Skip to main content

Advertisement

Log in

Stem Cell Homing: a Potential Therapeutic Strategy Unproven for Treatment of Myocardial Injury

  • Review Paper
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Despite advances in the prevention and therapeutic modalities of ischemic heart disease, morbidity and mortality post-infarction heart failure remain big challenges in modern society. Stem cell therapy is emerging as a promising therapeutic strategy. Stem cell homing, the ability of stem cells to find their destination, is receiving more attention. Identification of specific cues and understanding the signaling pathways that direct stem cells to targeted destination will improve stem cell homing efficiency. This review discusses the cellular and molecular mechanism of stem cell homing at length in the light of literature and analyzes the problem and considerations of this approach as a treatment strategy for the treatment of ischemic heart disease clinically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sarapultsev, P., Chupakhin, O., Sarapultsev, A., Rantsev, M., Sidorova, L., Medvedeva, S., et al. (2012). New insights in to the treatment of myocardial infarction. International Journal of Experimental Pathology, 93(1), 18–23. https://doi.org/10.1111/j.1365-2613.2011.00794.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Athappan, G., Patvardhan, E., Tuzcu, M. E., Ellis, S., Whitlow, P., & Kapadia, S. R. (2013). Left main coronary artery stenosis: a meta-analysis of drug-eluting stents versus coronary artery bypass grafting. JACC. Cardiovascular Interventions, 6(12), 1219–1230. https://doi.org/10.1016/j.jcin.2013.07.008.

    Article  PubMed  Google Scholar 

  3. Mohsin, S., Siddiqi, S., Collins, B., & Sussman, M. A. (2011). Empowering adult stem cells for myocardial regeneration. Circulation Research, 109(12), 1415–1428.

    Article  CAS  Google Scholar 

  4. Pudil, R., Pidrman, V., Krejsek, J., Gregor, J., Tichý, M., Andrýs, C., et al. (1999). Cytokines and adhesion molecules in the course of acute myocardial infarction. Clinica Chimica Acta, 280(1–2), 127–134.

    Article  CAS  Google Scholar 

  5. Caiado, F., & Dias, S. (2012). Endothelial progenitor cells and integrins: Adhesive needs. Fibrogenesis & Tissue Repair, 5(1), 4.

    Article  CAS  Google Scholar 

  6. Adamiak, M., Abdelbaset-Ismail, A., Moore, J. B. T., Zhao, J., Abdel-Latif, A., Wysoczynski, M., et al. (2017). Inducible nitric oxide synthase (iNOS) is a novel negative regulator of hematopoietic stem/progenitor cell trafficking. Stem Cell Reviews, 13(1), 92–103. https://doi.org/10.1007/s12015-016-9693-1.

    Article  CAS  PubMed  Google Scholar 

  7. Zhao, T., Zhao, W., Chen, Y., Ahokas, R. A., & Sun, Y. (2010). Vascular endothelial growth factor (VEGF)-A: role on cardiac angiogenesis following myocardial infarction. Microvascular Research, 80(2), 188–194. https://doi.org/10.1016/j.mvr.2010.03.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wei, Y. J., Tang, Y., Li, J., Cui, C. J., Zhang, H., Zhang, X. L., et al. (2007). Cloning and expression pattern of dog SDF-1 and the implications of altered expression of SDF-1 in ischemic myocardium. Cytokine, 40(1), 52–59. https://doi.org/10.1016/j.cyto.2007.08.004.

    Article  CAS  PubMed  Google Scholar 

  9. Leone, A. M., Rutella, S., Bonanno, G., Contemi, A. M., Ritis, D. G. D., Giannico, M. B., et al. (2006). Endogenous G-CSF and CD34 + cell mobilization after acute myocardial infarction. International Journal of Cardiology, 111(2), 202–208.

    Article  Google Scholar 

  10. Min, W. I., Mak, S., Mann, D. L., Qu, R., Penninger, J. M., Yan, A., et al. (1999). Tissue expression and immunolocalization of tumor necrosis factor-α in postinfarction dysfunctional myocardium. Circulation, 99(11), 1492–1498.

    Article  Google Scholar 

  11. Frangogiannis, N. G., Smith, C. W., & Entman, M. L. (2002). The inflammatory response in myocardial infarction. Cardiovascular Research, 53(1), 31–47.

    Article  CAS  Google Scholar 

  12. Li, X., He, X. T., Yin, Y., Wu, R. X., Tian, B. M., & Chen, F. M. (2017). Administration of signalling molecules dictates stem cell homing for in situ regeneration. Journal of Cellular & Molecular Medicine, 21(12), 3162–3177.

    Article  CAS  Google Scholar 

  13. Xue, J., Du, G., Shi, J., Li, Y., Yasutake, M., Liu, L., et al. (2014). Combined treatment with erythropoietin and granulocyte colony-stimulating factor enhances neovascularization and improves cardiac function after myocardial infarction. Chinese Medical Journal (English), 127(9), 1677.

    CAS  Google Scholar 

  14. Jarrah, A. A., Schwarskopf, M., Wang, E. R., LaRocca, T., Dhume, A., Zhang, S., et al. (2018). SDF-1 induces TNF-mediated apoptosis in cardiac myocytes. Apoptosis, 23(1), 79–91. https://doi.org/10.1007/s10495-017-1438-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ping, J., Zhao, Y., Hui, L., Chen, J., Ren, J., Jin, J., et al. (2016). Interferon-γ and tumor necrosis factor-α polarize bone marrow stromal cells uniformly to a Th1 phenotype. Scientific Reports, 6, 26345.

    Article  Google Scholar 

  16. Min, J. Y., Huang, X., Xiang, M., Meissner, A., Chen, Y., Ke, Q., et al. (2006). Homing of intravenously infused embryonic stem cell-derived cells to injured hearts after myocardial infarction. The Journal of Thoracic and Cardiovascular Surgery, 131(4), 889–897. https://doi.org/10.1016/j.jtcvs.2005.12.022.

    Article  PubMed  Google Scholar 

  17. Fibbe, W. E., Pruijt, J. F. M., Kooyk, Y. V., Figdor, C. G., Opdenakker, G., & Willemze, R. (2000). The role of metalloproteinases and adhesion molecules in interleukin-8-induced stem-cell mobilization. Seminars in Hematology, 37(2), 19–24.

    Article  CAS  Google Scholar 

  18. Schömig, K., Busch, G., Steppich, B., Sepp, D., Kaufmann, J., Stein, A., et al. (2006). Interleukin-8 is associated with circulating CD133+ progenitor cells in acute myocardial infarction. European Heart Journal, 27(9), 1032–1037.

    Article  Google Scholar 

  19. Zhao, Y., & Zhang, H. (2016). Update on the mechanisms of homing of adipose tissue-derived stem cells. Cytotherapy, 18(7), 816–827.

    Article  CAS  Google Scholar 

  20. Aicher, A., Zeiher, A. M., & Dimmeler, S. (2005). Mobilizing endothelial progenitor cells. Hypertension, 45(3), 321–325.

    Article  CAS  Google Scholar 

  21. Wojakowski, W., Landmesser, U., Bachowski, R., Jadczyk, T., & Tendera, M. (2012). Mobilization of stem and progenitor cells in cardiovascular diseases. Leukemia, 26(1), 23.

    Article  CAS  Google Scholar 

  22. Du, F., Zhou, J., Gong, R., Huang, X., Pansuria, M., Virtue, A., et al. (2012). Endothelial progenitor cells in atherosclerosis. Frontiers in Bioscience, 17(3), 2327.

    Article  Google Scholar 

  23. Wu, Y., Ip, J. E., Huang, J., Zhang, L., Matsushita, K., Liew, C. C., et al. (2006). Essential role of ICAM-1/CD18 in mediating EPC recruitment, angiogenesis, and repair to the infarcted myocardium. Circulation Research, 99(3), 315.

    Article  CAS  Google Scholar 

  24. Meloni, M., Caporali, A., Graiani, G., Lagrasta, C., Katare, R., Van Linthout, S., et al. (2010). Nerve growth factor promotes cardiac repair following myocardial infarction. Circulation Research, 106(7), 1275–1284. https://doi.org/10.1161/CIRCRESAHA.109.210088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Meloni, M., Cesselli, D., Caporali, A., Mangialardi, G., Avolio, E., Reni, C., et al. (2015). Cardiac nerve growth factor overexpression induces bone marrow-derived progenitor cells mobilization and homing to the infarcted heart. Molecular Therapy, 23(12), 1854–1866. https://doi.org/10.1038/mt.2015.167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sasaki, T., Fukazawa, R., Ogawa, S., Kanno, S., Nitta, T., Ochi, M., et al. (2007). Stromal cell-derived factor-1alpha improves infarcted heart function through angiogenesis in mice. Pediatrics International, 49(6), 966–971.

    Article  Google Scholar 

  27. Huber, B. C., Fischer, R., Brunner, S., Groebner, M., Rischpler, C., Segeth, A., et al. (2010). Comparison of parathyroid hormone and G-CSF treatment after myocardial infarction on perfusion and stem cell homing. American Journal of Physiology. Heart and Circulatory Physiology, 298(5), H1466.

    Article  CAS  Google Scholar 

  28. Haider, H., Jiang, S., Idris, N. M., & Ashraf, M. (2008). IGF-1-overexpressing mesenchymal stem cells accelerate bone marrow stem cell mobilization via paracrine activation of SDF-1alpha/CXCR4 signaling to promote myocardial repair. Circulation Research, 103(11), 1300–1308. https://doi.org/10.1161/CIRCRESAHA.108.186742.

    Article  CAS  PubMed  Google Scholar 

  29. Tang, J. M., Wang, J. N., Zhang, L., Zheng, F., Yang, J. Y., Kong, X., et al. (2011). VEGF/SDF-1 promotes cardiac stem cell mobilization and myocardial repair in the infarcted heart. Cardiovascular Research, 91(3), 402–411. https://doi.org/10.1093/cvr/cvr053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sun, J., Zhao, Y., Li, Q., Chen, B., Hou, X., Xiao, Z., et al. (2016). Controlled release of collagen-binding SDF-1α improves cardiac function after myocardial infarction by recruiting endogenous stem cells. Scientific Reports, 6, 26683.

    Article  CAS  Google Scholar 

  31. Sharma, M., Afrin, F., Satija, N., Tripathi, R. P., & Gangenahalli, G. U. (2011). Stromal-derived factor-1/CXCR4 signaling: indispensable role in homing and engraftment of hematopoietic stem cells in bone marrow. Stem Cells and Development, 20(6), 933.

    Article  CAS  Google Scholar 

  32. Herrmann, M., Verrier, S., & Alini, M. (2015). Strategies to stimulate mobilization and homing of endogenous stem and progenitor cells for bone tissue repair. Frontiers in Bioengineering and Biotechnology, 3(4), 79.

    PubMed  PubMed Central  Google Scholar 

  33. Zhao, T., Zhang, D., Millard, R. W., Ashraf, M., & Wang, Y. (2009). Stem cell homing and angiomyogenesis in transplanted hearts are enhanced by combined intramyocardial SDF-1alpha delivery and endogenous cytokine signaling. American Journal of Physiology. Heart and Circulatory Physiology, 296(4), H976.

    Article  CAS  Google Scholar 

  34. Wang, Y., Haider, H. K., Ahmad, N., Zhang, D., & Ashraf, M. (2006). Evidence for ischemia induced host-derived bone marrow cell mobilization into cardiac allografts. Journal of Molecular and Cellular Cardiology, 41(3), 478–487.

    Article  CAS  Google Scholar 

  35. Shi, M., Li, J., Liao, L., Chen, B., Li, B., Chen, L., et al. (2007). Regulation of CXCR4 expression in human mesenchymal stem cells by cytokine treatment: role in homing efficiency in NOD/SCID mice. Haematologica, 92(7), 897.

    Article  Google Scholar 

  36. Askari, A. T., Unzek, S., Popovic, Z. B., Goldman, C. K., Forudi, F., Kiedrowski, M., et al. (2003). Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet, 362(9385), 697.

    Article  CAS  Google Scholar 

  37. Pillarisetti, K., & Gupta, S. K. (2001). Cloning and relative expression analysis of rat stromal cell derived Factor-1 (SDF-1): SDF-1 α mRNA is selectively induced in rat model of myocardial infarction. Inflammation, 25(5), 293.

    Article  CAS  Google Scholar 

  38. Mirahmadi, M., Ahmadiankia, N., Naderi-Meshkin, H., Heirani-Tabasi, A., Bidkhori, H. R., Afsharian, P., et al. (2016). Hypoxia and laser enhance expression of SDF-1 in muscles cells. Cellular and Molecular Biology (Noisy-le-Grand, France), 62(5), 31.

    CAS  Google Scholar 

  39. Lee, S. H., Wolf, P. L., Escudero, R., Deutsch, R., Jamieson, S. W., & Thistlethwaite, P. A. (2000). Early expression of angiogenesis factors in acute myocardial ischemia and infarction. New England Journal of Medicine, 342(9), 626.

    Article  CAS  Google Scholar 

  40. Huang, B., Qian, J., Ma, J., Huang, Z., Shen, Y., Chen, X., et al. (2014). Myocardial transfection of hypoxia-inducible factor-1α and co-transplantation of mesenchymal stem cells enhance cardiac repair in rats with experimental myocardial infarction. Stem Cell Research & Therapy, 5(1), 22.

    Article  Google Scholar 

  41. Tang, Y. L., Zhu, W., Cheng, M., Chen, L., Zhang, J., Sun, T., et al. (2009). Hypoxic preconditioning enhances the benefit of cardiac progenitor cell therapy for treatment of myocardial infarction by inducing CXCR4 expression. Circulation Research, 104(10), 1209.

    Article  CAS  Google Scholar 

  42. Hu, X., Wei, L., Taylor, T. M., Wei, J., Zhou, X., Wang, J. A., et al. (2011). Hypoxic preconditioning enhances bone marrow mesenchymal stem cell migration via Kv2.1 channel and FAK activation. American Journal of Physiology. Cell Physiology, 301(2), C362–C372. https://doi.org/10.1152/ajpcell.00013.2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ratajczak, M. Z., Zubasurma, E., Kucia, M., Reca, R., Wojakowski, W., & Ratajczak, J. (2006). The pleiotropic effects of the SDF-1|[ndash]|CXCR4 axis in organogenesis, regeneration and tumorigenesis. Leukemia, 20(11), 1915.

    Article  CAS  Google Scholar 

  44. Chavakis, E., Urbich, C., & Dimmeler, S. (2008). Homing and engraftment of progenitor cells: a prerequisite for cell therapy. Journal of Molecular and Cellular Cardiology, 45(4), 514.

    Article  CAS  Google Scholar 

  45. Jujo, K., Hamada, H., Iwakura, A., Thorne, T., Sekiguchi, H., Clarke, T., et al. (2010). CXCR4 blockade augments bone marrow progenitor cell recruitment to the neovasculature and reduces mortality after myocardial infarction. Proceedings of the National Academy of Sciences of the United States of America, 107(24), 11008–11013.

    Article  CAS  Google Scholar 

  46. Zhao, T., Zhang, D., Millard, R. W., Ashraf, M., & Wang, Y. (2009). Stem cell homing and angiomyogenesis in transplanted hearts are enhanced by combined intramyocardial SDF-1alpha delivery and endogenous cytokine signaling. American Journal of Physiology. Heart and Circulatory Physiology, 296(4), H976–H986. https://doi.org/10.1152/ajpheart.01134.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yu, M., Takemura, G., Arai, M., Ohno, T., Onogi, H., Takahashi, T., et al. (2006). Importance of recruitment of bone marrow-derived CXCR4+ cells in post-infarct cardiac repair mediated by G-CSF. Cardiovascular Research, 71(3), 455–465.

    Article  Google Scholar 

  48. Petit, I., Szyper-Kravitz, M., Nagler, A., Lahav, M., Peled, A., Habler, L., et al. (2002). G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nature Immunology, 3(7), 687.

    Article  CAS  Google Scholar 

  49. Trougakos, I. P., Poulakou, M., Stathatos, M., Chalikia, A., Melidonis, A., & Gonos, E. S. (2002). Serum levels of the senescence biomarker clusterin/apolipoprotein J increase significantly in diabetes type II and during development of coronary heart disease or at myocardial infarction. Experimental Gerontology, 37(10–11), 1175–1187.

    Article  CAS  Google Scholar 

  50. Li, Y., Qu, J., Shelat, H., Gao, S., Wassler, M., & Geng, Y. J. (2010). Clusterin induces CXCR4 expression and migration of cardiac progenitor cells. Experimental Cell Research, 316(20), 3435–3442. https://doi.org/10.1016/j.yexcr.2010.08.012.

    Article  CAS  PubMed  Google Scholar 

  51. Tang, J., Wang, J., Kong, X., Yang, J., Guo, L., Zheng, F., et al. (2009). Vascular endothelial growth factor promotes cardiac stem cell migration via the PI3K/Akt pathway. Experimental Cell Research, 315(20), 3521.

    Article  CAS  Google Scholar 

  52. Ling, L., Gu, S., Cheng, Y., & Ding, L. (2018). bFGF promotes Sca1+ cardiac stem cell migration through activation of the PI3K/Akt pathway. Molecular Medicine Reports, 17(2), 2349–2356. https://doi.org/10.3892/mmr.2017.8178.

    Article  CAS  PubMed  Google Scholar 

  53. She, T., Wang, X., Gan, Y., Kuang, D., Yue, J., Ni, J., et al. (2012). Hyperglycemia suppresses cardiac stem cell homing to peri-infarcted myocardium via regulation of ERK1/2 and p38 MAPK activities. International Journal of Molecular Medicine, 30(6), 1313–1320. https://doi.org/10.3892/ijmm.2012.1125.

    Article  CAS  PubMed  Google Scholar 

  54. Wan, J., Deng, Y., Guo, J., Xiao, G., Kuang, D., Zhu, Y., et al. (2011). Hyperhomocysteinemia inhibited cardiac stem cell homing into the peri-infarcted area post myocardial infarction in rats. Experimental and Molecular Pathology, 91(1), 411–418.

    Article  CAS  Google Scholar 

  55. Kuang, D., Zhao, X., Xiao, G., Ni, J., Feng, Y., Wu, R., et al. (2008). Stem cell factor/c-kit signaling mediated cardiac stem cell migration via activation of p38 MAPK. Basic Research in Cardiology, 103(3), 265.

    Article  CAS  Google Scholar 

  56. Elmadbouh, I., Haider, H., Jiang, S., Idris, N. M., Lu, G., & Ashraf, M. (2007). Ex vivo delivered stromal cell-derived factor-1alpha promotes stem cell homing and induces angiomyogenesis in the infarcted myocardium. Journal of Molecular and Cellular Cardiology, 42(4), 792–803. https://doi.org/10.1016/j.yjmcc.2007.02.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Segers, V. F., Tokunou, T., Higgins, L. J., Macgillivray, C., Gannon, J., & Lee, R. T. (2007). Local delivery of protease-resistant stromal cell derived factor-1 for stem cell recruitment after myocardial infarction. Circulation, 116(15), 1683–1692. https://doi.org/10.1161/CIRCULATIONAHA.107.718718.

    Article  CAS  PubMed  Google Scholar 

  58. Hu, X., Wang, J., Chen, J., Luo, R., He, A., Xie, X., et al. (2007). Optimal temporal delivery of bone marrow mesenchymal stem cells in rats with myocardial infarction. European Journal of Cardio-Thoracic Surgery, 31(3), 438–443. https://doi.org/10.1016/j.ejcts.2006.11.057.

    Article  PubMed  Google Scholar 

  59. Wang, Y., Johnsen, H. E., Mortensen, S., Bindslev, L., Ripa, R. S., Haack-Sorensen, M., et al. (2006). Changes in circulating mesenchymal stem cells, stem cell homing factor, and vascular growth factors in patients with acute ST elevation myocardial infarction treated with primary percutaneous coronary intervention. Heart, 92(6), 768–774. https://doi.org/10.1136/hrt.2005.069799.

    Article  CAS  PubMed  Google Scholar 

  60. Liu, Z., Wang, H., Wang, Y., Lin, Q., Yao, A., Cao, F., et al. (2012). The influence of chitosan hydrogel on stem cell engraftment, survival and homing in the ischemic myocardial microenvironment. Biomaterials, 33(11), 3093–3106. https://doi.org/10.1016/j.biomaterials.2011.12.044.

    Article  CAS  PubMed  Google Scholar 

  61. Zhang, G., Nakamura, Y., Wang, X., Hu, Q., Suggs, L. J., & Zhang, J. (2007). Controlled release of stromal cell-derived factor-1 alpha in situ increases c-kit+ cell homing to the infarcted heart. Tissue Engineering, 13(8), 2063.

    Article  CAS  Google Scholar 

  62. Sougawa, N., Miyagawa, S., Fukushima, S., Saito, A., Yokoyama, J., Kitahara, M., et al. (2017). Abstract 15587: novel stem cell niches laminin 511 promotes functional angiogenesis through enhanced stem cell homing by modulating “stem cell beds” in the failed heart. Circulation, 136(Suppl 1), A15587–A15587.

    Google Scholar 

  63. Wu, R.-X., Yin, Y., He, X.-T., Li, X., & Chen, F.-M. (2017). Engineering a cell home for stem cell homing and accommodation. Advanced Biosystems, 1(4), 1700004. https://doi.org/10.1002/adbi.201700004.

    Article  Google Scholar 

  64. Schantz, J. T., Chim, H., & Whiteman, M. (2007). Cell guidance in tissue engineering: SDF-1 mediates site-directed homing of mesenchymal stem cells within three-dimensional polycaprolactone scaffolds. Tissue Engineering Part A, 13(11), 2615–2624.

    Article  CAS  Google Scholar 

  65. Thevenot, P. T., Nair, A. M., Shen, J., Lotfi, P., Ko, C. Y., & Tang, L. (2010). The effect of incorporation of SDF-1alpha into PLGA scaffolds on stem cell recruitment and the inflammatory response. Biomaterials, 31(14), 3997.

    Article  CAS  Google Scholar 

  66. Elmadbouh, I., & Ashraf, M. (2017). Tadalafil, a long acting phosphodiesterase inhibitor, promotes bone marrow stem cell survival and their homing into ischemic myocardium for cardiac repair. Physiological Reports, 5(21), e13480.

    Article  Google Scholar 

  67. Zhang, P., Duval, S., Su, L., et al. (2013). Thymosin beta 4 increases the potency of transplanted mesenchymal stem;cells for myocardial repair. Circulation, 128(11), S32–S41.

    PubMed  Google Scholar 

  68. Burks, S. R., Ziadloo, A., Kim, S. J., Nguyen, B. A., & Frank, J. A. (2013). Noninvasive pulsed focused ultrasound allows spatiotemporal control of targeted homing for multiple stem cell types in murine skeletal muscle and the magnitude of cell homing can be increased through repeated applications. Stem Cells, 31(11), 2551–2560. https://doi.org/10.1002/stem.1495.

    Article  CAS  PubMed  Google Scholar 

  69. Walczak, P., Zhang, J., Gilad, A. A., et al. (2008). Dual-modality monitoring of targeted Intraarterial delivery of mesenchymal stem cells after transient ischemia. Stroke, 39(5), 1569.

    Article  CAS  Google Scholar 

  70. Mäkelä, J., Anttila, V., Ylitalo, K., Takalo, R., Lehtonen, S., Mäkikallio, T., et al. (2009). Acute homing of bone marrow-derived mononuclear cells in intramyocardial vs. intracoronary transplantation. Scandinavian Cardiovascular Journal, 43(6), 366–373.

    Article  Google Scholar 

  71. Jiang, W., Ma, A., Wang, T., Han, K., Liu, Y., Zhang, Y., et al. (2006). Intravenous transplantation of mesenchymal stem cells improves cardiac performance after acute myocardial ischemia in female rats. Transplant International, 19(7), 570.

    Article  Google Scholar 

  72. Kraitchman, D. L. (2005). Dynamic imaging of allogeneic mesenchymal stem cells trafficking to myocardial infarction. Circulation, 112(10), 1451–1461. https://doi.org/10.1161/circulationaha.105.537480.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Li, X., & Hacker, M. (2017). Molecular imaging in stem cell-based therapies of cardiac diseases. Advanced Drug Delivery Reviews, 120, 71–88. https://doi.org/10.1016/j.addr.2017.07.012.

    Article  CAS  PubMed  Google Scholar 

  74. Kawada, H., Fujita, J., Kinjo, K., Matsuzaki, Y., Tsuma, M., Miyatake, H., et al. (2004). Nonhematopoietic mesenchymal stem cells can be mobilized and differentiate into cardiomyocytes after myocardial infarction. Blood, 104(12), 3581.

    Article  CAS  Google Scholar 

  75. Devine, S. M., Bartholomew, A. M., Mahmud, N., Nelson, M., Patil, S., Hardy, W., et al. (2001). Mesenchymal stem cells are capable of homing to the bone marrow of non-human primates following systemic infusion. Experimental Hematology, 29(2), 244–255.

    Article  CAS  Google Scholar 

  76. Jasmin, de Souza, G. T., Louzada, R. A., Rosadodecastro, P. H., Mendezotero, R., & Ac, C. D. C.,. (2017). Tracking stem cells with superparamagnetic iron oxide nanoparticles: perspectives and considerations. International Journal of Nanomedicine, 12, 779–793.

    Article  CAS  Google Scholar 

  77. Bos, C., Delmas, Y., Desmoulière, A., Solanilla, A., Hauger, O., Grosset, C., et al. (2004). In vivo MR imaging of intravascularly injected magnetically labeled mesenchymal stem cells in rat kidney and liver. Radiology, 233(3), 781–789.

    Article  Google Scholar 

  78. Wu, J., Sun, Z., Sun, H. S., Wu, J., Weisel, R. D., Keating, A., et al. (2008). Intravenously administered bone marrow cells migrate to damaged brain tissue and improve neural function in ischemic rats. Cell Transplantation, 16(10), 993.

    Article  Google Scholar 

  79. Meleshina, A. V., Cherkasova, E. I., Shirmanova, M. V., Khrapichev, A. A., Dudenkova, V. V., & Zagaynova, E. V. (2015). Modern techniques for stem cells in vivo imaging (review). Sovremennye Tehnologii v Medicine, 7(4), 174–188. https://doi.org/10.17691/stm2015.7.4.24.

    Article  Google Scholar 

  80. Kraitchman, D. L., Heldman, A. W., Atalar, E., Amado, L. C., Martin, B. J., Pittenger, M. F., et al. (2003). In vivo magnetic resonance imaging of mesenchymal stem cells in myocardial infarction. Circulation, 107(18), 2290–2293.

    Article  Google Scholar 

  81. Kraitchman, D. L., Tatsumi, M., Gilson, W. D., Ishimori, T., Kedziorek, D., Walczak, P., et al. (2005). Dynamic imaging of allogeneic mesenchymal stem cells trafficking to myocardial infarction. Circulation, 112(10), 1451.

    Article  Google Scholar 

  82. Crich, S. G., Biancone, L. V., Duo, D., Esposito, G., Russo, S., Camussi, G., et al. (2004). Improved route for the visualization of stem cells labeled with a Gd-/Eu-chelate as dual (MRI and fluorescence) agent. Magnetic Resonance in Medicine, 51(5), 938–944.

    Article  CAS  Google Scholar 

  83. Vandeputte, C., Thomas, D., Dresselaers, T., Crabbe, A., Verfaillie, C., Baekelandt, V., et al. (2011). Characterization of the inflammatory response in a photothrombotic stroke model by MRI: implications for stem cell transplantation. Molecular Imaging and Biology, 13(4), 663–671. https://doi.org/10.1007/s11307-010-0395-9.

    Article  PubMed  Google Scholar 

  84. Bansal, A., Pandey, M. K., Demirhan, Y. E., Nesbitt, J. J., Crespo-Diaz, R. J., Terzic, A., et al. (2015). Novel (89)Zr cell labeling approach for PET-based cell trafficking studies. EJNMMI Research, 5, 19. https://doi.org/10.1186/s13550-015-0098-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hofmann, M., Wollert, K. C., Meyer, G. P., Menke, A., Arseniev, L., Hertenstein, B., et al. (2005). Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation, 111(17), 2198.

    Article  Google Scholar 

  86. Brenner, W., Aicher, A., Eckey, T., Massoudi, S., Zuhayra, M., Koehl, U., et al. (2004). 111In-labeled CD34+ hematopoietic progenitor cells in a rat myocardial infarction model. Journal of Nuclear Medicine, 45(3), 512–518.

    CAS  PubMed  Google Scholar 

  87. Sheikh, A. Y., Lin, S. A., Cao, F., Cao, Y., Bogt, K. E. A. V. D., Chu, P., et al. (2007). Molecular imaging of bone marrow mononuclear cell homing and engraftment in ischemic myocardium. Stem Cells, 25(10), 2677–2684.

    Article  Google Scholar 

  88. Supokawej, A., Nimsanor, N., Sanvoranart, T., Kaewsaneha, C., Hongeng, S., Tangboriboonrat, P., et al. (2015). Mesenchymal stem cell in vitro labeling by hybrid fluorescent magnetic polymeric particles for application in cell tracking. Medical Molecular Morphology, 48(4), 204–213. https://doi.org/10.1007/s00795-015-0102-7.

    Article  CAS  PubMed  Google Scholar 

  89. Wu, J. C., Chen, I. Y., Sundaresan, G., Min, J. J., De, A., Qiao, J. H., et al. (2003). Molecular imaging of cardiac cell transplantation in living animals using optical bioluminescence and positron emission tomography. Circulation, 2(3), 1302–1305.

    Article  Google Scholar 

  90. Beeres, S. L., Bengel, F. M., Bartunek, J., Atsma, D. E., Hill, J. M., Vanderheyden, M., et al. (2007). Role of imaging in cardiac stem cell therapy. Journal of the American College of Cardiology, 49(11), 1137–1148. https://doi.org/10.1016/j.jacc.2006.10.072.

    Article  PubMed  Google Scholar 

  91. Theiss, H. D., Brenner, C., Engelmann, M. G., Zaruba, M. M., Huber, B., Henschel, V., et al. (2010). Safety and efficacy of SITAgliptin plus GRanulocyte-colony-stimulating factor in patients suffering from Acute Myocardial Infarction (SITAGRAMI-trial)--rationale, design and first interim analysis. International Journal of Cardiology, 145(2), 282–284. https://doi.org/10.1016/j.ijcard.2009.09.555.

    Article  PubMed  Google Scholar 

  92. Brenner, C., Adrion, C., Grabmaier, U., Theisen, D., von Ziegler, F., Leber, A., et al. (2016). Sitagliptin plus granulocyte colony-stimulating factor in patients suffering from acute myocardial infarction: a double-blind, randomized placebo-controlled trial of efficacy and safety (SITAGRAMI trial). International Journal of Cardiology, 205, 23–30. https://doi.org/10.1016/j.ijcard.2015.11.180.

    Article  PubMed  Google Scholar 

  93. Sridharan, R., Karp, J. M., & Zhao, W. (2014). Bioengineering tools to elucidate and control the fate of transplanted stem cells. Biochemical Society Transactions, 42(3), 679–687. https://doi.org/10.1042/bst20130276.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I sincerely thank for the invaluable help from Dr. Xin Chen, who is my supervisor and a fellow at the Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University. I apologize to those whose work cannot be cited or referred in detail by restrictions of space and format.

Funding

This study was funded by Jiangsu Provincial Special Program of Medical Science (BE2015612).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Chen.

Ethics declarations

Ethical Approval

This article does not contain any studies with human participants or animal studies.

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, Z., Tan, S., Chen, W. et al. Stem Cell Homing: a Potential Therapeutic Strategy Unproven for Treatment of Myocardial Injury. J. of Cardiovasc. Trans. Res. 11, 403–411 (2018). https://doi.org/10.1007/s12265-018-9823-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-018-9823-z

Keywords

Navigation