Skip to main content

Advertisement

Log in

Myocardial Ischemia Induces SDF-1α Release in Cardiac Surgery Patients

  • Original Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

In the present observational study, we measured serum levels of the chemokine stromal cell-derived factor-1α (SDF-1α) in 100 patients undergoing cardiac surgery with cardiopulmonary bypass at seven distinct time points including preoperative values, myocardial ischemia, reperfusion, and the postoperative course. Myocardial ischemia triggered a marked increase of SDF-1α serum levels whereas cardiac reperfusion had no significant influence. Perioperative SDF-1α serum levels were influenced by patients’ characteristics (e.g., age, gender, aspirin intake). In an explorative analysis, we observed an inverse association between SDF-1α serum levels and the incidence of organ dysfunction. In conclusion, time of myocardial ischemia was identified as the key stimulus for a significant upregulation of SDF-1α, indicating its role as a marker of myocardial injury. The inverse association between SDF-1α levels and organ dysfunction association encourages further studies to evaluate its organoprotective properties in cardiac surgery patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig 2
Fig 3
Fig 4

Similar content being viewed by others

Abbreviations

CABG:

Coronary artery bypass graft

CAD:

Coronary artery disease

CK-MB:

Creatine kinase isoenzyme MB

CPB:

Cardiopulmonary bypass

EPC:

Endothelial progenitor cells

FCS:

Fetal calf serum

HIF-1α:

Hypoxia-inducible factor 1α

HUVEC:

Human umbilical vein endothelial cells

I/R:

Ischemia/reperfusion

ICU:

Intensive care unit

MIF:

Macrophage migration inhibitory factor

PCT:

Procalcitonin

SAPS II:

Simplified acute physiology score II

SDF-1:

Stromal cell-derived factor 1

SIRS:

Systemic inflammatory response syndrome

WBC:

White blood cells

References

  1. Eltzschig, H. K., & Eckle, T. (2011). Ischemia and reperfusion—from mechanism to translation. Nature Medicine (New York), 17(11), 1391–1401.

    Article  CAS  Google Scholar 

  2. Janowski, M. (2009). Functional diversity of SDF-1 splicing variants. Cell Adhesion & Migration, 3(3), 243–249.

    Article  Google Scholar 

  3. van der Vorst, E. P., Doring, Y., & Weber, C. (2015). MIF and CXCL12 in cardiovascular diseases: functional differences and similarities. Frontiers in Immunology, 6, 373.

    PubMed  PubMed Central  Google Scholar 

  4. Teicher, B. A., & Fricker, S. P. (2010). CXCL12 (SDF-1)/CXCR4 pathway in cancer. Clinical Cancer Research, 16(11), 2927–2931.

    Article  CAS  PubMed  Google Scholar 

  5. Chang, L. T., Yuen, C. M., Sun, C. K., et al. (2009). Role of stromal cell-derived factor-1 alpha, level and value of circulating interleukin-10 and endothelial progenitor cells in patients with acute myocardial infarction undergoing primary coronary angioplasty. Circulation Journal, 73(6), 1097–1104.

    Article  CAS  PubMed  Google Scholar 

  6. Bromage, D. I., Davidson, S. M., & Yellon, D. M. (2014). Stromal derived factor 1alpha: a chemokine that delivers a two-pronged defence of the myocardium. Pharmacology and Therapeutics, 143(3), 305–315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ceradini, D. J., Kulkarni, A. R., Callaghan, M. J., et al. (2004). Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nature Medicine, 10(8), 858–864.

    Article  CAS  PubMed  Google Scholar 

  8. Saxena, A., Fish, J. E., White, M. D., et al. (2008). Stromal cell-derived factor-1alpha is cardioprotective after myocardial infarction. Circulation, 117(17), 2224–2231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Stoppe, C., Werker, T., Rossaint, R., et al. (2013). What is the significance of perioperative release of macrophage migration inhibitory factor in cardiac surgery? Antioxidants & Redox Signaling, 19(3), 231–239.

    Article  CAS  Google Scholar 

  10. Stoppe, C., Rex, S., Goetzenich. A., et al. (2015) Interaction of MIF family proteins in myocardial ischemia/reperfusion damage and their influence on clinical outcome of cardiac surgery patients. Antioxid Redox Signal.

  11. Simons, D., Grieb, G., Hristov, M., et al. (2011). Hypoxia-induced endothelial secretion of macrophage migration inhibitory factor and role in endothelial progenitor cell recruitment. Journal of Cellular and Molecular Medicine, 15(3), 668–678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bone, R. C., Sibbald, W. J., & Sprung, C. L. (1992). The ACCP-SCCM consensus conference on sepsis and organ failure. Chest, 101(6), 1481–1483.

    Article  CAS  PubMed  Google Scholar 

  13. Levy, M. M., Fink, M. P., Marshall, J. C., et al. (2003). 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Critical Care Medicine, 31(4), 1250–1256.

    Article  PubMed  Google Scholar 

  14. Hall, R. (2013). Identification of inflammatory mediators and their modulation by strategies for the management of the systemic inflammatory response during cardiac surgery. Journal of Cardiothoracic and Vascular Anesthesia, 27(5), 983–1033.

    Article  PubMed  Google Scholar 

  15. Le Gall, J. R., Lemeshow, S., & Saulnier, F. (1993). A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study. JAMA, 270(24), 2957–2963.

    Article  PubMed  Google Scholar 

  16. Zaruba, M. M., & Franz, W. M. (2010). Role of the SDF-1-CXCR4 axis in stem cell-based therapies for ischemic cardiomyopathy. Expert Opinion on Biological Therapy, 10(3), 321–335.

    Article  CAS  PubMed  Google Scholar 

  17. Malik, A., Bromage, D. I., He, Z., et al. (2015) Exogenous SDF-1alpha protects human myocardium from Hypoxia-Reoxygenation Injury via CXCR4. Cardiovasc Drugs Ther.

  18. Davidson, S. M., Selvaraj, P., He, D., et al. (2013). Remote ischaemic preconditioning involves signalling through the SDF-1alpha/CXCR4 signalling axis. Basic Research in Cardiology, 108(5), 377.

    Article  PubMed  Google Scholar 

  19. Huang, C., Gu, H., Zhang, W., Manukyan, M. C., Shou, W., & Wang, M. (2011). SDF-1/CXCR4 mediates acute protection of cardiac function through myocardial STAT3 signaling following global ischemia/reperfusion injury. American Journal of Physiology—Heart and Circulatory Physiology, 301(4), H1496–H1505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yamani, M. H., Ratliff, N. B., Cook, D. J., et al. (2005). Peritransplant ischemic injury is associated with up—regulation of stromal cell-derived factor-1. Journal of the American College of Cardiology, 46(6), 1029–1035.

    Article  CAS  PubMed  Google Scholar 

  21. Leone, A. M., Rutella, S., Bonanno, G., et al. (2006). Endogenous G-CSF and CD34+ cell mobilization after acute myocardial infarction. International Journal of Cardiology, 111(2), 202–208.

    Article  PubMed  Google Scholar 

  22. Loh, S. A., Chang, E. I., Galvez, M. G., et al. (2009). SDF-1 alpha expression during wound healing in the aged is HIF dependent. Plastic and Reconstructive Surgery, 123(2 Suppl), 65S–75S.

    Article  CAS  PubMed  Google Scholar 

  23. Youn, S. W., Lee, S. W., Lee, J., et al. (2011). COMP-Ang1 stimulates HIF-1alpha-mediated SDF-1 overexpression and recovers ischemic injury through BM-derived progenitor cell recruitment. Blood, 117(16), 4376–4386.

    Article  CAS  PubMed  Google Scholar 

  24. Karshovska, E., Zernecke, A., Sevilmis, G., et al. (2007). Expression of HIF-1alpha in injured arteries controls SDF-1alpha mediated neointima formation in apolipoprotein E deficient mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 27(12), 2540–2547.

    Article  CAS  PubMed  Google Scholar 

  25. Kanki, S., Segers, V. F., Wu, W., et al. (2011). Stromal cell-derived factor-1 retention and cardioprotection for ischemic myocardium. Circulation. Heart Failure, 4(4), 509–518.

    Article  CAS  PubMed  Google Scholar 

  26. Pietschmann, P., Gollob, E., Brosch, S., et al. (2003). The effect of age and gender on cytokine production by human peripheral blood mononuclear cells and markers of bone metabolism. Experimental Gerontology, 38(10), 1119–1127.

    Article  CAS  PubMed  Google Scholar 

  27. Huang, C., Gu, H., Wang, Y., & Wang, M. (2011). Estrogen-induced SDF-1 production is mediated by estrogen receptor-alpha in female hearts after acute ischemia and reperfusion. Surgery, 150(2), 197–203.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wang, J. S., Liu, X., Xue, Z. Y., et al. (2011). Effects of aging on time course of neovascularization-related gene expression following acute hindlimb ischemia in mice. Chinese Medical Journal, 124(7), 1075–1081.

    CAS  PubMed  Google Scholar 

  29. Wang, L., Chen, W., Gao, L., et al. (2012). High expression of CXCR4, CXCR7 and SDF-1 predicts poor survival in renal cell carcinoma. World Journal of Surgical Oncology, 10, 212.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Jorbenadze, R., Schleicher, E., Bigalke, B., Stellos, K., & Gawaz, M. (2014). Expression of platelet-bound stromal-cell derived factor-1 (SDF-1) and number of CD34(+) progenitor cells in patients with congestive heart failure. Platelets, 25(6), 409–415.

    Article  CAS  PubMed  Google Scholar 

  31. Abi-Younes, S., Sauty, A., Mach, F., Sukhova, G. K., Libby, P., & Luster, A. D. (2000). The stromal cell-derived factor-1 chemokine is a potent platelet agonist highly expressed in atherosclerotic plaques. Circulation Research, 86(2), 131–138.

    Article  CAS  PubMed  Google Scholar 

  32. Stokman, G., Stroo, I., Claessen, N., Teske, G. J., Florquin, S., & Leemans, J. C. (2010). SDF-1 provides morphological and functional protection against renal ischaemia/reperfusion injury. Nephrology, Dialysis, Transplantation, 25(12), 3852–3859.

    Article  CAS  PubMed  Google Scholar 

  33. Togel, F. E., & Westenfelder, C. (2011). Role of SDF-1 as a regulatory chemokine in renal regeneration after acute kidney injury. Kidney International. Supplement, 1(3), 87–89.

    Article  CAS  Google Scholar 

  34. Wan, X., Xia, W., Gendoo, Y., et al. (2014). Upregulation of stromal cell-derived factor 1 (SDF-1) is associated with macrophage infiltration in renal ischemia-reperfusion injury. PloS One, 9(12), e114564.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wang, Y. B., Liu, Y. F., Lu, X. T., et al. (2013). Rehmannia glutinosa extract activates endothelial progenitor cells in a rat model of myocardial infarction through a SDF-1 alpha/CXCR4 cascade. PloS One, 8(1), e54303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zheng, H., Dai, T., Zhou, B., et al. (2008). SDF-1alpha/CXCR4 decreases endothelial progenitor cells apoptosis under serum deprivation by PI3K/Akt/eNOS pathway. Atherosclerosis, 201(1), 36–42.

    Article  CAS  PubMed  Google Scholar 

  37. Du, F., Zhou, J., Gong, R., et al. (2012). Endothelial progenitor cells in atherosclerosis. Frontiers of Bioscience (Landmark Ed), 17, 2327–2349.

    Article  Google Scholar 

  38. Emontzpohl, C., Goetzenich, A., Simons, D., et al. (2015). Key role of MIF in the migration of endothelial progenitor cells in patients during cardiac surgery. International Journal of Cardiology, 181, 284–287.

    Article  PubMed  Google Scholar 

  39. Hausenloy, D. J., & Yellon, D. M. (2004). New directions for protecting the heart against ischaemia-reperfusion injury: targeting the reperfusion injury salvage kinase (RISK)-pathway. Cardiovascular Research, 61(3), 448–460.

    Article  CAS  PubMed  Google Scholar 

  40. Jaleel, M. A., Tsai, A. C., Sarkar, S., Freedman, P. V., & Rubin, L. P. (2004). Stromal cell-derived factor-1 (SDF-1) signalling regulates human placental trophoblast cell survival. Molecular Human Reproduction, 10(12), 901–909.

    Article  CAS  PubMed  Google Scholar 

  41. Yano, T., Liu, Z., Donovan, J., Thomas, M. K., & Habener, J. F. (2007). Stromal cell derived factor-1 (SDF-1)/CXCL12 attenuates diabetes in mice and promotes pancreatic beta-cell survival by activation of the prosurvival kinase Akt. Diabetes, 56(12), 2946–2957.

    Article  CAS  PubMed  Google Scholar 

  42. Ghadge, S. K., Muhlstedt, S., Ozcelik, C., & Bader, M. (2011). SDF-1alpha as a therapeutic stem cell homing factor in myocardial infarction. Pharmacology & Therapeutics, 129(1), 97–108.

    Article  CAS  Google Scholar 

  43. Laffey, J. G., Boylan, J. F., & Cheng, D. C. (2002). The systemic inflammatory response to cardiac surgery: implications for the anesthesiologist. Anesthesiology, 97(1), 215–252.

    Article  CAS  PubMed  Google Scholar 

  44. Singhal, A. K., Symons, J. D., Boudina, S., Jaishy, B., & Shiu, Y. T. (2010). Role of endothelial cells in myocardial ischemia-reperfusion injury. Vascular Disease Prevention, 7, 1–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zemani, F., Silvestre, J. S., Fauvel-Lafeve, F., et al. (2008). Ex vivo priming of endothelial progenitor cells with SDF-1 before transplantation could increase their proangiogenic potential. Arteriosclerosis, Thrombosis, and Vascular Biology, 28(4), 644–650.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to David Simons or Christian Stoppe.

Ethics declarations

Human Study

All patients provided written consent, the study protocol conforms to the ethical guidelines of the 1975 Declaration of Helsinki, and the study was approved by the local ethics committee (Ethikkommission RWTH Aachen, EK 151/09).

Animal Study

No animal studies were carried out by the authors for this article.

Sources of Funding

Bong-Sung Kim is supported by “START”, a program for young scientists of the Medical Faculty at the RWTH Aachen University (Project number: 691346, START 2013–2) and the Research Fellowship Program of the German Research Foundation (Deutsche Forschungsgemeinschaft (DFG), GZ: KI 1973/1-1). Norbert Pallua is supported by DFG grant PA 1271/5-1. Jürgen Bernhagen is supported by DFG grants SFB1123/P03; SFB/TRR57-P07, and DFG BE1977/7-1, as well as by DFG within the framework of the Munich Cluster for Systems Neurology (EXC 1010 SyNergy). Christian Stoppe is supported by DFG grant DFG STO 1099/2-1.

Disclosure

The authors declare that they have no conflict of interest.

Additional information

Editor-in-Chief Jennifer L. Hall oversaw the review of this article

All authors take responsibility for all aspects of the reliability and freedom from bias of the data presented and their discussed interpretation

Bong-Sung Kim, Denise Jacobs, David Simons and Christian Stoppe contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, BS., Jacobs, D., Emontzpohl, C. et al. Myocardial Ischemia Induces SDF-1α Release in Cardiac Surgery Patients. J. of Cardiovasc. Trans. Res. 9, 230–238 (2016). https://doi.org/10.1007/s12265-016-9689-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-016-9689-x

Keywords

Navigation