Skip to main content

Advertisement

Log in

HiPS-Cardiac Trilineage Cell Generation and Transplantation: a Novel Therapy for Myocardial Infarction

  • Review
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Despite primary percutaneous coronary intervention (PPCI) and the availability of optimal medications, including dual antiplatelet therapy (DAPT), most patients still experience major adverse cardiovascular events (MACEs) due to frequent recurrence of thrombotic complications and myocardial infarction (MI). MI occurs secondary to a massive loss of endothelial cells (ECs), vascular smooth muscle cells (VSMCs), and cardiomyocytes (CMs). The adult cardiovascular system gradually loses the ability to spontaneously and regularly regenerate ECs, VSMCs, and CMs. However, human cells can be induced by cytokines and growth factors to regenerate human-induced pluripotent stem cells (hiPSCs), which progress to produce cardiac trilineage cells (CTCs) such as ECs, VSMCs, and CMs, replacing lost cells and inducing myocardial repair. Nevertheless, the processes and pathways involved in hiPSC-CTC generation and their potential therapeutic effects remain unknown. Herein, we provide evidence of in vitro CTC generation, the pathways involved, in vivo transplantation, and its therapeutic effect, which may provide novel targets in regenerative medicine for the treatment of cardiovascular diseases (CVDs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Zwi-Dantsis, L., et al. (2013). Derivation and cardiomyocyte differentiation of induced pluripotent stem cells from heart failure patients. European Heart Journal, 34(21), 1575–1586.

    CAS  PubMed  Google Scholar 

  2. D'Amico, R. W., et al. (2018). Pulmonary vascular platform models the effects of flow and pressure on endothelial dysfunction in BMPR2 associated pulmonary arterial hypertension. International Journal of Molecular Sciences, 19(9), 2561.

    PubMed Central  Google Scholar 

  3. Tang, N., et al. (2016). Monocyte exosomes induce adhesion molecules and cytokines via activation of NF-kappaB in endothelial cells. The FASEB Journal, 30(9), 3097–3106.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Chen, L., et al. (2019). CTRP3 alleviates ox-LDL-induced inflammatory response and endothelial dysfunction in mouse aortic endothelial cells by activating the PI3K/Akt/eNOS pathway. Inflammation, 1–10.

  5. Cai, H., et al. (2019). Hypochlorous acid-modified extracellular matrix contributes to the behavioral switching of human coronary artery smooth muscle cells. Free Radical Biology & Medicine, 134, 516–526.

    CAS  Google Scholar 

  6. Lacolley, P., et al. (2017). Vascular smooth muscle cells and arterial stiffening: relevance in development, aging, and disease. Physiological Reviews, 97(4), 1555–1617.

    CAS  PubMed  Google Scholar 

  7. Jin, H., et al. (2018). Local delivery of miR-21 stabilizes fibrous caps in vulnerable atherosclerotic lesions. Molecular Therapy, 26(4), 1040–1055.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Luo, Y., et al. (2017). Macrophagic CD146 promotes foam cell formation and retention during atherosclerosis. Cell Research, 27(3), 352–372.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang, Y., et al. (2016). Expandable cardiovascular progenitor cells reprogrammed from fibroblasts. Cell Stem Cell, 18(3), 368–381.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Ye, L., et al. (2014). Cardiac repair in a porcine model of acute myocardial infarction with human induced pluripotent stem cell-derived cardiovascular cells. Cell Stem Cell, 15(6), 750–761.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhou, J., et al. (2010). High-efficiency induction of neural conversion in human ESCs and human induced pluripotent stem cells with a single chemical inhibitor of transforming growth factor beta superfamily receptors. Stem Cells, 28(10), 1741–1750.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Bai, H., et al. (2013). The balance of positive and negative effects of TGF-beta signaling regulates the development of hematopoietic and endothelial progenitors in human pluripotent stem cells. Stem Cells and Development, 22(20), 2765–2776.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang, J., et al. (2013). Transforming growth factor beta-regulated microRNA-29a promotes angiogenesis through targeting the phosphatase and tensin homolog in endothelium. The Journal of Biological Chemistry, 288(15), 10418–10426.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Adams, W. J., et al. (2013). Functional vascular endothelium derived from human induced pluripotent stem cells. Stem Cell Reports, 1(2), 105–113.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Bulysheva, A. A., et al. (2016). Vascular endothelial growth factor-A gene electrotransfer promotes angiogenesis in a porcine model of cardiac ischemia. Gene Therapy, 23(8–9), 649–656.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Lv, Y. X., et al. (2018). VEGF-A and VEGF-B coordinate the arteriogenesis to repair the infarcted heart with vagus nerve stimulation. Cellular Physiology and Biochemistry, 48(2), 433–449.

    CAS  PubMed  Google Scholar 

  17. Wang, Y., et al. (2016). The transplantation of Akt-overexpressing amniotic fluid-derived mesenchymal stem cells protects the heart against ischemia-reperfusion injury in rabbits. Molecular Medicine Reports, 14(1), 234–242.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Harding, A., et al. (2017). Highly efficient differentiation of endothelial cells from pluripotent stem cells requires the MAPK and the PI3K pathways. Stem Cells, 35(4), 909–919.

    CAS  PubMed  Google Scholar 

  19. Zhang, Z., et al. (2015). Activated phosphatidylinositol 3-kinase/Akt inhibits the transition of endothelial progenitor cells to mesenchymal cells by regulating the forkhead box subgroup O-3a signaling. Cellular Physiology and Biochemistry, 35(4), 1643–1653.

    CAS  PubMed  Google Scholar 

  20. Wang, Y., et al. (2014). Suicide gene-mediated sequencing ablation revealed the potential therapeutic mechanism of induced pluripotent stem cell-derived cardiovascular cell patch post-myocardial infarction. Antioxidants & Redox Signaling, 21(16), 2177–2191.

    CAS  Google Scholar 

  21. Rosa, S., et al. (2019). Functional characterization of iPSC-derived arterial- and venous-like endothelial cells. Scientific Reports, 9(1), 3826.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Songstad, A. E., et al. (2017). Connective tissue growth factor promotes efficient generation of human induced pluripotent stem cell-derived choroidal endothelium. Stem Cells Translational Medicine, 6(6), 1533–1546.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Chan, X. Y., et al. (2015). Three-dimensional vascular network assembly from diabetic patient-derived induced pluripotent stem cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 35(12), 2677–2685.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Hurlstone, A. F., et al. (2003). The Wnt/beta-catenin pathway regulates cardiac valve formation. Nature, 425(6958), 633–637.

    CAS  PubMed  Google Scholar 

  25. Cai, X., et al. (2013). Tbx20 acts upstream of Wnt signaling to regulate endocardial cushion formation and valve remodeling during mouse cardiogenesis. Development, 140(15), 3176–3187.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Umbhauer, M., et al. (2000). The C-terminal cytoplasmic Lys-thr-X-X-X-Trp motif in frizzled receptors mediates Wnt/beta-catenin signalling. The EMBO Journal, 19(18), 4944–4954.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Maltabe, V. A., et al. (2016). Isolation of an ES-derived cardiovascular multipotent cell population based on VE-cadherin promoter activity. Stem Cells International, 2016, 8305624.

    PubMed  PubMed Central  Google Scholar 

  28. Marchetti, S., et al. (2002). Endothelial cells genetically selected from differentiating mouse embryonic stem cells incorporate at sites of neovascularization in vivo. Journal of Cell Science, (115(Pt 10), 2075–2085.

  29. Lian, X., et al. (2014). Efficient differentiation of human pluripotent stem cells to endothelial progenitors via small-molecule activation of WNT signaling. Stem Cell Reports, 3(5), 804–816.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Collado, M. S., et al. (2017). Exposure of induced pluripotent stem cell-derived vascular endothelial and smooth muscle cells in coculture to hemodynamics induces primary vascular cell-like phenotypes. Stem Cells Translational Medicine, 6(8), 1673–1683.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Shen, X., et al. (2017). Differentiation of mesenchymal stem cells into cardiomyocytes is regulated by miRNA-1-2 via WNT signaling pathway. Journal of Biomedical Science, 24(1), 29.

    PubMed  PubMed Central  Google Scholar 

  32. Ishizuka, T., et al. (2012). Effect of angiotensin II on proliferation and differentiation of mouse induced pluripotent stem cells into mesodermal progenitor cells. Biochemical and Biophysical Research Communications, 420(1), 148–155.

    CAS  PubMed  Google Scholar 

  33. Zheng, X., et al. (2013). Angiotensin II promotes differentiation of mouse embryonic stem cells to smooth muscle cells through PI3-kinase signaling pathway and NF-kappaB. Differentiation, 85(1–2), 41–54.

    CAS  PubMed  Google Scholar 

  34. Jiao, J., et al. (2018). Induced pluripotent stem cells with NOTCH1 gene mutation show impaired differentiation into smooth muscle and endothelial cells: implications for bicuspid aortic valve-related aortopathy. The Journal of Thoracic and Cardiovascular Surgery, 156(2), 515–522 e1.

    CAS  PubMed  Google Scholar 

  35. Jiao, J., et al. (2016). Differentiation defect in neural crest-derived smooth muscle cells in patients with aortopathy associated with bicuspid aortic valves. EBioMedicine, 10, 282–290.

    PubMed  PubMed Central  Google Scholar 

  36. Chang, L., et al. (2012). Differentiation of vascular smooth muscle cells from local precursors during embryonic and adult arteriogenesis requires Notch signaling. Proceedings of the National Academy of Sciences of the United States of America, 109(18), 6993–6998.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu, Y., et al. (2014). Timely inhibition of Notch signaling by DAPT promotes cardiac differentiation of murine pluripotent stem cells. PLoS One, 9(10), e109588.

    PubMed  PubMed Central  Google Scholar 

  38. Yang, C., et al. (2017). Induced pluripotent stem cell modelling of HLHS underlines the contribution of dysfunctional NOTCH signalling to impaired cardiogenesis. Human Molecular Genetics, 26(16), 3031–3045.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Gong, H., et al. (2014). Knockdown of nucleosome assembly protein 1-like 1 induces mesoderm formation and cardiomyogenesis via notch signaling in murine-induced pluripotent stem cells. Stem Cells, 32(7), 1759–1773.

    CAS  PubMed  Google Scholar 

  40. Jiang, S., & Zhang, S. (2017). Differentiation of cardiomyocytes from amniotic fluid-derived mesenchymal stem cells by combined induction with transforming growth factor beta1 and 5azacytidine. Molecular Medicine Reports, 16(5), 5887–5893.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Ishizuka, T., et al. (2014). Involvement of beta-adrenoceptors in the differentiation of human induced pluripotent stem cells into mesodermal progenitor cells. European Journal of Pharmacology, 740, 28–34.

    CAS  PubMed  Google Scholar 

  42. Ikuno, T., et al. (2017). Correction: efficient and robust differentiation of endothelial cells from human induced pluripotent stem cells via lineage control with VEGF and cyclic AMP. PLoS One, 12(4), e0176238.

    PubMed  PubMed Central  Google Scholar 

  43. Yamazaki, A., et al. (2016). Isoproterenol directs hair follicle-associated pluripotent (HAP) stem cells to differentiate in vitro to cardiac muscle cells which can be induced to form beating heart-muscle tissue sheets. Cell Cycle, 15(5), 760–765.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Shirai, K., et al. (2017). Hypoxia enhances differentiation of hair follicle-associated-pluripotent (HAP) stem cells to cardiac-muscle cells. Journal of Cellular Biochemistry, 118(3), 554–558.

    CAS  PubMed  Google Scholar 

  45. Liao, S., et al. (2019). Potent immunomodulation and angiogenic effects of mesenchymal stem cells versus cardiomyocytes derived from pluripotent stem cells for treatment of heart failure. Stem Cell Research & Therapy, 10(1), 78.

    CAS  Google Scholar 

  46. Kim, J. A., et al. (2015). Regulation of mesenchymal stromal cells through fine tuning of canonical Wnt signaling. Stem Cell Research, 14(3), 356–368.

    CAS  PubMed  Google Scholar 

  47. von Gise, A., et al. (2011). WT1 regulates epicardial epithelial to mesenchymal transition through beta-catenin and retinoic acid signaling pathways. Developmental Biology, 356(2), 421–431.

    Google Scholar 

  48. Mahapatra, S., Martin, D., & Gallicano, G. I. (2018). Re-defining stem cell-cardiomyocyte interactions: focusing on the paracrine effector approach. Journal of Stem cells and Regenerative Medicine, 14(1), 10–26.

    PubMed  Google Scholar 

  49. Luxan, G., et al. (2016). Endocardial notch signaling in cardiac development and disease. Circulation Research, 118(1), e1–e18.

    CAS  PubMed  Google Scholar 

  50. Wu, K. H., et al. (2018). MicroRNA-34a modulates the Notch signaling pathway in mice with congenital heart disease and its role in heart development. Journal of Molecular and Cellular Cardiology, 114, 300–308.

    CAS  PubMed  Google Scholar 

  51. High, F. A., et al. (2007). An essential role for Notch in neural crest during cardiovascular development and smooth muscle differentiation. The Journal of Clinical Investigation, 117(2), 353–363.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Godby, R. C., et al. (2014). Cross talk between Notch signaling and biomechanics in human aortic valve disease pathogenesis. Journal of Cardiovascular Development and Disease, 1(3), 237–256.

    PubMed  PubMed Central  Google Scholar 

  53. Hrstka, S. C., et al. (2017). NOTCH1-dependent nitric oxide signaling deficiency in hypoplastic left heart syndrome revealed through patient-specific phenotypes detected in bioengineered cardiogenesis. Stem Cells, 35(4), 1106–1119.

    CAS  PubMed  Google Scholar 

  54. Bischoff, J., et al. (2016). CD45 expression in mitral valve endothelial cells after myocardial infarction. Circulation Research, 119(11), 1215–1225.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Skelton, R. J., et al. (2014). SIRPA, VCAM1 and CD34 identify discrete lineages during early human cardiovascular development. Stem Cell Research, 13(1), 172–179.

    CAS  PubMed  Google Scholar 

  56. Clayton, Z. E., et al. (2018). Induced pluripotent stem cell-derived endothelial cells promote angiogenesis and accelerate wound closure in a murine excisional wound healing model. Bioscience Reports, 38(4).

  57. Liu, G., et al. (2018). Human urine-derived stem cell differentiation to endothelial cells with barrier function and nitric oxide production. Stem Cells Translational Medicine.

  58. Nakayama, K. H., et al. (2015). Bilayered vascular graft derived from human induced pluripotent stem cells with biomimetic structure and function. Regenerative Medicine, 10(6), 745–755.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Halaidych, O. V., et al. (2018). Inflammatory responses and barrier function of endothelial cells derived from human induced pluripotent stem cells. Stem Cell Reports, 10(5), 1642–1656.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Ding, X., et al. (2017). Upregulation of SRF is associated with hypoxic pulmonary hypertension by promoting viability of smooth muscle cells via increasing expression of Bcl-2. Journal of Cellular Biochemistry, 118(9), 2731–2738.

    CAS  PubMed  Google Scholar 

  61. Liu, S., et al. (2019). MiR-378a-5p regulates proliferation and migration in vascular smooth muscle cell by targeting CDK1. Frontiers in Genetics, 10, 22.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Bai, Y., et al. (2019). Modulation of the proliferation/apoptosis balance of vascular smooth muscle cells in atherosclerosis by lncRNA-MEG3 via regulation of miR-26a/Smad1 Axis. International Heart Journal, 60(2), 444–450.

    CAS  PubMed  Google Scholar 

  63. Jamaiyar, A., et al. (2017). Alignment of inducible vascular progenitor cells on a micro-bundle scaffold improves cardiac repair following myocardial infarction. Basic Research in Cardiology, 112(4), 41.

    PubMed  Google Scholar 

  64. Chen, S., & Lechleider, R. J. (2004). Transforming growth factor-beta-induced differentiation of smooth muscle from a neural crest stem cell line. Circulation Research, 94(9), 1195–1202.

    CAS  PubMed  Google Scholar 

  65. Chan, M. C., et al. (2010). Molecular basis for antagonism between PDGF and the TGFbeta family of signalling pathways by control of miR-24 expression. The EMBO Journal, 29(3), 559–573.

    CAS  PubMed  Google Scholar 

  66. Patsch, C., et al. (2015). Generation of vascular endothelial and smooth muscle cells from human pluripotent stem cells. Nature Cell Biology, 17(8), 994–1003.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Dash, B. C., et al. (2016). Tissue-engineered vascular rings from human iPSC-derived smooth muscle cells. Stem Cell Reports, 7(1), 19–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Liu, Y., et al. (2016). Mesp1 marked cardiac progenitor cells repair infarcted mouse hearts. Scientific Reports, 6, 31457.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Remedios, L. J. Y. H. S. H. C. G.d. (2003). Cardiomyocyte apoptosis is associated with increased wall stress in chronic failing left ventricle. European Heart Journal, 24(8), 742–751.

  70. Tachibana, A., et al. (2017). Paracrine effects of the pluripotent stem cell-derived cardiac myocytes salvage the injured myocardium. Circulation Research, 121(6), e22–e36.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Martinez-Fernandez, A., et al. (2010). c-MYC independent nuclear reprogramming favors cardiogenic potential of induced pluripotent stem cells. Journal of Cardiovascular Translational Research, 3(1), 13–23.

    PubMed  PubMed Central  Google Scholar 

  72. Chan, S. S., et al. (2010). Fibroblast growth factor-10 promotes cardiomyocyte differentiation from embryonic and induced pluripotent stem cells. PLoS One, 5(12), e14414.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Morabito, C. J., et al. (2001). Positive and negative regulation of epicardial-mesenchymal transformation during avian heart development. Developmental Biology, 234(1), 204–215.

    CAS  PubMed  Google Scholar 

  74. Karimzadeh, F., & Opas, M. (2017). Calreticulin is required for TGF-beta-induced epithelial-to-mesenchymal transition during cardiogenesis in mouse embryonic stem cells. Stem Cell Reports, 8(5), 1299–1311.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Wang, K., et al. (2018). Hypoxia-stressed cardiomyocytes promote early cardiac differentiation of cardiac stem cells through HIF-1alpha/Jagged1/Notch1 signaling. Acta Pharmaceutica Sinica B, 8(5), 795–804.

    PubMed  PubMed Central  Google Scholar 

  76. Sun, X., et al. (2015). HIF2alpha induces cardiomyogenesis via Wnt/beta-catenin signaling in mouse embryonic stem cells. Journal of Translational Medicine, 13, 88.

    PubMed  PubMed Central  Google Scholar 

  77. Xue, Y., et al. (2014). Insulin-like growth factor binding protein 4 enhances cardiomyocytes induction in murine-induced pluripotent stem cells. Journal of Cellular Biochemistry, 115(9), 1495–1504.

    CAS  PubMed  Google Scholar 

  78. Minato, A., et al. (2012). Cardiac differentiation of embryonic stem cells by substrate immobilization of insulin-like growth factor binding protein 4 with elastin-like polypeptides. Biomaterials, 33(2), 515–523.

    CAS  PubMed  Google Scholar 

  79. Sebastiao, M. J., et al. (2019). Human cardiac progenitor cell activation and regeneration mechanisms: exploring a novel myocardial ischemia/reperfusion in vitro model. Stem Cell Research & Therapy, 10(1), 77.

    CAS  Google Scholar 

  80. El Harane, N., et al. (2018). Acellular therapeutic approach for heart failure: in vitro production of extracellular vesicles from human cardiovascular progenitors. European Heart Journal, 39(20), 1835–1847.

    PubMed  PubMed Central  Google Scholar 

  81. Blazeski, A., et al. (2012). Cardiomyocytes derived from human induced pluripotent stem cells as models for normal and diseased cardiac electrophysiology and contractility. Progress in Biophysics and Molecular Biology, 110(2–3), 166–177.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Wang, H., et al. (2016). Generation of electrophysiologically functional cardiomyocytes from mouse induced pluripotent stem cells. Stem Cell Research, 16(2), 522–530.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Nakamura, Y., et al. (2017). Changes of plasmalogen phospholipid levels during differentiation of induced pluripotent stem cells 409B2 to endothelial phenotype cells. Scientific Reports, 7(1), 9377.

    PubMed  PubMed Central  Google Scholar 

  84. Al-Ahmad, A. J. (2017). Comparative study of expression and activity of glucose transporters between stem cell-derived brain microvascular endothelial cells and hCMEC/D3 cells. American Journal of Physiology. Cell Physiology, 313(4), C421–C429.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Shaer, A., et al. (2015). Differentiation of human-induced pluripotent stem cells into insulin-producing clusters. Experimental and Clinical Transplantation, 13(1), 68–75.

    PubMed  Google Scholar 

  86. Nose, N., et al. (2018). Metabolic substrate shift in human induced pluripotent stem cells during cardiac differentiation: functional assessment using in vitro radionuclide uptake assay. International Journal of Cardiology, 269, 229–234.

    PubMed  Google Scholar 

  87. Ju, Z., et al. (2017). Exosomes from iPSCs delivering siRNA attenuate intracellular adhesion molecule-1 expression and neutrophils adhesion in pulmonary microvascular endothelial cells. Inflammation, 40(2), 486–496.

    CAS  PubMed  Google Scholar 

  88. Kirby, R. J., et al. (2018). Discovery of novel small-molecule inducers of heme oxygenase-1 that protect human iPSC-derived cardiomyocytes from oxidative stress. The Journal of Pharmacology and Experimental Therapeutics, 364(1), 87–96.

    CAS  PubMed  Google Scholar 

  89. Yue, X., Acun, A., & Zorlutuna, P. (2017). Transcriptome profiling of 3D co-cultured cardiomyocytes and endothelial cells under oxidative stress using a photocrosslinkable hydrogel system. Acta Biomaterialia, 58, 337–348.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Matsa, E., et al. (2011). Drug evaluation in cardiomyocytes derived from human induced pluripotent stem cells carrying a long QT syndrome type 2 mutation. European Heart Journal, 32(8), 952–962.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Kooreman, N. G., et al. (2017). Alloimmune responses of humanized mice to human pluripotent stem cell therapeutics. Cell Reports, 20(8), 1978–1990.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Hattori, F., et al. (2010). Nongenetic method for purifying stem cell-derived cardiomyocytes. Nature Methods, 7(1), 61–66.

    CAS  PubMed  Google Scholar 

  93. Dubois, N. C., et al. (2011). SIRPA is a specific cell-surface marker for isolating cardiomyocytes derived from human pluripotent stem cells. Nature Biotechnology, 29(11), 1011–1018.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Tohyama, S., et al. (2013). Distinct metabolic flow enables large-scale purification of mouse and human pluripotent stem cell-derived cardiomyocytes. Cell Stem Cell, 12(1), 127–137.

    CAS  PubMed  Google Scholar 

  95. Jiang, Y., et al. (2018). TGF-beta1-induced SMAD2/3/4 activation promotes RELM-beta transcription to modulate the endothelium-mesenchymal transition in human endothelial cells. The International Journal of Biochemistry & Cell Biology, 105, 52–60.

    CAS  Google Scholar 

  96. Miscianinov, V., et al. (2018). MicroRNA-148b targets the TGF-beta pathway to regulate angiogenesis and endothelial-to-mesenchymal transition during skin wound healing. Molecular Therapy, 26(8), 1996–2007.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Wang, J., et al. (2017). The mechanism of TGF-beta/miR-155/c-Ski regulates endothelial-mesenchymal transition in human coronary artery endothelial cells. Bioscience Reports, 37(4).

  98. Bezenah, J. R., Kong, Y. P., & Putnam, A. J. (2018). Evaluating the potential of endothelial cells derived from human induced pluripotent stem cells to form microvascular networks in 3D cultures. Scientific Reports, 8(1), 2671.

    PubMed  PubMed Central  Google Scholar 

  99. Maleszewska, M., et al. (2013). IL-1beta and TGFbeta2 synergistically induce endothelial to mesenchymal transition in an NFkappaB-dependent manner. Immunobiology, 218(4), 443–454.

    CAS  PubMed  Google Scholar 

  100. Maleszewska, M., et al. (2015). Enhancer of zeste homolog-2 (EZH2) methyltransferase regulates transgelin/smooth muscle-22alpha expression in endothelial cells in response to interleukin-1beta and transforming growth factor-beta2. Cellular Signalling, 27(8), 1589–1596.

    CAS  PubMed  Google Scholar 

  101. Tang, R. N., et al. (2013). Effects of angiotensin II receptor blocker on myocardial endothelial-to-mesenchymal transition in diabetic rats. International Journal of Cardiology, 162(2), 92–99.

    PubMed  Google Scholar 

  102. Giordano, S., et al. (2017). Induced pluripotent stem cell-derived endothelial cells overexpressing Interleukin-8 receptors a/B and/or C-C chemokine receptors 2/5 inhibit vascular injury response. Stem Cells Translational Medicine, 6(4), 1168–1177.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Chang, A. C., et al. (2014). A Notch-dependent transcriptional hierarchy promotes mesenchymal transdifferentiation in the cardiac cushion. Developmental Dynamics, 243(7), 894–905.

    CAS  PubMed  Google Scholar 

  104. Chang, A. C., et al. (2011). Notch initiates the endothelial-to-mesenchymal transition in the atrioventricular canal through autocrine activation of soluble guanylyl cyclase. Developmental Cell, 21(2), 288–300.

    CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by the National Natural Sciences Foundation of China (81470569), The Innovation Foundation for Postgraduate of Hunan Province (CX2017B550, CX2016B490), Natural Science Foundation of Hunan Province, China (2018JJ2341), Science Foundation of The Heath and Family Planning Commission in Hunan Province of China (B2019122), and the National College Students Innovation and Entrepreneurship Fund (201710555015, 201710555010).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huifang Tang or Kai Yin.

Ethics declarations

Conflict of Interests

All authors declare that they have no conflicts of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Associate Editor Joost Sluijter oversaw the review of this article

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jackson, A.O., Tang, H. & Yin, K. HiPS-Cardiac Trilineage Cell Generation and Transplantation: a Novel Therapy for Myocardial Infarction. J. of Cardiovasc. Trans. Res. 13, 110–119 (2020). https://doi.org/10.1007/s12265-019-09891-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-019-09891-4

Keywords

Navigation