Skip to main content

Advertisement

Log in

Changes in Citric Acid Cycle and Nucleoside Metabolism Are Associated with Anthracycline Cardiotoxicity in Patients with Breast Cancer

  • Original Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Anthracyclines and HER2-targeted antibodies are very effective for the treatment of breast cancer, but their use is limited by cardiotoxicity. In this nested case-control study, we assessed the role of intermediary metabolism in 38 women with breast cancer treated with anthracyclines and trastuzumab. Using targeted mass spectrometry to measure 71 metabolites in the plasma, we identified changes in citric acid and aconitic acid that differentiated patients who developed cardiotoxicity from those who did not. In patients with cardiotoxicity, the magnitude of change in citric acid at three months correlated with the change in left ventricular ejection fraction (LVEF) and absolute LVEF at nine months. Patients with cardiotoxicity also demonstrated more pronounced changes in purine and pyrimidine metabolism. Early metabolic changes may therefore provide insight into the mechanisms associated with the development of chemotherapy-associated cardiotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ACE:

Angiotensin converting enzyme

BMI:

Body mass index

CAC:

Citric acid cycle

CV:

Cardiovascular

DBP:

Diastolic blood pressure

LC-MS:

Liquid chromatography mass spectrometry

LVEF:

Left ventricular ejection fraction

SBP:

Systolic blood pressure

References

  1. Cardinale, D., Colombo, A., Bacchiani, G., Tedeschi, I., Meroni, C. A., Veglia, F., et al. (2015). Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy. Circulation, 131(22), 1981–1988. https://doi.org/10.1161/CIRCULATIONAHA.114.013777.

    Article  CAS  Google Scholar 

  2. Limat, S., Demesmay, K., Voillat, L., Bernard, Y., Deconinck, E., Brion, A., et al. (2003). Early cardiotoxicity of the CHOP regimen in aggressive non-Hodgkin’s lymphoma. Annals of Oncology, 14(2), 277–281.

    Article  CAS  Google Scholar 

  3. Tan, T. C., Neilan, T. G., Francis, S., Plana, J. C., & Scherrer-Crosbie, M. (2015). Anthracycline-induced cardiomyopathy in adults. Comprehensive Physiology, 5(3), 1517–1540. https://doi.org/10.1002/cphy.c140059.

    Article  PubMed  Google Scholar 

  4. Bowles, E. J., Wellman, R., Feigelson, H. S., Onitilo, A. A., Freedman, A. N., Delate, T., et al. (2012). Risk of heart failure in breast cancer patients after anthracycline and trastuzumab treatment: A retrospective cohort study. Journal of the National Cancer Institute, 104(17), 1293–1305. https://doi.org/10.1093/jnci/djs317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Octavia, Y., Tocchetti, C. G., Gabrielson, K. L., Janssens, S., Crijns, H. J., & Moens, A. L. (2012). Doxorubicin-induced cardiomyopathy: From molecular mechanisms to therapeutic strategies. Journal of Molecular and Cellular Cardiology, 52(6), 1213–1225. https://doi.org/10.1016/j.yjmcc.2012.03.006.

    Article  CAS  PubMed  Google Scholar 

  6. Ichikawa, Y., Ghanefar, M., Bayeva, M., Wu, R., Khechaduri, A., Naga Prasad, S. V., et al. (2014). Cardiotoxicity of doxorubicin is mediated through mitochondrial iron accumulation. The Journal of Clinical Investigation, 124(2), 617–630. https://doi.org/10.1172/JCI72931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhang, S., Liu, X., Bawa-Khalfe, T., Lu, L. S., Lyu, Y. L., Liu, L. F., et al. (2012). Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nature Medicine, 18(11), 1639–1642. https://doi.org/10.1038/nm.2919.

    Article  CAS  PubMed  Google Scholar 

  8. Li, D. L., Wang, Z. V., Ding, G., Tan, W., Luo, X., Criollo, A., et al. (2016). Doxorubicin blocks cardiomyocyte autophagic flux by inhibiting lysosome acidification. Circulation, 133(17), 1668–1687. https://doi.org/10.1161/CIRCULATIONAHA.115.017443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Finkelman, B. S., Putt, M., Wang, T., Wang, L., Narayan, H., Domchek, S., et al. (2017). Arginine-nitric oxide metabolites and cardiac dysfunction in patients with breast cancer. Journal of the American College of Cardiology, 70(2), 152–162. https://doi.org/10.1016/j.jacc.2017.05.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ky, B., Putt, M., Sawaya, H., French, B., Januzzi, J. L., Jr., Sebag, I. A., et al. (2014). Early increases in multiple biomarkers predict subsequent cardiotoxicity in patients with breast cancer treated with doxorubicin, taxanes, and trastuzumab. Journal of the American College of Cardiology, 63(8), 809–816. https://doi.org/10.1016/j.jacc.2013.10.061.

    Article  CAS  PubMed  Google Scholar 

  11. Thompson Legault, J., Strittmatter, L., Tardif, J., Sharma, R., Tremblay-Vaillancourt, V., Aubut, C., et al. (2015). A metabolic signature of mitochondrial dysfunction revealed through a monogenic form of Leigh syndrome. Cell Reports, 13(5), 981–989. https://doi.org/10.1016/j.celrep.2015.09.054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Roberts, L. D., Bostrom, P., O'Sullivan, J. F., Schinzel, R. T., Lewis, G. D., Dejam, A., et al. (2014). beta-Aminoisobutyric acid induces browning of white fat and hepatic beta-oxidation and is inversely correlated with cardiometabolic risk factors. Cell Metabolism, 19(1), 96–108. https://doi.org/10.1016/j.cmet.2013.12.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhou, S., Starkov, A., Froberg, M. K., Leino, R. L., & Wallace, K. B. (2001). Cumulative and irreversible cardiac mitochondrial dysfunction induced by doxorubicin. Cancer Research, 61(2), 771–777.

    CAS  PubMed  Google Scholar 

  14. Sawaya, H., Sebag, I. A., Plana, J. C., Januzzi, J. L., Ky, B., Tan, T. C., et al. (2012). Assessment of echocardiography and biomarkers for the extended prediction of cardiotoxicity in patients treated with anthracyclines, taxanes, and trastuzumab. Circulation Cardiovascular Imaging, 5(5), 596–603. https://doi.org/10.1161/CIRCIMAGING.112.973321.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Plana, J. C., Galderisi, M., Barac, A., Ewer, M. S., Ky, B., Scherrer-Crosbie, M., et al. (2014). Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: A report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. European Heart Journal Cardiovascular Imaging, 15(10), 1063–1093. https://doi.org/10.1093/ehjci/jeu192.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Danz, E. D., Skramsted, J., Henry, N., Bennett, J. A., & Keller, R. S. (2009). Resveratrol prevents doxorubicin cardiotoxicity through mitochondrial stabilization and the Sirt1 pathway. Free Radical Biology & Medicine, 46(12), 1589–1597. https://doi.org/10.1016/j.freeradbiomed.2009.03.011.

    Article  CAS  Google Scholar 

  17. Jirkovsky, E., Popelova, O., Krivakova-Stankova, P., Vavrova, A., Hroch, M., Haskova, P., et al. (2012). Chronic anthracycline cardiotoxicity: Molecular and functional analysis with focus on nuclear factor erythroid 2-related factor 2 and mitochondrial biogenesis pathways. The Journal of Pharmacology and Experimental Therapeutics, 343(2), 468–478. https://doi.org/10.1124/jpet.112.198358.

    Article  CAS  PubMed  Google Scholar 

  18. Guo, J., Guo, Q., Fang, H., Lei, L., Zhang, T., Zhao, J., et al. (2014). Cardioprotection against doxorubicin by metallothionein is associated with preservation of mitochondrial biogenesis involving PGC-1alpha pathway. European Journal of Pharmacology, 737, 117–124. https://doi.org/10.1016/j.ejphar.2014.05.017.

    Article  CAS  PubMed  Google Scholar 

  19. Doenst, T., Nguyen, T. D., & Abel, E. D. (2013). Cardiac metabolism in heart failure: Implications beyond ATP production. Circulation Research, 113(6), 709–724. https://doi.org/10.1161/CIRCRESAHA.113.300376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Czibik, G., Steeples, V., Yavari, A., & Ashrafian, H. (2014). Citric acid cycle intermediates in cardioprotection. Circulation. Cardiovascular Genetics, 7(5), 711–719. https://doi.org/10.1161/CIRCGENETICS.114.000220.

    Article  CAS  PubMed  Google Scholar 

  21. Stewart, D. J., Grewaal, D., Green, R. M., Mikhael, N., Goel, R., Montpetit, V. A., et al. (1993). Concentrations of doxorubicin and its metabolites in human autopsy heart and other tissues. Anticancer Research, 13(6A), 1945–1952.

    CAS  PubMed  Google Scholar 

Download references

Funding

AA was supported by a Scholar Award from the Sarnoff Cardiovascular Research Foundation (Great Falls, VA). The project was supported by an investigator-initiated grant from Susan G. Komen (Dallas, TX) and a SPARK grant initiated by Massachusetts General Hospital (Boston, MA), both to MSC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aarti Asnani.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human Subjects/Informed Consent Statement

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation at Massachusetts General Hospital, MD Anderson Cancer Center, and McGill University and with the Helsinki Declaration of 1975, as revised in 2000 (5). Informed consent was obtained from all patients for being included in the study.

Additional information

Associate Editor Ana Barac oversaw the review of this article

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asnani, A., Shi, X., Farrell, L. et al. Changes in Citric Acid Cycle and Nucleoside Metabolism Are Associated with Anthracycline Cardiotoxicity in Patients with Breast Cancer. J. of Cardiovasc. Trans. Res. 13, 349–356 (2020). https://doi.org/10.1007/s12265-019-09897-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-019-09897-y

Keywords

Navigation