Skip to main content

Advertisement

Log in

Regenerative Therapy for Cardiomyopathies

  • Review Paper
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Despite substantial advances in the development of medical and interventional strategies in ischemic and non-ischemic heart diseases, cardiovascular diseases (CVDs) remain the leading cause of mortality and morbidity worldwide. Stem cell therapy for heart disease has gained traction over the past two decades and is an emerging option for the treatment of myocardial dysfunction. In this review, we summarize the current literature on different types of stem cells and their potential usage in ischemic and non-ischemic heart diseases. We emphasize the clinical utility of stem cells to improve myocardial structural and function, promote microvascular angiogenesis, and diminish scar size and major adverse cardiovascular events. We also discuss the therapeutic potential of microvesicles, such as exosomes, in the treatment of CVDs, which may open novel avenues for further clinical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sun, R., Li, X., Liu, M., Zeng, Y., Chen, S., & Zhang, P. (2016). Advances in stem cell therapy for cardiovascular disease (review). International Journal of Molecular Medicine, 38(1), 23–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Trindade, F., Leite-Moreira, A., Ferreira-Martins, J., Ferreira, R., Falcao-Pires, I., & Vitorino, R. (2017). Towards the standardization of stem cell therapy studies for ischemic heart diseases: bridging the gap between animal models and the clinical setting. International Journal of Cardiology, 228, 465–480.

    PubMed  Google Scholar 

  3. Bernstein, H. S., & Srivastava, D. (2012). Stem cell therapy for cardiac disease. Pediatric Research, 71(4 Pt 2), 491–499.

    CAS  PubMed  Google Scholar 

  4. Moreira, M. L., da Costa Medeiros, P., de Souza, S. A., Gutfilen, B., & Rosado-de-Castro, P. H. (2016). In vivo tracking of cell therapies for cardiac diseases with nuclear medicine. Stem Cells International, 2016, 3140120.

    PubMed  PubMed Central  Google Scholar 

  5. Silva, G. V., Litovsky, S., Assad, J. A., Sousa, A. L., Martin, B. J., Vela, D., et al. (2005). Mesenchymal stem cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a canine chronic ischemia model. Circulation, 111(2), 150–156.

    CAS  PubMed  Google Scholar 

  6. Nagaya, N., Kangawa, K., Itoh, T., Iwase, T., Murakami, S., Miyahara, Y., et al. (2005). Transplantation of mesenchymal stem cells improves cardiac function in a rat model of dilated cardiomyopathy. Circulation, 112(8), 1128–1135.

    PubMed  Google Scholar 

  7. Fernandes, S., Chong, J. J., Paige, S. L., Iwata, M., Torok-Storb, B., Keller, G., et al. (2015). Comparison of human embryonic stem cell-derived cardiomyocytes, cardiovascular progenitors, and bone marrow mononuclear cells for cardiac repair. Stem Cell Reports, 5(5), 753–762.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Jiang, M., Mao, J., & He, B. (2012). The effect of bone marrow-derived cells on diastolic function and exercise capacity in patients after acute myocardial infarction. Stem Cell Research, 9(1), 49–57.

    PubMed  Google Scholar 

  9. Bolli, R., Chugh, A. R., D'Amario, D., Loughran, J. H., Stoddard, M. F., Ikram, S., et al. (2011). Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet, 378(9806), 1847–1857.

    PubMed  PubMed Central  Google Scholar 

  10. Hare, J. M., Fishman, J. E., Gerstenblith, G., DiFede Velazquez, D. L., Zambrano, J. P., Suncion, V. Y., et al. (2012). Comparison of allogeneic vs autologous bone marrow-derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: the POSEIDON randomized trial. Journal of the American Medical Association, 308(22), 2369–2379.

    CAS  PubMed  Google Scholar 

  11. Lee, C. Y., Kim, R., Ham, O., Lee, J., Kim, P., Lee, S., et al. (2016). Therapeutic potential of stem cells strategy for cardiovascular diseases. Stem Cells International, 2016, 4285938.

    PubMed  PubMed Central  Google Scholar 

  12. Geng, Y. J. (2003). Molecular mechanisms for cardiovascular stem cell apoptosis and growth in the hearts with atherosclerotic coronary disease and ischemic heart failure. Annals of the New York Academy of Sciences., 1010, 687–697.

    CAS  PubMed  Google Scholar 

  13. Yu, H., Lu, K., Zhu, J., & Wang, J. (2017). Stem cell therapy for ischemic heart diseases. British Medical Bulletin, 121(1), 135–154.

    PubMed  Google Scholar 

  14. Shen, H., Wang, Y., Zhang, Z., Yang, J., Hu, S., & Shen, Z. (2015). Mesenchymal stem cells for cardiac regenerative therapy: optimization of cell differentiation strategy. Stem Cells International, 2015, 524756.

    PubMed  PubMed Central  Google Scholar 

  15. Strauer, B. E., Brehm, M., Zeus, T., Gattermann, N., Hernandez, A., Sorg, R. V., et al. (2001). [Intracoronary, human autologous stem cell transplantation for myocardial regeneration following myocardial infarction]. Deutsche Medizinische Wochenschrift, 126(34–35), 932–938.

    CAS  PubMed  Google Scholar 

  16. Schachinger, V., Erbs, S., Elsasser, A., Haberbosch, W., Hambrecht, R., Holschermann, H., et al. (2006). Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. The New England Journal of Medicine, 355(12), 1210–1221.

    CAS  PubMed  Google Scholar 

  17. Shiba, Y., Fernandes, S., Zhu, W. Z., Filice, D., Muskheli, V., Kim, J., et al. (2012). Human ES-cell-derived cardiomyocytes electrically couple and suppress arrhythmias in injured hearts. Nature, 489(7415), 322–325.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Jin, P., Li, T., Li, X., Shen, X., & Zhao, Y. (2016). Suppression of oxidative stress in endothelial progenitor cells promotes angiogenesis and improves cardiac function following myocardial infarction in diabetic mice. Experimental and Therapeutic Medicine, 11(6), 2163–2170.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Wu, Y., Ip, J. E., Huang, J., Zhang, L., Matsushita, K., Liew, C. C., et al. (2006). Essential role of ICAM-1/CD18 in mediating EPC recruitment, angiogenesis, and repair to the infarcted myocardium. Circulation Research, 99(3), 315–322.

    CAS  PubMed  Google Scholar 

  20. Kawamura, M., Miyagawa, S., Fukushima, S., Saito, A., Miki, K., Ito, E., et al. (2013). Enhanced survival of transplanted human induced pluripotent stem cell-derived cardiomyocytes by the combination of cell sheets with the pedicled omental flap technique in a porcine heart. Circulation, 128(11 Suppl 1), S87–S94.

    PubMed  Google Scholar 

  21. Tang, Y. L., Zhu, W., Cheng, M., Chen, L., Zhang, J., Sun, T., et al. (2009). Hypoxic preconditioning enhances the benefit of cardiac progenitor cell therapy for treatment of myocardial infarction by inducing CXCR4 expression. Circulation Research, 104(10), 1209–1216.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Afzal, M. R., Samanta, A., Shah, Z. I., Jeevanantham, V., Abdel-Latif, A., Zuba-Surma, E. K., et al. (2015). Adult bone marrow cell therapy for ischemic heart disease: evidence and insights from randomized controlled trials. Circulation Research, 117(6), 558–575.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Mangi, A. A., Noiseux, N., Kong, D., He, H., Rezvani, M., Ingwall, J. S., et al. (2003). Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nature Medicine, 9(9), 1195–1201.

    CAS  PubMed  Google Scholar 

  24. Matsui, T., Tao, J., del Monte, F., Lee, K. H., Li, L., Picard, M., et al. (2001). Akt activation preserves cardiac function and prevents injury after transient cardiac ischemia in vivo. Circulation, 104(3), 330–335.

    CAS  PubMed  Google Scholar 

  25. Huang, J., Guo, J., Beigi, F., Hodgkinson, C. P., Facundo, H. T., Zhang, Z., et al. (2014). HASF is a stem cell paracrine factor that activates PKC epsilon mediated cytoprotection. Journal of Molecular and Cellular Cardiology, 66, 157–164.

    CAS  PubMed  Google Scholar 

  26. Aonuma, T., Takehara, N., Maruyama, K., Kabara, M., Matsuki, M., Yamauchi, A., et al. (2016). Apoptosis-resistant cardiac progenitor cells modified with apurinic/apyrimidinic endonuclease/redox factor 1 gene overexpression regulate cardiac repair after myocardial infarction. Stem Cells Translational Medicine, 5(8), 1067–1078.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Karantalis, V., Suncion-Loescher, V. Y., Bagno, L., Golpanian, S., Wolf, A., Sanina, C., et al. (2015). Synergistic effects of combined cell therapy for chronic ischemic cardiomyopathy. Journal of the American College of Cardiology, 66(18), 1990–1999.

    PubMed  PubMed Central  Google Scholar 

  28. Williams, A. R., Hatzistergos, K. E., Addicott, B., McCall, F., Carvalho, D., Suncion, V., et al. (2013). Enhanced effect of combining human cardiac stem cells and bone marrow mesenchymal stem cells to reduce infarct size and to restore cardiac function after myocardial infarction. Circulation, 127(2), 213–223.

    PubMed  Google Scholar 

  29. Avolio, E., Meloni, M., Spencer, H. L., Riu, F., Katare, R., Mangialardi, G., et al. (2015). Combined intramyocardial delivery of human pericytes and cardiac stem cells additively improves the healing of mouse infarcted hearts through stimulation of vascular and muscular repair. Circulation Research, 116(10), e81–e94.

    CAS  PubMed  Google Scholar 

  30. Quijada, P., Salunga, H. T., Hariharan, N., Cubillo, J. D., El-Sayed, F. G., Moshref, M., et al. (2015). Cardiac stem cell hybrids enhance myocardial repair. Circulation Research, 117(8), 695–706.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Arena, R., Myers, J., Abella, J., Pinkstaff, S., Brubaker, P., Kitzman, D., et al. (2010). Defining the optimal prognostic window for cardiopulmonary exercise testing in patients with heart failure. Circulation Heart Failure, 3(3), 405–411.

    PubMed  PubMed Central  Google Scholar 

  32. Balady, G. J., Arena, R., Sietsema, K., Myers, J., Coke, L., Fletcher, G. F., et al. (2010). Clinician’s guide to cardiopulmonary exercise testing in adults: a scientific statement from the American Heart Association. Circulation, 122(2), 191–225.

    PubMed  Google Scholar 

  33. Mancini, D. M., Eisen, H., Kussmaul, W., Mull, R., Edmunds Jr., L. H., & Wilson, J. R. (1991). Value of peak exercise oxygen consumption for optimal timing of cardiac transplantation in ambulatory patients with heart failure. Circulation, 83(3), 778–786.

    CAS  PubMed  Google Scholar 

  34. Honold, J., Fischer-Rasokat, U., Seeger, F. H., Leistner, D., Lotz, S., Dimmeler, S., et al. (2013). Impact of intracoronary reinfusion of bone marrow-derived mononuclear progenitor cells on cardiopulmonary exercise capacity in patients with chronic postinfarction heart failure. Clinical Research in Cardiology: Official Journal of the German Cardiac Society, 102(9), 619–625.

    Google Scholar 

  35. Nir, S. G., David, R., Zaruba, M., Franz, W. M., & Itskovitz-Eldor, J. (2003). Human embryonic stem cells for cardiovascular repair. Cardiovascular Research, 58(2), 313–323.

    CAS  PubMed  Google Scholar 

  36. Wong, S. S., & Bernstein, H. S. (2010). Cardiac regeneration using human embryonic stem cells: producing cells for future therapy. Regenerative Medicine, 5(5), 763–775.

    PubMed  Google Scholar 

  37. Rajasingh, J., Thangavel, J., Siddiqui, M. R., Gomes, I., Gao, X. P., Kishore, R., et al. (2011). Improvement of cardiac function in mouse myocardial infarction after transplantation of epigenetically-modified bone marrow progenitor cells. PLoS One, 6(7), e22550.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Rajasingh, J., Bord, E., Hamada, H., Lambers, E., Qin, G., Losordo, D. W., et al. (2007). STAT3-dependent mouse embryonic stem cell differentiation into cardiomyocytes: analysis of molecular signaling and therapeutic efficacy of cardiomyocyte precommitted mES transplantation in a mouse model of myocardial infarction. Circulation Research, 101(9), 910–918.

    CAS  PubMed  Google Scholar 

  39. Kawamura, M., Miyagawa, S., Miki, K., Saito, A., Fukushima, S., Higuchi, T., et al. (2012). Feasibility, safety, and therapeutic efficacy of human induced pluripotent stem cell-derived cardiomyocyte sheets in a porcine ischemic cardiomyopathy model. Circulation, 126(11 Suppl 1), S29–S37.

    CAS  PubMed  Google Scholar 

  40. Traverse, J. H., Henry, T. D., Pepine, C. J., Willerson, J. T., Zhao, D. X., Ellis, S. G., et al. (2012). Effect of the use and timing of bone marrow mononuclear cell delivery on left ventricular function after acute myocardial infarction: the TIME randomized trial. Journal of the American Medical Association, 308(22), 2380–2389.

    CAS  PubMed  Google Scholar 

  41. Strauer, B. E., Brehm, M., Zeus, T., Kostering, M., Hernandez, A., Sorg, R. V., et al. (2002). Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation, 106(15), 1913–1918.

    PubMed  Google Scholar 

  42. Manginas, A., Goussetis, E., Koutelou, M., Karatasakis, G., Peristeri, I., Theodorakos, A., et al. (2007). Pilot study to evaluate the safety and feasibility of intracoronary CD133(+) and CD133(−) CD34(+) cell therapy in patients with nonviable anterior myocardial infarction. Catheterization and Cardiovascular Interventions: Official Journal of the Society for Cardiac Angiography & Interventions, 69(6), 773–781.

    Google Scholar 

  43. Orlic, D., Kajstura, J., Chimenti, S., Jakoniuk, I., Anderson, S. M., Li, B., et al. (2001). Bone marrow cells regenerate infarcted myocardium. Nature, 410(6829), 701–705.

    CAS  PubMed  Google Scholar 

  44. Stamm, C., Kleine, H. D., Choi, Y. H., Dunkelmann, S., Lauffs, J. A., Lorenzen, B., et al. (2007). Intramyocardial delivery of CD133+ bone marrow cells and coronary artery bypass grafting for chronic ischemic heart disease: safety and efficacy studies. The Journal of Thoracic and Cardiovascular Surgery, 133(3), 717–725.

    PubMed  Google Scholar 

  45. Lader, J., Stachel, M., & Bu, L. (2017). Cardiac stem cells for myocardial regeneration: promising but not ready for prime time. Current Opinion in Biotechnology, 47, 30–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Gao, L. R., Chen, Y., Zhang, N. K., Yang, X. L., Liu, H. L., Wang, Z. G., et al. (2015). Intracoronary infusion of Wharton’s jelly-derived mesenchymal stem cells in acute myocardial infarction: double-blind, randomized controlled trial. BMC Medicine, 13, 162.

    PubMed  PubMed Central  Google Scholar 

  47. Amado, L. C., Saliaris, A. P., Schuleri, K. H., St John, M., Xie, J. S., Cattaneo, S., et al. (2005). Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. Proceedings of the National Academy of Sciences of the United States of America, 102(32), 11474–11479.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Quevedo, H. C., Hatzistergos, K. E., Oskouei, B. N., Feigenbaum, G. S., Rodriguez, J. E., Valdes, D., et al. (2009). Allogeneic mesenchymal stem cells restore cardiac function in chronic ischemic cardiomyopathy via trilineage differentiating capacity. Proceedings of the National Academy of Sciences of the United States of America, 106(33), 14022–14027.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Goretti, E., Wagner, D. R., & Devaux, Y. (2014). Role of MicroRNAs in endothelial progenitor cells: implication for cardiac repair. Journal of Stem Cells, 9(2), 107–115.

    CAS  PubMed  Google Scholar 

  50. Meneveau, N., Deschaseaux, F., Seronde, M. F., Chopard, R., Schiele, F., Jehl, J., et al. (2011). Presence of endothelial colony-forming cells is associated with reduced microvascular obstruction limiting infarct size and left ventricular remodelling in patients with acute myocardial infarction. Basic Research in Cardiology, 106(6), 1397–1410.

    CAS  PubMed  Google Scholar 

  51. Kanazawa, H., Tseliou, E., Malliaras, K., Yee, K., Dawkins, J. F., De Couto, G., et al. (2015). Cellular postconditioning: allogeneic cardiosphere-derived cells reduce infarct size and attenuate microvascular obstruction when administered after reperfusion in pigs with acute myocardial infarction. Circulation Heart Failure, 8(2), 322–332.

    PubMed  PubMed Central  Google Scholar 

  52. Wohrle, J., von Scheidt, F., Schauwecker, P., Wiesneth, M., Markovic, S., Schrezenmeier, H., et al. (2013). Impact of cell number and microvascular obstruction in patients with bone-marrow derived cell therapy: final results from the randomized, double-blind, placebo controlled intracoronary Stem Cell therapy in Patients with Acute Myocardial Infarction (SCAMI) trial. Clinical Research in Cardiology: Official Journal of the German Cardiac Society, 102(10), 765–770.

    Google Scholar 

  53. Porto, I., De Maria, G. L., Leone, A. M., Dato, I., D'Amario, D., Burzotta, F., et al. (2013). Endothelial progenitor cells, microvascular obstruction, and left ventricular remodeling in patients with ST elevation myocardial infarction undergoing primary percutaneous coronary intervention. The American Journal of Cardiology, 112(6), 782–791.

    PubMed  Google Scholar 

  54. Grieve, S. M., Bhindi, R., Seow, J., Doyle, A., Turner, A. J., Tomka, J., et al. (2010). Microvascular obstruction by intracoronary delivery of mesenchymal stem cells and quantification of resulting myocardial infarction by cardiac magnetic resonance. Circulation Heart Failure, 3(3), e5–e6.

    PubMed  Google Scholar 

  55. Gleeson, B. M., Martin, K., Ali, M. T., Kumar, A. H., Pillai, M. G., Kumar, S. P., et al. (2015). Bone marrow-derived mesenchymal stem cells have innate procoagulant activity and cause microvascular obstruction following intracoronary delivery: amelioration by antithrombin therapy. Stem Cells (Dayton, Ohio), 33(9), 2726–2737.

    CAS  Google Scholar 

  56. Liu, B., Duan, C. Y., Luo, C. F., Ou, C. W., Sun, K., Wu, Z. Y., et al. (2014). Effectiveness and safety of selected bone marrow stem cells on left ventricular function in patients with acute myocardial infarction: a meta-analysis of randomized controlled trials. International Journal of Cardiology, 177(3), 764–770.

    PubMed  Google Scholar 

  57. Yu, C. W., Choi, S. C., Hong, S. J., Choi, J. H., Park, C. Y., Kim, J. H., et al. (2013). Cardiovascular event rates in patients with ST-elevation myocardial infarction were lower with early increases in mobilization of Oct4(high)Nanog(high) stem cells into the peripheral circulation during a 4-year follow-up. International Journal of Cardiology, 168(3), 2533–2539.

    PubMed  Google Scholar 

  58. Gyongyosi, M., Wojakowski, W., Lemarchand, P., Lunde, K., Tendera, M., Bartunek, J., et al. (2015). Meta-Analysis of Cell-based Cardiac Studies (ACCRUE) in patients with acute myocardial infarction based on individual patient data. Circulation Research, 116(8), 1346–1360.

    PubMed  PubMed Central  Google Scholar 

  59. Heldman, A. W., DiFede, D. L., Fishman, J. E., Zambrano, J. P., Trachtenberg, B. H., Karantalis, V., et al. (2014). Transendocardial mesenchymal stem cells and mononuclear bone marrow cells for ischemic cardiomyopathy: the TAC-HFT randomized trial. Journal of the American Medical Association, 311(1), 62–73.

    CAS  PubMed  Google Scholar 

  60. Nasseri, B. A., Ebell, W., Dandel, M., Kukucka, M., Gebker, R., Doltra, A., et al. (2014). Autologous CD133+ bone marrow cells and bypass grafting for regeneration of ischaemic myocardium: the Cardio133 trial. European Heart Journal, 35(19), 1263–1274.

    CAS  PubMed  Google Scholar 

  61. Honold, J., DeRosa, S., Spyridopoulos, I., Fischer-Rasokat, U., Seeger, F. H., Leistner, D., et al. (2013). Comparison of the Seattle heart failure model and cardiopulmonary exercise capacity for prediction of death in patients with chronic ischemic heart failure and intracoronary progenitor cell application. Clinical Cardiology, 36(3), 153–159.

    PubMed  PubMed Central  Google Scholar 

  62. Bartunek, J., Behfar, A., Dolatabadi, D., Vanderheyden, M., Ostojic, M., Dens, J., et al. (2013). Cardiopoietic stem cell therapy in heart failure: the C-CURE (Cardiopoietic Stem Cell Therapy in Heart Failure) multicenter randomized trial with lineage-specified biologics. Journal of the American College of Cardiology, 61(23), 2329–2338.

    PubMed  Google Scholar 

  63. Xiong, Q., Ye, L., Zhang, P., Lepley, M., Swingen, C., Zhang, L., et al. (2012). Bioenergetic and functional consequences of cellular therapy: activation of endogenous cardiovascular progenitor cells. Circulation Research, 111(4), 455–468.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663–676.

    CAS  PubMed  Google Scholar 

  65. Wang, Z., Wang, L., Su, X., Pu, J., Jiang, M., & He, B. (2017). Rational transplant timing and dose of mesenchymal stromal cells in patients with acute myocardial infarction: a meta-analysis of randomized controlled trials. Stem cell research & therapy, 8(1), 21.

    Google Scholar 

  66. Wei, X., Yang, X., Han, Z. P., Qu, F. F., Shao, L., & Shi, Y. F. (2013). Mesenchymal stem cells: a new trend for cell therapy. Acta Pharmacologica Sinica, 34(6), 747–754.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Noiseux, N., Gnecchi, M., Lopez-Ilasaca, M., Zhang, L., Solomon, S. D., Deb, A., et al. (2006). Mesenchymal stem cells overexpressing Akt dramatically repair infarcted myocardium and improve cardiac function despite infrequent cellular fusion or differentiation. Molecular Therapy: the Journal of the American Society of Gene Therapy, 14(6), 840–850.

    CAS  Google Scholar 

  68. Gnecchi, M., Zhang, Z., Ni, A., & Dzau, V. J. (2008). Paracrine mechanisms in adult stem cell signaling and therapy. Circulation Research, 103(11), 1204–1219.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Chou, S. H., Lin, S. Z., Kuo, W. W., Pai, P., Lin, J. Y., Lai, C. H., et al. (2014). Mesenchymal stem cell insights: prospects in cardiovascular therapy. Cell Transplantation, 23(4–5), 513–529.

    PubMed  Google Scholar 

  70. Karantalis, V., & Hare, J. M. (2015). Use of mesenchymal stem cells for therapy of cardiac disease. Circulation Research, 116(8), 1413–1430.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Oh, J. Y., Kim, M. K., Shin, M. S., Lee, H. J., Ko, J. H., Wee, W. R., et al. (2008). The anti-inflammatory and anti-angiogenic role of mesenchymal stem cells in corneal wound healing following chemical injury. Stem cells (Dayton, Ohio), 26(4), 1047–1055.

    CAS  Google Scholar 

  72. Lee, R. H., Pulin, A. A., Seo, M. J., Kota, D. J., Ylostalo, J., Larson, B. L., et al. (2009). Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell, 5(1), 54–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Forte, A., Finicelli, M., Mattia, M., Berrino, L., Rossi, F., De Feo, M., et al. (2008). Mesenchymal stem cells effectively reduce surgically induced stenosis in rat carotids. Journal of Cellular Physiology, 217(3), 789–799.

    CAS  PubMed  Google Scholar 

  74. Chen, L., Tredget, E. E., Wu, P. Y., & Wu, Y. (2008). Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS One, 3(4), e1886.

    PubMed  PubMed Central  Google Scholar 

  75. Khan, M., Nickoloff, E., Abramova, T., Johnson, J., Verma, S. K., Krishnamurthy, P., et al. (2015). Embryonic stem cell-derived exosomes promote endogenous repair mechanisms and enhance cardiac function following myocardial infarction. Circulation Research, 117(1), 52–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Barile, L., Lionetti, V., Cervio, E., Matteucci, M., Gherghiceanu, M., Popescu, L. M., et al. (2014). Extracellular vesicles from human cardiac progenitor cells inhibit cardiomyocyte apoptosis and improve cardiac function after myocardial infarction. Cardiovascular Research, 103(4), 530–541.

    CAS  PubMed  Google Scholar 

  77. Singla, D. K. (2016). Stem cells and exosomes in cardiac repair. Current Opinion in Pharmacology, 27, 19–23.

    CAS  PubMed  Google Scholar 

  78. Lyu, L., Wang, H., Li, B., Qin, Q., Qi, L., Nagarkatti, M., et al. (2015). A critical role of cardiac fibroblast-derived exosomes in activating renin angiotensin system in cardiomyocytes. Journal of Molecular and Cellular Cardiology, 89(Pt B), 268–279.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Cervio, E., Barile, L., Moccetti, T., & Vassalli, G. (2015). Exosomes for intramyocardial intercellular communication. Stem Cells International, 2015, 482171.

    PubMed  PubMed Central  Google Scholar 

  80. Zhou, R., Chen, K. K., Zhang, J., Xiao, B., Huang, Z., Ju, C., et al. (2018). The decade of exosomal long RNA species: an emerging cancer antagonist. Molecular Cancer, 17(1), 75.

    PubMed  PubMed Central  Google Scholar 

  81. Chang, W., Lee, C. Y., Park, J. H., Park, M. S., Maeng, L. S., Yoon, C. S., et al. (2013). Survival of hypoxic human mesenchymal stem cells is enhanced by a positive feedback loop involving miR-210 and hypoxia-inducible factor 1. Journal of Veterinary Science, 14(1), 69–76.

    PubMed  PubMed Central  Google Scholar 

  82. Chang, W., Kim, R., Park, S. I., Jung, Y. J., Ham, O., Lee, J., et al. (2015). Enhanced healing of rat calvarial bone defects with hypoxic conditioned medium from mesenchymal stem cells through increased endogenous stem cell migration via regulation of ICAM-1 targeted-microRNA-221. Molecules and Cells, 38(7), 643–650.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Sadek, H., Hannack, B., Choe, E., Wang, J., Latif, S., Garry, M. G., et al. (2008). Cardiogenic small molecules that enhance myocardial repair by stem cells. Proceedings of the National Academy of Sciences of the United States of America, 105(16), 6063–6068.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Prathipati, P., Nandi, S. S., & Mishra, P. K. (2017). Stem cell-derived exosomes, autophagy, extracellular matrix turnover, and miRNAs in cardiac regeneration during stem cell therapy. Stem Cell Reviews, 13(1), 79–91.

    CAS  PubMed Central  Google Scholar 

  85. Nollet, E., Hoymans, V. Y., Van Craenenbroeck, A. H., Vrints, C. J., & Van Craenenbroeck, E. M. (2016). Improving stem cell therapy in cardiovascular diseases: the potential role of microRNA. American Journal of Physiology Heart and Circulatory Physiology, 311(1), H207–H218.

    PubMed  Google Scholar 

  86. Marquis-Gravel, G., Stevens, L. M., Mansour, S., Avram, R., & Noiseux, N. (2014). Stem cell therapy for the treatment of nonischemic cardiomyopathy: a systematic review of the literature and meta-analysis of randomized controlled trials. Canadian Journal of Cardiology, 30(11), 1378–1384.

    Google Scholar 

  87. Stehlik, J., Edwards, L. B., Kucheryavaya, A. Y., Benden, C., Christie, J. D., Dobbels, F., et al. (2011). The registry of the International Society for Heart and Lung Transplantation: twenty-eighth adult heart transplant report—2011. Journal of Heart & Lung Transplantation the Official Publication of the International Society for Heart Transplantation, 30(10), 1078.

    Google Scholar 

  88. Fischerrasokat, U., Assmus, B., Seeger, F. H., Honold, J., Leistner, D., Fichtlscherer, S., et al. (2009). A pilot trial to assess potential effects of selective intracoronary bone marrow-derived progenitor cell infusion in patients with nonischemic dilated cardiomyopathy. Circulation Heart Failure, 2(5), 417.

    CAS  Google Scholar 

  89. Seth, S., Bhargava, B., Narang, R., Ray, R., Mohanty, S., Gulati, G., et al. (2010). The ABCD (autologous bone marrow cells in dilated cardiomyopathy) trial : a long-term follow-up study. Journal of the American College of Cardiology, 55(15), 1643–1644.

    PubMed  Google Scholar 

  90. Vrtovec, B., Poglajen, G., Sever, M., Lezaic, L., Domanovic, D., Cernelc, P., et al. (2011). Effects of intracoronary stem cell transplantation in patients with dilated cardiomyopathy. Journal of Cardiac Failure, 17(4), 272.

    PubMed  Google Scholar 

  91. Vrtovec, B., Poglajen, G., Lezaic, L., Sever, M., Domanovic, D., Cernelc, P., et al. (2013). Effects of intracoronary CD34+ stem cell transplantation in nonischemic dilated cardiomyopathy patients 5-year follow-up. Circulation Research, 112(1), 165.

    CAS  PubMed  Google Scholar 

  92. Sant'Anna, R. T., Fracasso, J., Valle, F. H., Castro, I., Nardi, N. B., Sant'Anna, J. R. M., et al. (2014). Direct intramyocardial transthoracic transplantation of bone marrow mononuclear cells for non-ischemic dilated cardiomyopathy: INTRACELL, a prospective randomized controlled trial. Revista Brasileira De Cirurgia Cardiovascular Órgão Oficial Da Sociedade Brasileira De Cirurgia Cardiovascular, 29(3), 437–447.

    PubMed  PubMed Central  Google Scholar 

  93. Martino, H., Brofman, P., Greco, O., Bueno, R., Bodanese, L., Clausell, N., et al. (2015). Multicentre, randomized, double-blind trial of intracoronary autologous mononuclear bone marrow cell injection in non-ischaemic dilated cardiomyopathy (the dilated cardiomyopathy arm of the MiHeart study). European Heart Journal, 36(42), 2898.

    PubMed  Google Scholar 

  94. Lu, Y., Wang, Y., Lin, M., Zhou, J., Wang, Z., Jiang, M., et al. (2016). A systematic review of randomised controlled trials examining the therapeutic effects of adult bone marrow-derived stem cells for non-ischaemic dilated cardiomyopathy. Stem Cell Research & Therapy, 7(1), 186.

    Google Scholar 

  95. Maron, B. J. (2002). Hypertrophic cardiomyopathy: a systematic review. Journal of the American Medical Association, 287(10), 1308.

    PubMed  Google Scholar 

  96. Maron, B. J., Maron, M. S., & Semsarian, C. (2012). Genetics of hypertrophic cardiomyopathy after 20 years : clinical perspectives. Journal of the American College of Cardiology, 60(8), 705–715.

    PubMed  Google Scholar 

  97. Han, L., Li, Y., Tchao, J., Kaplan, A. D., Lin, B., Li, Y., et al. (2014). Study familial hypertrophic cardiomyopathy using patient-specific induced pluripotent stem cells. Cardiovascular Research, 104(2), 258–269.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Suzuki, K., Murtuza, B., Beauchamp, J. R., Brand, N. J., Barton, P. J., Varela-Carver, A., et al. (2004). Role of interleukin-1beta in acute inflammation and graft death after cell transplantation to the heart. Circulation, 110(11 Suppl 1), Ii219–Ii224.

    PubMed  Google Scholar 

  99. Narita, T., & Suzuki, K. (2015). Bone marrow-derived mesenchymal stem cells for the treatment of heart failure. Heart Failure Reviews, 20(1), 53–68.

    CAS  PubMed  Google Scholar 

  100. Lai, R. C., Chen, T. S., & Lim, S. K. (2011). Mesenchymal stem cell exosome: a novel stem cell-based therapy for cardiovascular disease. Regenerative Medicine, 6(4), 481–492.

    PubMed  Google Scholar 

  101. Giraud, M. N., Guex, A. G., & Tevaearai, H. T. (2012). Cell therapies for heart function recovery: focus on myocardial tissue engineering and nanotechnologies. Cardiology Research and Practice, 2012, 971614.

    PubMed  PubMed Central  Google Scholar 

  102. Bai, Y., Sun, T., & Ye, P. (2010). Age, gender and diabetic status are associated with effects of bone marrow cell therapy on recovery of left ventricular function after acute myocardial infarction: a systematic review and meta-analysis. Ageing Research Reviews, 9(4), 418–423.

    PubMed  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (nos. 81470391) and the National Natural Science Foundation of China (no. 81528002 to Y.T/Y.H). I. Kim, N.L. Weintraub, and Y. Tang were partially supported by the American Heart Association: GRNT31430008, NIH-AR070029, NIH-HL086555, NIH-HL134354, and NIH-HL12425.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Meng Jiang or Yaoliang Tang.

Ethics declarations

This article does not contain any studies with human participants performed by any of the authors.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Associate Editor Lei Ye oversaw the review of this article

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Su, X., Ashraf, M. et al. Regenerative Therapy for Cardiomyopathies. J. of Cardiovasc. Trans. Res. 11, 357–365 (2018). https://doi.org/10.1007/s12265-018-9807-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-018-9807-z

Keywords

Navigation