng, L., Weinert, L., Nakai, H., Salgo, I. S., Gerard, O., & Lang, R. M. (2008). Measurement of left ventricular mass by real-time three-dimensional echocardiography: validation against magnetic resonance and comparison with two-dimensional and m-mode measurements. Journal of the American Society of Echocardiography, 21(9), 1001–1005. https://doi.org/10.1016/j.echo.2008.07.008.

    Article  PubMed  Google Scholar 

  25. Lu, X., Xie, M., Tomberlin, D., Klas, B., Nadvoretskiy, V., Ayres, N., Towbin, J., & Ge, S. (2008). How accurately, reproducibly, and efficiently can we measure left ventricular indices using M-mode, 2-dimensional, and 3-dimensional echocardiography in children? American Heart Journal, 155(5), 946–953. https://doi.org/10.1016/j.ahj.2007.11.034.

    Article  PubMed  Google Scholar 

  26. Pouleur, A. C., le Polain de Waroux, J. B., Pasquet, A., Gerber, B. L., Gerard, O., Allain, P., & Vanoverschelde, J. L. (2008). Assessment of left ventricular mass and volumes by three-dimensional echocardiography in patients with or without wall motion abnormalities: comparison against cine magnetic resonance imaging. Heart, 94(8), 1050–1057. https://doi.org/10.1136/hrt.2007.123711.

    Article  PubMed  Google Scholar 

  27. Bicudo, L. S., Tsutsui, J. M., Shiozaki, A., Rochitte, C. E., Arteaga, E., Mady, C., Ramires, J. A., & Mathias Jr., W. (2008). Value of real time three-dimensional echocardiography in patients with hypertrophic cardiomyopathy: comparison with two-dimensional echocardiography and magnetic resonance imaging. Echocardiography, 25(7), 717–726. https://doi.org/10.1111/j.1540-8175.2008.00684.x.

    Article  PubMed  Google Scholar 

  28. Council NR. (2011). Guide for the care and use of laboratory animals (8th ed.). Washington, DC: The National Academies Press. https://doi.org/10.17226/12910.

    Book  Google Scholar 

  29. Watanabe, S., Fish, K., Kovacic, J. C., Bikou, O., Leonardson, L., Nomoto, K., Aguero, J., Kapur, N. K., Hajjar, R. J., & Ishikawa, K. (2018). Left ventricular unloading using an impella CP improves coronary flow and infarct zone perfusion in ischemic heart failure. Journal of the American Heart Association, 7(6). https://doi.org/10.1161/JAHA.117.006462.

  30. Ishikawa, K., Aguero, J., Tilemann, L., Ladage, D., Hammoudi, N., Kawase, Y., Santos-Gallego, C. G., Fish, K., Levine, R. A., & Hajjar, R. J. (2014). Characterizing preclinical models of ischemic heart failure: differences between LAD and LCx infarctions. American Journal of Physiology-Heart and Circulatory Physiology, 307(10), H1478–H1486. https://doi.org/10.1152/ajpheart.00797.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bikou O, Tharakan S, Yamada KP, Kariya T, Gordon A, Miyashita S, Watanabe S, Sassi Y, Fish K, Ishikawa K (2019) A Novel Large Animal Model of Thrombogenic Coronary Microembolization. Front Cardiovasc Med 6:157. https://doi.org/10.3389/fcvm.2019.00157

  32. Motloch, L. J., Ishikawa, K., Xie, C., Hu, J., Aguero, J., Fish, K. M., Hajjar, R. J., & Akar, F. G. (2017). Increased afterload following myocardial infarction promotes conduction-dependent arrhythmias that are unmasked by hypokalemia. JACC: Basic to Translational Science, 2(3), 258–269. https://doi.org/10.1016/j.jacbts.2017.02.002.

    Article  PubMed  Google Scholar 

  33. Ishikawa, K., Ladage, D., Takewa, Y., Yaniz, E., Chen, J., Tilemann, L., Sakata, S., Badimon, J. J., Hajjar, R. J., & Kawase, Y. (2011). Development of a preclinical model of ischemic cardiomyopathy in swine. American Journal of Physiology. Heart and Circulatory Physiology, 301(2), H530–H537. https://doi.org/10.1152/ajpheart.01103.2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ishikawa, K., Aguero, J., Oh, J. G., Hammoudi, N., Fish, L. A., Leonardson, L., Picatoste, B., Santos-Gallego, C. G., Fish, K. M., & Hajjar, R. J. (2015). Increased stiffness is the major early abnormality in a pig model of severe aortic stenosis and predisposes to congestive heart failure in the absence of systolic dysfunction. Journal of the American Heart Association, 4(5). https://doi.org/10.1161/JAHA.115.001925.

  35. Watanabe, S., Bikou, O., Hajjar, R. J., & Ishikawa, K. (2018). Swine model of mitral regurgitation induced heart failure. Methods in Molecular Biology, 1816, 327–335. https://doi.org/10.1007/978-1-4939-8597-5_25.

    Article  CAS  PubMed  Google Scholar 

  36. Watanabe, S., Ishikawa, K., Fish, K., Oh, J. G., Motloch, L. J., Kohlbrenner, E., Lee, P., Xie, C., Lee, A., Liang, L., Kho, C., Leonardson, L., McIntyre, M., Wilson, S., Samulski, R. J., Kranias, E. G., Weber, T., Akar, F. G., & Hajjar, R. J. (2017). Protein phosphatase Inhibitor-1 gene therapy in a swine model of nonischemic heart failure. Journal of the American College of Cardiology, 70(14), 1744–1756. https://doi.org/10.1016/j.jacc.2017.08.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

None.

Funding

This work was supported by NIH R01 HL139963 (K.I.), HL117505, HL 119046, HL129814, HL128072, HL131404, HL135093, a P50 HL112324 (R.J.H.), AHA-SDG 17SDG33410873 (K.I.) and a Transatlantic Fondation Leducq grant. We would like to acknowledge the Gene Therapy Resource Program (GTRP) of the National Heart, Lung, and Blood Institute, National Institutes of Health. O.B. was supported by the Deutsche Herzstiftung.

Author information

Authors and Affiliations

Authors

Contributions

S.M., N.H., K.N., and K.I. conceived and designed research; N.H., S.W., O.B., K.Y., J.A., and K.I. performed experiments; S.M, S.W., T.K., and K.I. analyzed data; S.M, N.H., J.A., T.K., K.F., R.J.H, and K.I interpreted results of experiments; S.M., and K.I prepared figures; S.M., N.H., K.Y, K.F., R.J.H, and K.I. drafted manuscript; all authors approved final version of manuscript.

Corresponding author

Correspondence to Kiyotake Ishikawa.

Ethics declarations

This article does not contain any studies with human participants performed by any of the authors. This study involved animal use. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in this study were in accordance with the ethical standards of the institution or practice at which the studies were conducted.(Committee on Research Animal Care at Icahn School of Medicine at Mount Sinai LA11–00388)”.

Conflict of Interest

N.H. reports consulting/advisory activities for Philips. Other authors do not have disclosures relevant to this manuscript.

Clinical Relevance

Our study offers clinically useful information for estimating LV mass using echocardiography in patients with cardiac diseases.

Additional information

Associate Editor Enrique Lara-Pezzi oversaw the review of this article

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 272 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miyashita, S., Hammoudi, N., Watanabe, S. et al. Echocardiographic Left Ventricular Mass Estimation: Two-Dimensional Area-Length Method is Superior to M-Mode Linear Method in Swine Models of Cardiac Diseases. J. of Cardiovasc. Trans. Res. 13, 648–658 (2020). https://doi.org/10.1007/s12265-019-09937-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-019-09937-7

Keywords

Navigation