Skip to main content

Advertisement

Log in

Cyclosporin in Cell Therapy for Cardiac Regeneration

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Stem cell therapy is a promising strategy in promoting cardiac repair in the setting of ischemic heart disease. Clinical and preclinical studies have shown that cell therapy improves cardiac function. Whether autologous or allogeneic cells should be used, and the need for immunosuppression in non-autologous settings, is a matter of debate. Cyclosporin A (CsA) is frequently used in preclinical trials to reduce cell rejection after non-autologous cell therapy. The direct effect of CsA on the function and survival of stem cells is unclear. Furthermore, the appropriate daily dosage of CsA in animal models has not been established. In this review, we discuss the pros and cons of the use of CsA on an array of stem cells both in vitro and in vivo. Furthermore, we present a small collection of data put forth by our group supporting the efficacy and safety of a specific daily CsA dosage in a pig model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Beltrami, A. P., Urbanek, K., Kajstura, J., & Shao-Min, Y. (2001). Evidence that human cardiac myocytes divide after myocardial infarcation. The New England Journal of Medicine, 344(23).

  2. Tang, Y. L., Wang, Y. J., Chen, L. J., Pan, Y. H., Zhang, L., & Weintraub, N. L. (2013). Cardiac-derived stem cell-based therapy for heart failure: progress and clinical applications. Experimental Biology and Medicine (Maywood, N.J.), 238(3), 294–300.

    Article  CAS  Google Scholar 

  3. Segers, V. F. M., & Lee, R. T. (2008). Stem-cell therapy for cardiac disease. Nature, 451(7181), 937–942.

    Article  CAS  PubMed  Google Scholar 

  4. Malliaras, K., & Marbán, E. (2011). Cardiac cell therapy: where we’ve been, where we are, and where we should be headed. British Medical Bulletin, 98, 161–185.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Wang, X., Jameel, M. N., Li, Q., Mansoor, A., Qiang, X., Swingen, C., et al. (2009). Stem cells for myocardial repair with use of a transarterial catheter. Circulation, 120(11 Suppl), S238–S246.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Dimmeler, S., Burchfield, J., & Zeiher, A. M. (2008). Cell-based therapy of myocardial infarction. Arteriosclerosis, Thrombosis, and Vascular Biology, 28(2), 208–216.

    Article  CAS  PubMed  Google Scholar 

  7. Gnecchi, M., Zhang, Z., Ni, A., & Dzau, V. J. (2008). Paracrine mechanisms in adult stem cell signaling and therapy. Circulation Research, 103(11), 1204–1219.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Jeevanantham, V., Butler, M., Saad, A., Abdel-Latif, A., Zuba-Surma, E. K., & Dawn, B. (2012). Adult bone marrow cell therapy improves survival and induces long-term improvement in cardiac parameters: a systematic review and meta-analysis. Circulation, 126, 551–568.

    Article  PubMed  Google Scholar 

  9. Van der Spoel, T. I. G., Jansen of Lorkeers, S. J., Agostoni, P., van Belle, E., Gyöngyösi, M., Sluijter, J. P. G., et al. (2011). Human relevance of pre-clinical studies in stem cell therapy: systematic review and meta-analysis of large animal models of ischaemic heart disease. Cardiovascular Research, 91(4), 649–658.

    Article  PubMed  Google Scholar 

  10. Clifford, D., Fisher, S., Brunskill, S., Doree, C., Mathur, A., & Watt, S. (2012). Stem cell treatment for acute myocardial infarction ( Review). The Cochrane Collaboration, (2).

  11. Toma, C. (2002). Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation, 105(1), 93–98.

    Article  PubMed  Google Scholar 

  12. Terrovitis, J., Lautamäki, R., Bonios, M., Fox, J., Engles, J. M., Yu, J., et al. (2009). Noninvasive quantification and optimization of acute cell retention by in vivo positron emission tomography after intramyocardial cardiac-derived stem cell delivery. Journal of the American College of Cardiology, 54(17), 1619–1626.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Freyman, T., Polin, G., Osman, H., Crary, J., Lu, M., Cheng, L., et al. (2006). A quantitative, randomized study evaluating three methods of mesenchymal stem cell delivery following myocardial infarction. European Heart Journal, 27(9), 1114–1122.

    Article  PubMed  Google Scholar 

  14. Van der Spoel, T. I. G., Vrijsen, K. R., Koudstaal, S., Sluijter, J. P. G., Nijsen, J. F. W., de Jong, H. W., et al. (2012). Transendocardial cell injection is not superior to intracoronary infusion in a porcine model of ischaemic cardiomyopathy: a study on delivery efficiency. Journal of Cellular and Molecular Medicine, 16(11), 2768–2776.

    Article  PubMed  Google Scholar 

  15. Malliaras, K., Kreke, M., & Marbán, E. (2011). The stuttering progress of cell therapy for heart disease. Clinical Pharmacology and Therapeutics, 90(4), 532–541.

    Article  CAS  PubMed  Google Scholar 

  16. Dimmeler, S., & Leri, A. (2008). Aging and disease as modifiers of efficacy of cell therapy. Circulation Research, 102(11), 1319–1330.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Jansen of Lorkeers, S., Eding, J. E. C., Spoel, T. I. G. van der, Vesterinen, H. M., Sena, E. S., Doevendans, P. A., et al. (2014). Similar effect of autologous and allogeneic cell therapy for ischaemic heart disease: results from a meta-analysis of large animal studies. Journal of American College of Cardiology, 63(12), A1762

  18. Halkos, M. E., Zhao, Z.-Q., Kerendi, F., Wang, N.-P., Jiang, R., Schmarkey, L. S., et al. (2008). Intravenous infusion of mesenchymal stem cells enhances regional perfusion and improves ventricular function in a porcine model of myocardial infarction. Basic Research in Cardiology, 103(6), 525–536.

    Article  PubMed  Google Scholar 

  19. Tse, W. T. T., Pendleton, J. D. D., Beyer, W. M. M., Egalka, M. C. C., & Guinan, E. C. C. (2003). Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation, 75(3), 389–397.

    Article  CAS  PubMed  Google Scholar 

  20. Bartholomew, A., Sturgeon, C., Siatskas, M., Ferrer, K., McIntosh, K., Patil, S., et al. (2002). Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Experimental Hematology, 30(1), 42–48.

    Article  PubMed  Google Scholar 

  21. Maccario, R., Moretta, A., Cometa, A., Montagna, D. D., Comoli, P., Locatelli, F., et al. (2005). Human mesenchymal stem cells and cyclosporin a exert a synergistic suppressive effect on in vitro activation of alloantigen-specific cytotoxic lymphocytes. Biology of Blood and Marrow Transplantation, 1032(12), 1031–1032.

    Article  Google Scholar 

  22. Buron, F., Perrin, H., Malcus, C., Héquet, O., Thaunat, O., Kholopp-Sarda, M.-N., et al. (2009). Human mesenchymal stem cells and immunosuppressive drug interactions in allogeneic responses: an in vitro study using human cells. Transplantation Proceedings, 41(8), 3347–3352.

    Article  CAS  PubMed  Google Scholar 

  23. Nauta, A. J. J., Westerhuis, G., Kruisselbrink, A. B. B., Lurvink, E. G. A. G. A., Willemze, R., & Fibbe, W. E. E. (2006). Donor-derived mesenchymal stem cells are immunogenic in an allogeneic host and stimulate donor graft rejection in a nonmyeloablative setting. Blood, 108(6), 2114–2120.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Poncelet, A. J., Vercruysse, J., Saliez, A., & Gianello, P. (2007). Although pig allogeneic mesenchymal stem cells are not immunogenic in vitro, intracardiac injection elicits an immune response in vivo. Transplantation, 83(6), 783–790.

    Article  PubMed  Google Scholar 

  25. Felix, N. J., & Allen, P. M. (2007). Specificity of T-cell alloreactivity. Nature Reviews. Immunology, 7(12), 942–953.

    Article  CAS  PubMed  Google Scholar 

  26. Schreiber, S., & Crabtree, G. R. (1996). The mechanism of action of cyclosporin A and FK506. Clinical Immunology and Immunopathology, 80(3 Pt 2), S40–S45.

    Google Scholar 

  27. Kiani, A., Rao, A., Aramburu, J. I. M. K., & Carus, G. (2000). Manipulating immune responses with immunosuppressive agents that target NFAT. Immunity, 12, 359–372.

    Article  CAS  PubMed  Google Scholar 

  28. Kaye, R. E., Fruman, D. A., Bierer, B. E., Albers, M. W., Zydowsky, L. D., Ho, S. I., et al. (1992). Effects of cyclosporin A and FK506 on Fc epsilon receptor type I-initiated increases in cytokine mRNA in mouse bone marrow-derived progenitor mast cells: resistance to FK506 is associated with a deficiency in FK506-binding protein FKBP12. Proceedings of the National Academy of Sciences of the United States of America, 89(18), 8542–8546.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Liu, J., Farmer, J. D. D., Lane, W. S. S., Friedman, J., Weissman, I., & Schreiber, S. L. L. (1991). Calcineurin Is a common target of cyclophili-cyclosporin A and FKBP-FK506 Complexes. Cell, 66.

  30. Matsuda, S., & Koyasu, S. (2000). Mechanisms of action of cyclosporine. Immunopharmacology, 47(2–3), 119–125.

    Article  CAS  PubMed  Google Scholar 

  31. Fric, J., Zelante, T., Wong, A. Y. W., Mertes, A., Yu, H.-B., & Ricciardi-Castagnoli, P. (2012). NFAT control of innate immunity. Blood, 120(7), 1380–1389.

    Article  CAS  PubMed  Google Scholar 

  32. Clipstone, N. A., & Crabtree, G. R. (1992). Identification of calcineurin as a key signalling enzyme in T-lymphocyte activation. Nature, 357, 695–697.

    Article  CAS  PubMed  Google Scholar 

  33. Rao, A., Luo, C., & Hogan, P. G. (1997). Transcription factors of the NFAT family: regulation and function. Annual Review of Immunology, 15, 707–747.

    Article  CAS  PubMed  Google Scholar 

  34. Krönke, M., Leonard, W. J. J., Depper, J. M. M., Arya, S. K. K., Wong-Staal, F., Gallo, R. C. C., et al. (1984). Cyclosporin A inhibits T-cell growth factor gene expression at the level of mRNA transcription. Proceedings of the National Academy of Sciences of the United States of America, 81(16), 5214–5218.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Herold, K. C., Lanckl, D. W., Moldwin, R. L., & Fitch, F. W. (1986). Immonusuppressive effects of cyclosporin a on cloned cells. The Journal of Immunology, 136(4), 1315–1321.

    CAS  PubMed  Google Scholar 

  36. Hogan, W. J. J., & Storb, R. (2004). Use of cyclosporine in hematopoietic cell transplantation. Transplantation Proceedings, 36(2 Suppl), 367S–371S.

    Article  CAS  PubMed  Google Scholar 

  37. Bennett, W. M., DeMattos, A., Meyer, M. M., Andoh, T., & Barry, J. M. (1996). Chronic cyclosporine nephropathy: the Achilles’ heel of immunosuppressive therapy. Kidney International, 50(4), 1089–1100.

    Article  CAS  PubMed  Google Scholar 

  38. Wong, S. H. (2001). Therapeutic drug monitoring for immunosuppressants. Clinica Chimica Acta, 313(1–2), 241–253.

    Article  CAS  Google Scholar 

  39. Bowers, L. D. (1991). Therapeutic monitoring for cyclosporine: difficulties in establishing a therapeutic window. Clinical Biochemistry, 24(1), 81–87.

    Article  CAS  PubMed  Google Scholar 

  40. Irschik, E., Tilg, H., Niederwieser, D., & Gastl, G. (1984). Cyclosporin blood levels do correlate with clinical complications. Lancet, 2, 692–693.

    Article  CAS  PubMed  Google Scholar 

  41. Kahan, B. D., Welsh, M., & Rutzky, L. P. (1995). Challenges in cyclosporine therapy: the role of therapeutic monitoring by area under the curve monitorin. Therapeutic Drug Monitoring, 17, 621–624.

    Article  CAS  PubMed  Google Scholar 

  42. Kahan, B. D. (2004). Therapeutic drug monitoring of cyclosporine: 20 years of progress. Transplantation Proceedings, 36(2 Suppl), 378S–391S.

    Article  CAS  PubMed  Google Scholar 

  43. Gaston, R. S. (2001). Maintenance immunosuppression in the renal transplant recipient: an overview. American Journal of Kidney Diseases, 38(6), S25–S35.

    Article  CAS  PubMed  Google Scholar 

  44. Belitsky, P., Dunn, S., Johnston, A., & Levy, G. (2000). Impact of absorption profiling on efficacy and safety of cyclosporin therapy in transplant recipients. Clinical Pharmacokinetics, 39(2), 117–125.

    Article  CAS  PubMed  Google Scholar 

  45. Ruutu, T., Niederwieser, D., & Gratwohl, A. (1997). A survey of the prophylaxis and treatment of acute GVHD in Europe : a report of the European Group for Blood and Marrow Transplantation ( EBMT ). Bone Marrow Transplantation, 19, 759–764.

    Article  CAS  PubMed  Google Scholar 

  46. Lim, W. Y., Messow, C. M., & Berry, C. (2012). Cyclosporin variably and inconsistently reduces infarct size in experimental models of reperfused myocardial infarction: a systematic review and meta-analysis. British Journal of Pharmacology, 165(7), 2034–2043.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Fujiwara, M., Yan, P., Otsuji, T. G., Narazaki, G., Uosaki, H., Fukushima, H., et al. (2011). Induction and enhancement of cardiac cell differentiation from mouse and human induced pluripotent stem cells with cyclosporin-A. PloS One, 6(2), e16734.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Hostettler, K. E., Roth, M., Burgess, J. K., Johnson, P. R. A., Glanville, A. R., Tamm, M., et al. (2004). Cyclosporine A mediates fibroproliferation through epithelial cells. Transplantation, 77(12), 1886–1893.

    Article  CAS  PubMed  Google Scholar 

  49. Hunt, J., Cheng, A., Hoyles, A., Jervis, E., & Morshead, C. M. (2010). Cyclosporin A has direct effects on adult neural precursor cells. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 30(8), 2888–2896.

    Article  CAS  Google Scholar 

  50. Kim, Perry, & Spangrude. (1999). Direct effects of cyclosporin A on proliferation of hematopoietic stem and progenitor cells. Cell Transplantation, 8, 339–344.

    PubMed  Google Scholar 

  51. Sachinidis, A., Schwengberg, S., Hippler-altenburg, R., Mariappan, D., Kamisetti, N., Seelig, B., et al. (2006). Identification of small signalling molecules promoting cardiac-specific differentiation of mouse embryonic stem cells. Cellular Physiology and Biochemisty, 18, 303–314.

    Article  CAS  Google Scholar 

  52. Byun, Y., Kim, K., Kim, S., Kim, Y., Koo, K., Kim, T., et al. (2012). Cyclosporin A, on the osteogenic differentiation of rat mesenchymal stem cells. Journal of Periodontal and Implant Science, 42, 73–80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Davies, W. R., Wang, S., Oi, K., Bailey, K. R., Tazelaar, H. D., Caplice, N. M., et al. (2005). Cyclosporine decreases vascular progenitor cell numbers after cardiac transplantation and attenuates progenitor cell growth in vitro. The Journal of Heart and Lung Transplantation: The Official Publication of the International Society for Heart Transplantation, 24(11), 1868–1877.

    Article  Google Scholar 

  54. Poncelet, A. J., Nizet, Y., Vercruysse, J., Hiel, A. L., Saliez, A., & Gianello, P. (2008). Inhibition of humoral response to allogeneic porcine mesenchymal stem cell with 12 days of tacrolimus. Transplantation, 86(11), 1586–1595.

    Article  CAS  PubMed  Google Scholar 

  55. Song, L. H., Pan, W., Yu, Y. H., Quarles, L. D., Zhou, H. H., & Xiao, Z. S. (2006). Resveratrol prevents CsA inhibition of proliferation and osteoblastic differentiation of mouse bone marrow-derived mesenchymal stem cells through an ER/NO/cGMP pathway. Toxicology In Vitro: An International Journal Published in Association with BIBRA, 20(6), 915–922.

    Article  CAS  Google Scholar 

  56. Yan, P., Nagasawa, A., Uosaki, H., Sugimoto, A., Yamamizu, K., Teranishi, M., et al. (2009). Cyclosporin-A potently induces highly cardiogenic progenitors from embryonic stem cells. Biochemical and Biophysical Research Communications, 379(1), 115–120.

    Article  CAS  PubMed  Google Scholar 

  57. Guo, J., Zeng, Y., Liang, Y., Wang, L., Huanxing, S., & Wutain, W. (2007). Cyclosporine affects the proliferation and differentiation of neural stem cells in culture. Regeneration and Transplantation, 18(9), 63–68.

    Google Scholar 

  58. Chen, T. L., Wang, J. A., Shi, H., Gui, C., Luo, R. H., Xie, X. J., et al. (2008). Cyclosporin A pre-incubation attenuates hypoxia/reoxygenation-induced apoptosis in mesenchymal stem cells. Scandinavian Journal of Clinical and Laboratory Investigation, 68(7), 585–593.

    Article  CAS  PubMed  Google Scholar 

  59. Yang, L., Yang, X.-C., Yang, J.-K., Guo, Y.-H., Yi, F.-F., Fan, Q., et al. (2008). Cyclosporin A suppresses proliferation of endothelial progenitor cells: involvement of nitric oxide synthase inhibition. Internal Medicine, 47(16), 1457–1464.

    Article  PubMed  Google Scholar 

  60. Esposito, C., Fornoni, A., Cornacchia, F., Bellotti, N., Fasoli, G., Foschi, A., et al. (2000). Cyclosporine induces different responses in human epithelial, endothelial and fibroblast cell cultures. Kidney International, 58(1), 123–130.

    Article  CAS  PubMed  Google Scholar 

  61. Guo, C., Haider, H. K., Shim, W. S. N., Tan, R.-S., Ye, L., Jiang, S., et al. (2007). Myoblast-based cardiac repair: xenomyoblast versus allomyoblast transplantation. The Journal of Thoracic and Cardiovascular Surgery, 134(5), 1332–1339.

    Article  PubMed  Google Scholar 

  62. Westrich, J., Yaeger, P., He, C., Stewart, J., Chen, R., Seleznik, G., et al. (2010). Factors affecting residence time of mesenchymal stromal cells (MSC) injected into the myocardium. Cell Transplantation, 19(8), 937–948.

    Article  PubMed  Google Scholar 

  63. Chiavegato, A., Bollini, S., Pozzobon, M., Callegari, A., Gasparotto, L., Taiani, J., et al. (2007). Human amniotic fluid-derived stem cells are rejected after transplantation in the myocardium of normal, ischemic, immuno-suppressed or immuno-deficient rat. Journal of Molecular and Cellular Cardiology, 42(4), 746–759.

    Article  CAS  PubMed  Google Scholar 

  64. Zeng, L., Hu, Q., Wang, X., Mansoor, A., Lee, J., Feygin, J., et al. (2007). Bioenergetic and functional consequences of bone marrow-derived multipotent progenitor cell transplantation in hearts with postinfarction left ventricular remodeling. Circulation, 115(14), 1866–1875.

    Article  PubMed  Google Scholar 

  65. Wang, C.-H., Cherng, W.-J., Yang, N.-I., Hsu, C.-M., Yeh, C.-H., Lan, Y.-J., et al. (2008). Cyclosporine increases ischemia-induced endothelial progenitor cell mobilization through manipulation of the CD26 system. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 294(3), R811–R818.

    Article  CAS  PubMed  Google Scholar 

  66. Suenderhauf, C., & Parrott, N. (2013). A physiologically based pharmacokinetic model of the minipig: data compilation and model implementation. Pharmaceutical Research, 30(1), 1–15.

    Article  CAS  PubMed  Google Scholar 

  67. Frey, B. M., Sieber, M., Mettler, H., & Ganger, H. (1985). Marked interspecies differences between humans and pigs in cyclosporine and prednisolone disposition. Drug Metabolism and Disposition, 16(2), 285–289.

    Google Scholar 

  68. Cibulskyte, D., Pedersen, M., Hjelm-Poulsen, J., Hansen, H. E., Madsen, M., & Mortensen, J. (2006). The pharmacokinetics and acute renal effects of oral microemulsion ciclosporin A in normal pigs. International Immunopharmacology, 6(4), 627–634.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

Part of this work is supported by the Project P1.04 SMARTCARE of the research program of the BioMedical Materials institute, co-funded by the Dutch Ministry of Economic Affairs and by a Fellowship Grant of the Interuniversity Cardiology Institute of the Netherlands (ICIN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. J. Chamuleau.

Additional information

Editor-in-Chief Jennifer L. Hall oversaw the review of this article

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jansen of Lorkeers, S.J., Hart, E., Tang, X.L. et al. Cyclosporin in Cell Therapy for Cardiac Regeneration. J. of Cardiovasc. Trans. Res. 7, 475–482 (2014). https://doi.org/10.1007/s12265-014-9570-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-014-9570-8

Keywords

Navigation