Skip to main content

Advertisement

Log in

The Influence of Sex on Cardiac Physiology and Cardiovascular Diseases

  • Review Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Cardiovascular disease (CVD) is the leading cause of death world-wide. Most of treatment strategies were based on studies conducted on male patients. Studies have shown that significant differences exist between the two sexes in the development of CVD. There are certain differences between men and women in the structure and physiological functions of the heart such as left ventricular mass index, resting heart rate, and contractile function. Accordingly, the pathological features of the heart such as the extend of hypertrophy, fibrosis, and remodeling are also different. In addition, different genders also affect clinical symptoms, responses to treatment and prognosis in the development of CVD. Therefore, it is important to take these differences into consideration when design treatment options for men and women.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Nichols, M., Townsend, N., Scarborough, P., & Rayner, M. (2014). Cardiovascular disease in Europe 2014: epidemiological update. Eur Heart J, 35(42), 2950–2959. https://doi.org/10.1093/eurheartj/ehu299.

    Article  CAS  PubMed  Google Scholar 

  2. Mosca, L., Ferris, A., Fabunmi, R., & Robertson, R. M. (2004). Tracking women's awareness of heart disease - an American Heart Association National Study. Circulation, 109(5), 573–579. https://doi.org/10.1161/01.Cir.0000115222.69428.C9.

    Article  PubMed  Google Scholar 

  3. Bundy, J. D., & He, J. (2016). Hypertension and related cardiovascular disease burden in China. Ann Glob Health, 82(2), 227–233. https://doi.org/10.1016/j.aogh.2016.02.002.

    Article  PubMed  Google Scholar 

  4. Kitzman, D. W., & Edwards, W. D. (1990). Age-related changes in the anatomy of the normal human heart. J Gerontol, 45(2), M33–M39.

    Article  CAS  PubMed  Google Scholar 

  5. Legato, M. J. (2000). Gender and the heart: sex-specific differences in normal anatomy and physiology. J Gend Specif Med, 3(7), 15–18.

  6. Nakata, M., Yada, T., Soejima, N., & Maruyama, I. (1999). Leptin promotes aggregation of human platelets via the long form of its receptor. Diabetes, 48(2), 426–429.

    Article  CAS  PubMed  Google Scholar 

  7. Douglas, P. S., Katz, S. E., Weinberg, E. O., Chen, M. H., Bishop, S. P., & Lorell, B. H. (1998). Hypertrophic remodeling: gender differences in the early response to left ventricular pressure overload. J Am Coll Cardiol, 32(4), 1118–1125.

    Article  CAS  PubMed  Google Scholar 

  8. Wallner, M., Duran, J. M., Mohsin, S., Troupes, C. D., Vanhoutte, D., Borghetti, G., Vagnozzi, R. J., Gross, P., Yu, D. H., Trappanese, D. M., Kubo, H., Toib, A., Sharp, T. E., Harper, S. C., Volkert, M. A., Starosta, T., Feldsott, E. A., Berretta, R. M., Wang, T., Barbe, M. F., Molkentin, J. D., & Houser, S. R. (2016). Acute catecholamine exposure causes reversible myocyte injury without cardiac regeneration. Circ Res, 119(7), 865–879. https://doi.org/10.1161/Circresaha.116.308687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang, F., He, Q., Sun, Y., Dai, X., & Yang, X.-P. (2010). Female adult mouse cardiomyocytes are protected against oxidative stress. Hypertension, 55(5), 1172–1178.

  10. Zhu, B. L., Liu, K., Yang, C. Z., Qiao, Y. H., & Li, Z. J. (2016). Gender-related differences in beta-adrenergic receptor-mediated cardiac remodeling. Can J Physiol Pharmacol, 94(12), 1349–1355. https://doi.org/10.1139/cjpp-2016-0103.

    Article  CAS  PubMed  Google Scholar 

  11. Du, X. J., Samuel, C. S., Gao, X. M., Zhao, L., Parry, L. J., & Tregear, G. W. (2003). Increased myocardial collagen and ventricular diastolic dysfunction in relaxin deficient mice: a gender-specific phenotype. Cardiovasc Res, 57(2), 395–404.

    Article  CAS  PubMed  Google Scholar 

  12. Gillis, A. M. (2017). Atrial fibrillation and ventricular arrhythmias: sex differences in electrophysiology, epidemiology, clinical presentation, and clinical outcomes. Circulation, 135(6), 593–608. https://doi.org/10.1161/CIRCULATIONAHA.116.025312.

    Article  PubMed  Google Scholar 

  13. Polovina, M. M., Vukicevic, M., Banko, B., Lip, G. Y. H., & Potpara, T. S. (2017). Brugada syndrome: a general cardiologist’s perspective. Eur J Intern Med, 44, 19–27. https://doi.org/10.1016/j.ejim.2017.06.019.

    Article  PubMed  Google Scholar 

  14. Johnson, B. D., Shaw, L. J., Buchthal, S. D., Bairey Merz, C. N., Kim, H. W., Scott, K. N., Doyle, M., Olson, M. B., Pepine, C. J., den Hollander, J., Sharaf, B., Rogers, W. J., Mankad, S., Forder, J. R., Kelsey, S. F., Pohost, G. M., & National Institutes of Health-National Heart L, Blood I. (2004). Prognosis in women with myocardial ischemia in the absence of obstructive coronary disease: results from the National Institutes of Health-National Heart, Lung, and Blood Institute-sponsored Women's ischemia syndrome evaluation (WISE). Circulation, 109(24), 2993–2999. https://doi.org/10.1161/01.CIR.0000130642.79868.B2.

    Article  PubMed  Google Scholar 

  15. Cho, J. J., Cadet, P., Salamon, E., Mantione, K., & Stefano, G. B. (2003). The nongenomic protective effects of estrogen on the male cardiovascular system: clinical and therapeutic implications in aging men. Med Sci Monit, 9(3), RA63–RA68.

  16. Tweet, M. S., Hayes, S. N., Pitta, S. R., Simari, R. D., Lerman, A., Lennon, R. J., Gersh, B. J., Khambatta, S., Best, P. J., Rihal, C. S., & Gulati, R. (2012). Clinical features, management, and prognosis of spontaneous coronary artery dissection. Circulation, 126(5), 579–588. https://doi.org/10.1161/CIRCULATIONAHA.112.105718.

    Article  PubMed  Google Scholar 

  17. Evangelista, O., & McLaughlin, M. A. (2009). Review of cardiovascular risk factors in women. Gend Med, 6(Suppl 1), 17–36. https://doi.org/10.1016/j.genm.2009.02.004.

    Article  PubMed  Google Scholar 

  18. Zhang, X. H., Lu, Z. L., & Liu, L. (2008). Coronary heart disease in China. Heart, 94(9), 1126–1131. https://doi.org/10.1136/hrt.2007.132423.

    Article  PubMed  Google Scholar 

  19. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, de Ferranti S, Despres JP, Fullerton HJ, Howard VJ, Huffman MD, Judd SE, Kissela BM, Lackland DT, Lichtman JH, Lisabeth LD, Liu S, Mackey RH, Matchar DB, McGuire DK, Mohler ER, 3rd, Moy CS, Muntner P, Mussolino ME, Nasir K, Neumar RW, Nichol G, Palaniappan L, Pandey DK, Reeves MJ, Rodriguez CJ, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Willey JZ, Woo D, Yeh RW, Turner MB, American Heart Association Statistics C, Stroke Statistics S (2015) Heart disease and stroke statistics--2015 update: a report from the American Heart Association. Circulation 131 (4):e29–322. doi:https://doi.org/10.1161/CIR.0000000000000152

  20. Gowd, B. M., & Thompson, P. D. (2012). Effect of female sex on cardiac arrhythmias. Cardiol Rev, 20(6), 297–303. https://doi.org/10.1097/CRD.0b013e318259294b.

    Article  PubMed  Google Scholar 

  21. Gehi, A. K., Duong, T. D., Metz, L. D., Gomes, J. A., & Mehta, D. (2006). Risk stratification of individuals with the Brugada electrocardiogram: a meta-analysis. J Cardiovasc Electrophysiol, 17(6), 577–583. https://doi.org/10.1111/j.1540-8167.2006.00455.x.

    Article  PubMed  Google Scholar 

  22. Burke, A. P., Farb, A., Malcom, G., & Virmani, R. (2001). Effect of menopause on plaque morphologic characteristics in coronary atherosclerosis. Am Heart J, 141(2 Suppl), S58–S62.

    Article  CAS  PubMed  Google Scholar 

  23. Widder, J., Pelzer, T., von Poser-Klein, C., Hu, K., Jazbutyte, V., Fritzemeier, K. H., Hegele-Hartung, C., Neyses, L., & Bauersachs, J. (2003). Improvement of endothelial dysfunction by selective estrogen receptor-alpha stimulation in ovariectomized SHR. Hypertension, 42(5), 991–996. https://doi.org/10.1161/01.HYP.0000098661.37637.89.

    Article  CAS  PubMed  Google Scholar 

  24. Hodges, Y. K., Tung, L., Yan, X. D., Graham, J. D., Horwitz, K. B., & Horwitz, L. D. (2000). Estrogen receptors alpha and beta: prevalence of estrogen receptor beta mRNA in human vascular smooth muscle and transcriptional effects. Circulation, 101(15), 1792–1798.

    Article  CAS  PubMed  Google Scholar 

  25. Geary, G. G., McNeill, A. M., Ospina, J. A., Krause, D. N., Korach, K. S., & Duckles, S. P. (2001). Selected contribution: cerebrovascular nos and cyclooxygenase are unaffected by estrogen in mice lacking estrogen receptor-alpha. J Appl Physiol, 91(5), 2391–2399; discussion 2389–2390. https://doi.org/10.1152/jappl.2001.91.5.2391.

    Article  CAS  PubMed  Google Scholar 

  26. Mendelsohn, M. E., & Karas, R. H. (1999). The protective effects of estrogen on the cardiovascular system. N Engl J Med, 340(23), 1801–1811. https://doi.org/10.1056/NEJM199906103402306.

    Article  CAS  PubMed  Google Scholar 

  27. Rosano, G. M., Vitale, C., Marazzi, G., & Volterrani, M. (2007). Menopause and cardiovascular disease: the evidence. Climacteric, 10(Suppl 1), 19–24. https://doi.org/10.1080/13697130601114917.

    Article  CAS  PubMed  Google Scholar 

  28. Carmina, E. (2009). Cardiovascular risk and events in polycystic ovary syndrome. Climacteric, 12(Suppl 1), 22–25.

    Article  PubMed  Google Scholar 

  29. Daan, N. M., Louwers, Y. V., Koster, M. P., Eijkemans, M. J., de Rijke, Y. B., Lentjes, E. W., Fauser, B. C., & Laven, J. S. (2014). Cardiovascular and metabolic profiles amongst different polycystic ovary syndrome phenotypes: Who is really at risk? Fertil Steril, 102(5), 1444–1451 e1443. https://doi.org/10.1016/j.fertnstert.2014.08.001.

    Article  PubMed  Google Scholar 

  30. Shen, B. J., Avivi, Y. E., Todaro, J. F., Spiro, A., 3rd, Laurenceau, J. P., Ward, K. D., & Niaura, R. (2008). Anxiety characteristics independently and prospectively predict myocardial infarction in men the unique contribution of anxiety among psychologic factors. J Am Coll Cardiol, 51(2), 113–119. https://doi.org/10.1016/j.jacc.2007.09.033.

    Article  PubMed  Google Scholar 

  31. Shibeshi, W. A., Young-Xu, Y., & Blatt, C. M. (2007). Anxiety worsens prognosis in patients with coronary artery disease. J Am Coll Cardiol, 49(20), 2021–2027. https://doi.org/10.1016/j.jacc.2007.03.007.

    Article  PubMed  Google Scholar 

  32. Sherwood, A., Blumenthal, J. A., Trivedi, R., Johnson, K. S., O'Connor, C. M., Adams, K. F., Jr., Dupree, C. S., Waugh, R. A., Bensimhon, D. R., Gaulden, L., Christenson, R. H., Koch, G. G., & Hinderliter, A. L. (2007). Relationship of depression to death or hospitalization in patients with heart failure. Arch Intern Med, 167(4), 367–373. https://doi.org/10.1001/archinte.167.4.367.

    Article  PubMed  Google Scholar 

  33. Albert, C. M., Chae, C. U., Rexrode, K. M., Manson, J. E., & Kawachi, I. (2005). Phobic anxiety and risk of coronary heart disease and sudden cardiac death among women. Circulation, 111(4), 480–487. https://doi.org/10.1161/01.CIR.0000153813.64165.5D.

    Article  PubMed  Google Scholar 

  34. Yusuf, S., Hawken, S., Ounpuu, S., Dans, T., Avezum, A., Lanas, F., McQueen, M., Budaj, A., Pais, P., Varigos, J., Lisheng, L., & Investigators, I. S. (2004). Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet, 364(9438), 937–952. https://doi.org/10.1016/S0140-6736(04)17018-9.

    Article  PubMed  Google Scholar 

  35. Orth-Gomer, K., Wamala, S. P., Horsten, M., Schenck-Gustafsson, K., Schneiderman, N., & Mittleman, M. A. (2000). Marital stress worsens prognosis in women with coronary heart disease: the Stockholm Female Coronary Risk Study. Jama, 284(23), 3008–3014.

    Article  CAS  PubMed  Google Scholar 

  36. Rosengren, A., Hawken, S., Ounpuu, S., Sliwa, K., Zubaid, M., Almahmeed, W. A., Blackett, K. N., Sitthi-amorn, C., Sato, H., Yusuf, S., & investigators I. (2004). Association of psychosocial risk factors with risk of acute myocardial infarction in 11119 cases and 13648 controls from 52 countries (the INTERHEART study): case-control study. Lancet, 364(9438), 953–962. https://doi.org/10.1016/S0140-6736(04)17019-0.

    Article  PubMed  Google Scholar 

  37. Jiang, W., Krishnan, R. R., & O’Connor, C. M. (2002). Depression and heart disease: evidence of a link, and its therapeutic implications. CNS Drugs, 16(2), 111–127. https://doi.org/10.2165/00023210-200216020-00004.

    Article  PubMed  Google Scholar 

  38. Drory, Y., Kravetz, S., Hirschberger, G., & Israel Study Group on First Acute Myocardial I. (2003). Long-term mental health of women after a first acute myocardial infarction. Arch Phys Med Rehabil, 84(10), 1492–1498.

  39. Barefoot, J. C., Helms, M. J., Mark, D. B., Blumenthal, J. A., Califf, R. M., Haney, T. L., O’Connor, C. M., Siegler, I. C., & Williams, R. B. (1996). Depression and long-term mortality risk in patients with coronary artery disease. Am J Cardiol, 78(6), 613–617.

    Article  CAS  PubMed  Google Scholar 

  40. Anderson, R. J., Freedland, K. E., Clouse, R. E., & Lustman, P. J. (2001). The prevalence of comorbid depression in adults with diabetes: A meta-analysis. Diabetes Care, 24(6), 1069–1078.

    Article  CAS  PubMed  Google Scholar 

  41. Heitzer, T., & Meinertz, T. (2005). Prevention of coronary heart disease: smoking. Z Kardiol, 94(Suppl 3), III/30–III/42. https://doi.org/10.1007/s00392-005-1306-y.

    Article  CAS  Google Scholar 

  42. Sinha-Hikim, I., Friedman, T. C., Falz, M., Chalfant, V., Hasan, M. K., Espinoza-Derout, J., Lee, D. L., Sims, C., Tran, P., Mahata, S. K., & Sinha-Hikim, A. P. (2017). Nicotine plus a high-fat diet triggers cardiomyocyte apoptosis. Cell Tissue Res, 368(1), 159–170. https://doi.org/10.1007/s00441-016-2536-1.

    Article  CAS  PubMed  Google Scholar 

  43. Huxley, R. R., & Woodward, M. (2011). Cigarette smoking as a risk factor for coronary heart disease in women compared with men: a systematic review and meta-analysis of prospective cohort studies. Lancet, 378(9799), 1297–1305.

  44. Yusuf, S., Reddy, S., Ounpuu, S., & Anand, S. (2001). Global burden of cardiovascular diseases: Part II: variations in cardiovascular disease by specific ethnic groups and geographic regions and prevention strategies. Circulation, 104(23), 2855–2864.

  45. He, J., Vupputuri, S., Allen, K., Prerost, M. R., Hughes, J., & Whelton, P. K. (1999). Passive smoking and the risk of coronary heart disease--a meta-analysis of epidemiologic studies. N Engl J Med, 340(12), 920–926. https://doi.org/10.1056/NEJM199903253401204.

    Article  CAS  PubMed  Google Scholar 

  46. Willett, W., Hennekens, C. H., Castelli, W., Rosner, B., Evans, D., Taylor, J., & Kass, E. H. (1983). Effects of cigarette smoking on fasting triglyceride, total cholesterol, and HDL-cholesterol in women. Am Heart J, 105(3), 417–421.

    Article  CAS  PubMed  Google Scholar 

  47. Kotlyar, M., Thuras, P., Hatsukami, D. K., & al’Absi, M. (2017). Sex differences in physiological response to the combination of stress and smoking. Int J Psychophysiol, 118, 27–31. https://doi.org/10.1016/j.ijpsycho.2017.05.008.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kearney, P. M., Whelton, M., Reynolds, K., Whelton, P. K., & He, J. (2004). Worldwide prevalence of hypertension: a systematic review. J Hypertens, 22(1), 11–19.

  49. Kearney, P. M., Whelton, M., Reynolds, K., Muntner, P., Whelton, P. K., & He, J. (2005). Global burden of hypertension: analysis of worldwide data. Lancet, 365(9455), 217–223. https://doi.org/10.1016/S0140-6736(05)17741-1.

    Article  PubMed  Google Scholar 

  50. Dinh, Q. N., Drummond, G. R., Sobey, C. G., & Chrissobolis, S. (2014). Roles of inflammation, oxidative stress, and vascular dysfunction in hypertension. Biomed Res Int, 2014, 406960. https://doi.org/10.1155/2014/406960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ruixing, Y., Jinzhen, W., Shangling, P., Weixiong, L., Dezhai, Y., & Yuming, C. (2008). Sex differences in environmental and genetic factors for hypertension. Am J Med, 121(9), 811–819. https://doi.org/10.1016/j.amjmed.2008.04.026.

    Article  PubMed  Google Scholar 

  52. Gu, D., Reynolds, K., Wu, X., Chen, J., Duan, X., Muntner, P., Huang, G., Reynolds, R. F., Su, S., Whelton, P. K., He, J., & Inter ACGTICSoCDiA. (2002). Prevalence, awareness, treatment, and control of hypertension in China. Hypertension, 40(6), 920–927.

    Article  CAS  PubMed  Google Scholar 

  53. Hajjar, I., Kotchen, J. M., & Kotchen, T. A. (2006). Hypertension: trends in prevalence, incidence, and control. Annu Rev Public Health, 27, 465–490. https://doi.org/10.1146/annurev.publhealth.27.021405.102132.

    Article  PubMed  Google Scholar 

  54. Gerdts, E., Izzo, R., Mancusi, C., Losi, M. A., Manzi, M. V., Canciello, G., De Luca, N., Trimarco, B., & de Simone, G. (2018). Left ventricular hypertrophy offsets the sex difference in cardiovascular risk (the Campania Salute Network). Int J Cardiol, 258, 257–261. https://doi.org/10.1016/j.ijcard.2017.12.086.

    Article  PubMed  Google Scholar 

  55. Toedebusch, R., Belenchia, A., & Pulakat, L. (2018). Diabetic cardiomyopathy: impact of biological sex on disease development and molecular signatures. Front Physiol, 9, 453. https://doi.org/10.3389/fphys.2018.00453.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Regitz-Zagrosek, V., Lehmkuhl, E., & Weickert, M. O. (2006). Gender differences in the metabolic syndrome and their role for cardiovascular disease. Clin Res Cardiol, 95(3), 136–147.

    Article  CAS  PubMed  Google Scholar 

  57. Barrett-Connor, E. L., Cohn, B. A., Wingard, D. L., & Edelstein, S. L. (1991). Why is diabetes mellitus a stronger risk factor for fatal ischemic heart disease in women than in men? The Rancho Bernardo Study. Jama, 265(5), 627–631.

    Article  CAS  PubMed  Google Scholar 

  58. Lee, M., Saver, J. L., Towfighi, A., Chow, J., & Ovbiagele, B. (2011). Efficacy of fibrates for cardiovascular risk reduction in persons with atherogenic dyslipidemia: a meta-analysis. Atherosclerosis, 217(2), 492–498. https://doi.org/10.1016/j.atherosclerosis.2011.04.020.

    Article  CAS  PubMed  Google Scholar 

  59. Bello, N., & Mosca, L. (2004). Epidemiology of coronary heart disease in women. Prog Cardiovasc Dis, 46(4), 287–295.

    Article  PubMed  Google Scholar 

  60. Hokanson, J. E., & Austin, M. A. (1996). Plasma triglyceride level is a risk factor for cardiovascular disease independent of high-density lipoprotein cholesterol level: a meta-analysis of population-based prospective studies. J Cardiovasc Risk, 3(2), 213–219.

    Article  CAS  PubMed  Google Scholar 

  61. Reddy Kilim, S., & Chandala, S. R. (2013). A comparative study of lipid profile and oestradiol in pre- and post-menopausal women. J Clin Diagn Res, 7(8), 1596–1598. https://doi.org/10.7860/JCDR/2013/6162.3234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Matthews, K. A., Kuller, L. H., Sutton-Tyrrell, K., & Chang, Y. F. (2001). Changes in cardiovascular risk factors during the perimenopause and postmenopause and carotid artery atherosclerosis in healthy women. Stroke, 32(5), 1104–1111.

    Article  CAS  PubMed  Google Scholar 

  63. Garvey, W. T., Mechanick, J. I., Brett, E. M., Garber, A. J., Hurley, D. L., Jastreboff, A. M., Nadolsky, K., Pessah-Pollack, R., Plodkowski, R., & Reviewers of the AACEOCPG. (2016). American Association Of Clinical Endocrinologists And American College of Endocrinology comprehensive clinical practice guidelines for medical care of patients with obesity. Endocr Pract, 22(Suppl 3), 1–203. https://doi.org/10.4158/EP161365.GL.

    Article  PubMed  Google Scholar 

  64. Hansen, L., Netterstrom, M. K., Johansen, N. B., Ronn, P. F., Vistisen, D., Husemoen, L. L. N., Jorgensen, M. E., Rod, N. H., & Faerch, K. (2017). Metabolically healthy obesity and ischemic heart disease: a 10-year follow-up of the Inter99 Study. J CLIN ENDOCR METAB , 102(6), 1934–1942. https://doi.org/10.1210/jc.2016-3346.

    Article  Google Scholar 

  65. Lyall, D. M., Celis-Morales, C., Ward, J., Iliodromiti, S., Anderson, J. J., Gill, J. M. R., Smith, D. J., Ntuk, U. E., Mackay, D. F., Holmes, M. V., Sattar, N., & Pell, J. P. (2017). Association of body mass index with cardiometabolic disease in the UK biobank: a Mendelian randomization study. JAMA Cardiol, 2(8), 882–889. https://doi.org/10.1001/jamacardio.2016.5804.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Suresh, R., Li, X., Chiriac, A., Goel, K., Terzic, A., Perez-Terzic, C., & Nelson, T. J. (2014). Transcriptome from circulating cells suggests dysregulated pathways associated with long-term recurrent events following first-time myocardial infarction. J Mol Cell Cardiol, 74, 13–21. https://doi.org/10.1016/j.yjmcc.2014.04.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Park, H. W., Kim, K. H., Song, I. G., Kwon, T. G., Kim, W. H., & Bae, J. H. (2017). Body mass index, carotid plaque, and clinical outcomes in patients with coronary artery disease. Coron Artery Dis, 28(4), 278–286. https://doi.org/10.1097/MCA.0000000000000467.

    Article  PubMed  Google Scholar 

  68. Oyedeji, A. T., Balogun, M. O., Akintomide, A. O., Sunmonu, T. A., Adebayo, R. A., & Ajayi, O. E. (2012). The “obesity paradox” in Nigerians with heart failure. Ann Afr Med, 11(4), 212–216. https://doi.org/10.4103/1596-3519.102851.

    Article  PubMed  Google Scholar 

  69. Domanski, M. J., Jablonski, K. A., Rice, M. M., Fowler, S. E., Braunwald, E., & Investigators, P. (2006). Obesity and cardiovascular events in patients with established coronary disease. Eur Heart J, 27(12), 1416–1422. https://doi.org/10.1093/eurheartj/ehl022.

    Article  PubMed  Google Scholar 

  70. Hsich, E., Gorodeski, E. Z., Starling, R. C., Blackstone, E. H., Ishwaran, H., & Lauer, M. S. (2009). Importance of treadmill exercise time as an initial prognostic screening tool in patients with systolic left ventricular dysfunction. Circulation, 119(25), 3189–U3159. https://doi.org/10.1161/Circulationaha.109.848382.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Lee, D.-c., Artero, E. G., Sui, X., & Blair, S. N. (2010). Mortality trends in the general population: the importance of cardiorespiratory fitness. J Psychopharmacol, 24(4 Suppl), 27–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Manson, J. E., Greenland, P., LaCroix, A. Z., Stefanick, M. L., Mouton, C. P., Oberman, A., Perri, M. G., Sheps, D. S., Pettinger, M. B., & Siscovick, D. S. (2002). Walking compared with vigorous exercise for the prevention of cardiovascular events in women. N Engl J Med, 347(10), 716–725. https://doi.org/10.1056/NEJMoa021067.

    Article  PubMed  Google Scholar 

  73. Lakshman, R., Forouhi, N. G., Sharp, S. J., Luben, R., Bingham, S. A., Khaw, K.-T., Wareham, N. J., & Ong, K. K. (2009). Early age at menarche associated with cardiovascular disease and mortality. J Clin Endocrinol Metab, 94(12), 4953–4960.

    Article  CAS  PubMed  Google Scholar 

  74. Canoy, D., Beral, V., Balkwill, A., Wright, F. L., Kroll, M. E., Reeves, G. K., Green, J., Cairns, B. J., Million Women Study, C., Abbiss, H., Abbott, S., Allen, N., Armstrong, M., Balkwill, A., Banks, E., Benson, V., Beral, V., Black, J., Bradbury, K., Brown, A., Cairns, B., Canfell, K., Canoy, D., Crossley, B., Ewart, D., Ewart, S., Fletcher, L., Floud, S., Gathani, T., Gerrard, L., Goodill, A., Green, J., Guiver, L., Lingard, I., Wan Kan, S., Kirichek, O., Kroll, M., Langston, N., Liu, B., Luque, M.-J., Moser, K., Pank, L., Pirie, K., Reeves, G., Shaw, K., Sherman, E., Sherry-Starmer, E., Strange, H., Sweetland, S., Timadjer, A., Tipper, S., Travis, R., Wright, L., Yang, O., Young, H., Banks, E., Beral, V., English, R., Green, J., Patnick, J., Peto, R., Reeves, G., Vessey, M., & Wallis, M. (2015). Age at menarche and risks of coronary heart and other vascular diseases in a large UK cohort. Circulation, 131(3), 237–244.

    Article  PubMed  Google Scholar 

  75. Hutcheon, J. A., Lisonkova, S., & Joseph, K. S. (2011). Epidemiology of pre-eclampsia and the other hypertensive disorders of pregnancy. Best Pract Res Clin Obstet Gynaecol, 25(4), 391–403. https://doi.org/10.1016/j.bpobgyn.2011.01.006.

    Article  Google Scholar 

  76. Juliard, J. M., Golmard, J. L., Himbert, D., Feldman, L. J., Delorme, L., Ducrocq, G., Descoutures, F., Sorbets, E., Garbarz, E., Boudvillain, O., Aubry, P., Vahanian, A., & Steg, P. G. (2013). Comparison of hospital mortality during ST-segment elevation myocardial infarction in the era of reperfusion therapy in women versus men and in older versus younger patients. Am J Cardiol, 111(12), 1708–1713. https://doi.org/10.1016/j.amjcard.2013.02.023.

    Article  PubMed  Google Scholar 

  77. Bellamy, L., Casas, J. P., Hingorani, A. D., & Williams, D. (2009). Type 2 diabetes mellitus after gestational diabetes: a systematic review and meta-analysis. Lancet, 373(9677), 1773–1779. https://doi.org/10.1016/S0140-6736(09)60731-5.

    Article  CAS  PubMed  Google Scholar 

  78. Carr, D. B., Utzschneider, K. M., Hull, R. L., Tong, J., Wallace, T. M., Kodama, K., Shofer, J. B., Heckbert, S. R., Boyko, E. J., Fujimoto, W. Y., & Kahn, S. E. (2006). Gestational diabetes mellitus increases the risk of cardiovascular disease in women with a family history of type 2 diabetes. Diabetes Care, 29(9), 2078–2083. https://doi.org/10.2337/dc05-2482.

    Article  PubMed  Google Scholar 

  79. Archambault, C., Arel, R., & Filion, K. B. (2014). Gestational diabetes and risk of cardiovascular disease: a scoping review. Open Med, 8(1), e1–e9.

  80. Hedderson, M. M., Darbinian, J., Havel, P. J., Quesenberry, C. P., Sridhar, S., Ehrlich, S., & Ferrara, A. (2013). Low prepregnancy adiponectin concentrations are associated with a marked increase in risk for development of gestational diabetes mellitus. Diabetes Care, 36(12), 3930–3937. https://doi.org/10.2337/dc13-0389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Anderson, G. L., Limacher, M., Assaf, A. R., Bassford, T., Beresford, S. A., Black, H., Bonds, D., Brunner, R., Brzyski, R., Caan, B., Chlebowski, R., Curb, D., Gass, M., Hays, J., Heiss, G., Hendrix, S., Howard, B. V., Hsia, J., Hubbell, A., Jackson, R., Johnson, K. C., Judd, H., Kotchen, J. M., Kuller, L., LaCroix, A. Z., Lane, D., Langer, R. D., Lasser, N., Lewis, C. E., Manson, J., Margolis, K., Ockene, J., O'Sullivan, M. J., Phillips, L., Prentice, R. L., Ritenbaugh, C., Robbins, J., Rossouw, J. E., Sarto, G., Stefanick, M. L., Van Horn, L., Wactawski-Wende, J., Wallace, R., Wassertheil-Smoller, S., & Women’s Health Initiative Steering, C. (2004). Effects of conjugated equine estrogen in postmenopausal women with hysterectomy: the Women’s Health Initiative randomized controlled trial. Jama, 291(14), 1701–1712. https://doi.org/10.1001/jama.291.14.1701.

    Article  CAS  PubMed  Google Scholar 

  82. Rossouw, J. E., Prentice, R. L., Manson, J. E., Wu, L., Barad, D., Barnabei, V. M., Ko, M., LaCroix, A. Z., Margolis, K. L., & Stefanick, M. L. (2007). Postmenopausal hormone therapy and risk of cardiovascular disease by age and years since menopause. Jama, 297(13), 1465–1477. https://doi.org/10.1001/jama.297.13.1465.

    Article  CAS  PubMed  Google Scholar 

  83. Hodis, H. N., Mack, W. J., Shoupe, D., Azen, S. P., Stanczyk, F. Z., Hwang-Levine, J., Budoff, M. J., & Henderson, V. W. (2015). Methods and baseline cardiovascular data from the early versus late intervention trial with estradiol testing the menopausal hormone timing hypothesis. Menopause, 22(4), 391–401. https://doi.org/10.1097/GME.0000000000000343.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Willingham, S. A. M., & Kilpatrick, E. S. (2005). Evidence of gender bias when applying the new diagnostic criteria for myocardial infarction. Heart, 91(2), 237–238. https://doi.org/10.1136/hrt.2004.038497.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Berg, J., Bjorck, L., Dudas, K., Lappas, G., & Rosengren, A. (2009). Symptoms of a first acute myocardial infarction in women and men. Gend Med, 6(3), 454–462. https://doi.org/10.1016/j.genm.2009.09.007.

    Article  PubMed  Google Scholar 

  86. Sheifer, S. E., Canos, M. R., Weinfurt, K. P., Arora, U. K., Mendelsohn, F. O., Gersh, B. J., & Weissman, N. J. (2000). Sex differences in coronary artery size assessed by intravascular ultrasound. Am Heart J, 139(4), 649–653.

    Article  CAS  PubMed  Google Scholar 

  87. Lansky, A. J., Hochman, J. S., Ward, P. A., Mintz, G. S., Fabunmi, R., Berger, P. B., New, G., Grines, C. L., Pietras, C. G., Kern, M. J., Ferrell, M., Leon, M. B., Mehran, R., White, C., Mieres, J. H., Moses, J. W., Stone, G. W., Jacobs, A. K., & American College of Cardiology F, American Heart A. (2005). Percutaneous coronary intervention and adjunctive pharmacotherapy in women: a statement for healthcare professionals from the American Heart Association. Circulation, 111(7), 940–953.

    Article  PubMed  Google Scholar 

  88. Mickleborough, L. L., Takagi, Y., Maruyama, H., Sun, Z., & Mohamed, S. (1995). Is sex a factor in determining operative risk for aortocoronary bypass graft-surgery. Circulation, 92(9), 80–84. https://doi.org/10.1161/01.Cir.92.9.80.

    Article  Google Scholar 

  89. Arnold, A. M., Mick, M. J., Piedmonte, M. R., & Simpfendorfer, C. (1994). Gender differences for coronary angioplasty. Am J Cardiol, 74(1), 18–21.

    Article  CAS  PubMed  Google Scholar 

  90. Ayanian, J. Z., & Epstein, A. M. (1991). Differences in the use of procedures between Women and men hospitalized for coronary heart-disease. New Engl J Med, 325(4), 221–225. https://doi.org/10.1056/Nejm199107253250401.

    Article  CAS  PubMed  Google Scholar 

  91. Bearden, D., Allman, R., McDonald, R., Miller, S., Pressel, S., & Petrovitch, H. (1994). Age, race, and gender variation in the utilization of coronary artery bypass surgery and angioplasty in SHEP. SHEP Cooperative Research Group. Systolic Hypertension in the Elderly Program. J Am Geriatr Soc, 42(11), 1143–1149.

    Article  CAS  PubMed  Google Scholar 

  92. Kelsey, S. F., James, M., Holubkov, A. L., Holubkov, R., Cowley, M. J., & Detre, K. M. (1993). Results of percutaneous transluminal coronary angioplasty in women. 1985-1986 National Heart, Lung, and Blood Institute’s Coronary Angioplasty Registry. Circulation, 87(3), 720–727.

    Article  CAS  PubMed  Google Scholar 

  93. Ellis, S. G., Roubin, G. S., King, S. B., 3rd, Douglas, J. S., Jr., Shaw, R. E., Stertzer, S. H., & Myler, R. K. (1988). In-hospital cardiac mortality after acute closure after coronary angioplasty: analysis of risk factors from 8,207 procedures. J Am Coll Cardiol, 11(2), 211–216.

    Article  CAS  PubMed  Google Scholar 

  94. Rosano, G. M., Lewis, B., Agewall, S., Wassmann, S., Vitale, C., Schmidt, H., Drexel, H., Patak, A., Torp-Pedersen, C., Kjeldsen, K. P., & Tamargo, J. (2015). Gender differences in the effect of cardiovascular drugs: a position document of the Working Group on Pharmacology and Drug Therapy of the ESC. Eur Heart J, 36(40), 2677–2680. https://doi.org/10.1093/eurheartj/ehv161.

    Article  CAS  PubMed  Google Scholar 

  95. Martinez-Selles, M., Doughty, R. N., Poppe, K., Whalley, G. A., Earle, N., Tribouilloy, C., McMurray, J. J., Swedberg, K., Kober, L., Berry, C., Squire, I., & Meta-Analysis Global Group In Chronic Heart F. (2012). Gender and survival in patients with heart failure: interactions with diabetes and aetiology. Results from the MAGGIC individual patient meta-analysis. Eur J Heart Fail, 14(5), 473–479. https://doi.org/10.1093/eurjhf/hfs026.

    Article  PubMed  Google Scholar 

  96. Jani, S. M., Montoye, C. K., Chen, B., Roychoudhury, C., & Eagle, K. A. (2005). Gender differences in the application of evidence-based therapies for the treatment of acute myocardial infarction: the American College of Cardiology’s Guidelines Applied in Practice (GAP) projects in Michigan. J Am Coll Cardiol, 45(3), 346a–346a.

    Google Scholar 

  97. Song, X. T., Chen, Y. D., Pan, W. Q., Lu, S. Z., & investigators C. (2007). Gender based differences in patients with acute coronary syndrome: findings from Chinese Registry of Acute Coronary Events (CRACE). Chin Med J, 120(12), 1063–1067.

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (NSFC, No. 91849122, No. 81870194), Jiangsu Province Key Scientific and Technological Project (BE2016669), Suzhou Science and Technology Project (SS201665), Jiangsu Province Peak of Talent in Six Industries (BU24600117), the National Natural Science Foundation of China (No.U1601227 to X.Y.Y), the Science and Technology Programs of Guangdong Province (No. 2015B020225006 to X.Y.Y).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yangxin Li.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of Interest

The authors declare that they have no competing interests.

Statement of the Clinical Relevance

Significant differences exist between the two sexes in the development of CVD. Further understanding of the molecular mechanisms underlying these differences will lead to the development of better therapies for treating female patients with heart diseases.

Additional information

Associate Editor Yihua Bei oversaw the review of this article

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Liu, B., Zhao, R. et al. The Influence of Sex on Cardiac Physiology and Cardiovascular Diseases. J. of Cardiovasc. Trans. Res. 13, 3–13 (2020). https://doi.org/10.1007/s12265-019-09898-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-019-09898-x

Keywords

Navigation