Skip to main content

Advertisement

Log in

Targeting Inflammation: Impact on Atherothrombosis

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Atherothrombosis is a worldwide epidemic accounting for an unacceptable toll of deaths and disabilities. Its pathophysiology is complex and hardly referable to a specific mechanism; however, in the last 20 years, a growing amount of evidence has demonstrated that inflammatory processes play a major role from the very beginning to the ultimate complication of atherothrombosis. These evidences are addressing a growing interest toward anti-inflammatory agents as preventive or curative treatments of atherothrombosis. At present, accumulated data are not conclusive, but strong evidence exists in favor of an anti-inflammatory positive effect for several drugs as statins or renin–angiotensin inhibitors. More conclusive data are expected from ongoing trials directly exploring the role of specific cytokines antagonists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Lozano, R., Naghavi, M., Foreman, K., Lim, S., Shibuya, K., Aboyans, V., et al. (2012). Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet, 380, 2095–2128. doi:10.1016/S0140-6736(12)61728-0.

    PubMed  Google Scholar 

  2. Libby, P. (2012). Inflammation in atherosclerosis. Atherosclerosis Thrombosis Vascular Biology, 32(9), 2045–2051. doi:10.1161/ATVBAHA.108.179705.

    CAS  Google Scholar 

  3. Jonasson, L., Holm, J., Skalli, O., Bondjers, G., & Hansson, G. K. (1986). Regional accumulations of T cells, macrophages, and smooth muscle cells in the human atherosclerotic plaque. Arteriosclerosis, 6(2), 131–138.

    CAS  PubMed  Google Scholar 

  4. Woollard, K. J., & Geissmann, F. (2010). Monocytes in atherosclerosis: subsets and functions. Nature Reviews Cardiology, 7(2), 77–86. doi:10.1038/nrcardio.2009.228.

    PubMed Central  PubMed  Google Scholar 

  5. Wyss, C. A., Neidhart, M., Altwegg, L., Spanaus, K. S., Yonekawa, K., Wischnewsky, M. B., et al. (2010). Cellular actors, toll-like receptors, and local cytokine profile in acute coronary syndromes. European Heart Journal, 31, 1457–1469. doi:10.1093/eurheartj/ehq084.

    CAS  PubMed  Google Scholar 

  6. Yonekawa, K., Neidhart, M., Altwegg, L. A., Wyss, C. A., Corti, R., Vogl, T., et al. (2011). Myeloid related proteins activate toll-like receptor 4 in human acute coronary syndromes. Atherosclerosis, 218(2), 486–492. doi:10.1016/j.atherosclerosis.2011.06.020.

    CAS  PubMed  Google Scholar 

  7. Niessner, A., Shin, M. S., Pryshchep, O., Goronzy, J. J., Chaikof, E. L., & Weyand, C. M. (2007). Synergistic proinflammatory effects of the antiviral cytokine interferon-alpha and Toll-like receptor 4 ligands in the atherosclerotic plaque. Circulation, 116(18), 2043–2052.

    CAS  PubMed  Google Scholar 

  8. Libby, P., & Ridker, P. M. (2009). Hansson GK; Leducq Transatlantic Network on Atherothrombosis: Inflammation in atherosclerosis: from pathophysiology to practice J. American College of Cardiology, 54(23), 2129–2138. doi:10.1016/j.jacc.2009.09.009.

    CAS  Google Scholar 

  9. Hansson, G. K. (2005). Inflammation, atherosclerosis, and coronary artery disease. The New England Journal of Medicine, 352(16), 1685–1695.

    CAS  PubMed  Google Scholar 

  10. Narducci, M. L., Grasselli, A., Biasucci, L. M., Farsetti, A., Mulè, A., Liuzzo, G., et al. (2007). High telomerase activity in neutrophils from unstable coronary plaques. Journal of the American College of Cardiology, 50(25), 2369–2374.

    CAS  PubMed  Google Scholar 

  11. Biasucci, L. M., Liuzzo, G., Giubilato, S., Della Bona, R., Leo, M., Pinnelli, M., et al. (2009). Delayed neutrophil apoptosis in patients with unstable angina: relation to C-reactive protein and recurrence of instability. European Heart Journal, 30(18), 2220–2225. doi:10.1093/eurheartj/ehp248.

    CAS  PubMed  Google Scholar 

  12. Freedman, J. E., Larson, M. G., Tanriverdi, K., O'Donnell, C. J., Morin, K., Hakanson, A. S., et al. (2010). Relation of platelet and leukocyte inflammatory transcripts to body mass index in the Framingham heart study. Circulation, 122(2), 119–129. doi:10.1161/CIRCULATIONAHA.109.928192.

    PubMed Central  PubMed  Google Scholar 

  13. Zal, B., Kaski, J. C., Arno, G., Akiyu, J. P., Xu, Q., Cole, D., et al. (2004). Heat-shock protein 60-reactive CD4 + CD28null T cells in patients with acute coronary syndromes. Circulation, 109(10), 1230–1235.

    CAS  PubMed  Google Scholar 

  14. Nakajima, H., Kobayashi, J., Bando, K., Niwaya, K., Tagusari, O., Sasako, Y., et al. (2002). The effect of cryo-maze procedure on early and intermediate term outcome in mitral valve disease: case matched study. Circulation, 106(12 Suppl 1), I46–I50.

    PubMed  Google Scholar 

  15. Libby, P. (2009). Molecular and cellular mechanisms of the thrombotic complications of atherosclerosis. Journal of Lipid Research, 50(Suppl), S352–S357. doi:10.1194/jlr.R800099-JLR200.

    PubMed  Google Scholar 

  16. Liuzzo, G., Biasucci, L. M., Trotta, G., Brugaletta, S., Pinnelli, M., Digianuario, G., et al. (2007). Unusual CD4 + CD28null T lymphocytes and recurrence of acute coronary events. Journal of the American College of Cardiology, 50(15), 1450–1458.

    CAS  PubMed  Google Scholar 

  17. Miossec, P., Korn, T., & Kuchroo, V. K. (2009). Interleukin-17 and type 17 helper T cells. The New England Journal of Medicine, 361(9), 888–898. doi:10.1056/NEJMra0707449.

    CAS  PubMed  Google Scholar 

  18. Chen, S., Crother, T. R., & Arditi, M. (2010). Emerging role of IL-17 in atherosclerosis. Journal of Innate Immunity, 2(4), 325–333. doi:10.1159/000314626.

    CAS  PubMed  Google Scholar 

  19. Brusko, T. M., Putnam, A. L., & Bluestone, J. A. (2008). Human regulatory T cells: role in autoimmune disease and therapeutic opportunities. Immunological Reviews, 223, 371–390. doi:10.1111/j.1600-065X.2008.00637.x.

    CAS  PubMed  Google Scholar 

  20. Mor, A., Luboshits, G., Planer, D., Keren, G., & George, J. (2006). Altered status of CD4(+)CD25(+) regulatory T cells in patients with acute coronary syndromes. European Heart Journal, 27(21), 2530–2537.

    CAS  PubMed  Google Scholar 

  21. Han, S. F., Liu, P., Zhang, W., Bu, L., Shen, M., Li, H., et al. (2007). The opposite-direction modulation of CD4 + CD25+ Tregs and T helper 1 cells in acute coronary syndromes. Clinical Immunology, 124(1), 90–97.

    CAS  PubMed  Google Scholar 

  22. Liuzzo, G., Goronzy, J. J., Yang, H., Kopecky, S. L., Holmes, D. R., Frye, R. L., et al. (2000). Monoclonal T-cell proliferation and plaque instability in acute coronary syndromes. Circulation, 101(25), 2883–2888.

    CAS  PubMed  Google Scholar 

  23. De Palma, R., Del Galdo, F., Abbate, G., Chiariello, M., Calabró, R., Forte, L., et al. (2006). Patients with acute coronary syndrome show oligoclonal T-cell recruitment within unstable plaque: evidence for a local, intracoronary immunologic mechanism. Circulation, 113(5), 640–646.

    PubMed  Google Scholar 

  24. Vigushin, D. M., Pepys, M. B., & Hawkins, P. N. (1993). Metabolic and scintigraphic studies of radioiodinated human C-reactive protein in health and disease. The Journal of Clinical Investigation, 91(4), 1351–1357.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Biasucci, L. M. (2004). CDC; AHA: Clinical use of inflammatory markers in patients with cardiovascular diseases: a background paper. CDC/AHA workshop on markers of inflammation and cardiovascular disease: application to clinical and public health practice. Circulation, 110(25), e560–e567.

    PubMed  Google Scholar 

  26. Biasucci, L.M, Koenig, W., Mair, J., Mueller, C., Plebani, M., Lindahl, B., Rifai, N., Venge, P., Hamm, C., Giannitsis, E., Huber, K., Galvani, M., Tubaro, M., Collinson, P., Alpert, J.S., Hasin, Y., Katus, H., Jaffe, A.S., Thygesen, K. (2013). the Study Group on Biomarkers in Cardiology of the Acute Cardiovascular Care Association of the European Society of Cardiology. European Heart Journal, in press

  27. Liuzzo, G., Biasucci, L. M., Gallimore, J. R., Grillo, R. L., Rebuzzi, A. G., Pepys, M. B., et al. (1994). The prognostic value of C-reactive protein and serum amyloid a protein in severe unstable angina. The New England Journal of Medicine, 331(7), 417–422.

    CAS  PubMed  Google Scholar 

  28. Biasucci, L. M., Liuzzo, G., Grillo, R. L., Caligiuri, G., Rebuzzi, A. G., Buffon, A., et al. (1999). Elevated levels of C-reactive protein at discharge in patients with unstable angina predict recurrent instability. Circulation, 99(7), 855–860.

    CAS  PubMed  Google Scholar 

  29. Kuller, L. H., Tracy, R. P., Shaten, J., & Meilahn, E. N. (1996). Relation of C-reactive protein and coronary heart disease in the MRFIT nested case–control study. Multiple risk factor intervention trial. American Journal of Epidemiology, 144(6), 537–547.

    CAS  PubMed  Google Scholar 

  30. Ridker, P. M., Cushman, M., Stampfer, M. J., Tracy, R. P., & Hennekens, C. H. (1997). Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men. The New England Journal of Medicine, 336(14), 973–979.

    CAS  PubMed  Google Scholar 

  31. Kaptoge, S., Di Angelantonio, E., Lowe, G., Pepys, M. B., Thompson, S. G., Collins, R., et al. (2010). C-reactive protein concentration and risk of coronary heart disease, stroke, and mortality: an individual participant meta-analysis. Lancet, 375(9709), 132–140. doi:10.1016/S0140-6736(09)61717-7.

    PubMed  Google Scholar 

  32. Patrono, C., García Rodríguez, L. A., Landolfi, R., & Baigent, C. (2005). Low-dose aspirin for the prevention of atherothrombosis. The New England Journal of Medicine, 353(22), 2373–2383.

    CAS  PubMed  Google Scholar 

  33. Larsen, S. B., Grove, E. L., Kristensen, S. D., & Hvas, A. M. (2013). Reduced antiplatelet effect of aspirin is associated with low-grade inflammation in patients with coronary artery disease. Thrombosis and Haemostasis, 109(5), 920–929. doi:10.1160/TH12-09-0666.

    CAS  PubMed  Google Scholar 

  34. Yuan, Z., Shioji, K., Kihara, Y., Takenaka, H., Onozawa, Y., & Kishimoto, C. (2004). Cardioprotective effects of carvedilol on acute autoimmune myocarditis: anti-inflammatory effects associated with antioxidant property. American Journal of Physiology - Heart and Circulatory Physiology, 286(1), H83–H90.

    CAS  PubMed  Google Scholar 

  35. Wolf, S. C., Sauter, G., Preyer, M., Poerner, T., Kempf, V. A., Risler, T., et al. (2007). Influence of nebivolol and metoprolol on inflammatory mediators in human coronary endothelial or smooth muscle cells. Effects on neointima formation after balloon denudation in carotid arteries of rats treated with nebivolol. Cell Physiology Biochemistry, 19(1–4), 129–136.

    CAS  Google Scholar 

  36. Biasucci, L. M., Lombardi, M., Piro, M., Di Giannuario, G., Liuzzo, G., & Crea, F. (2005). Irbesartan significantly reduces C reactive protein concentrations after 1 month of treatment in unstable angina. Heart, 91(5), 670–671.

    CAS  PubMed  Google Scholar 

  37. Destro, M., Cagnoni, F., Dognini, G. P., Galimberti, V., Taietti, C., Cavalleri, C., et al. (2011). Telmisartan: just an antihypertensive agent? A literature review. Expert Opinion on Pharmacotherapy, 12(17), 2719–2735. doi:10.1517/14656566.2011.632367.

    CAS  PubMed  Google Scholar 

  38. Porto, I., Di Vito, L., De Maria, G. L., Dato, I., Tritarelli, A., Leone, A. M., et al. (2009). Comparison of the effects of ramipril versus telmisartan on high-sensitivity C-reactive protein and endothelial progenitor cells after acute coronary syndrome. The American Journal of Cardiology, 103(11), 1500–1505. doi:10.1016/j.amjcard.2009.01.370.

    CAS  PubMed  Google Scholar 

  39. Lopez Santi, R. G., Valeff, E. C., Duymovich, C. R., Mazziotta, D., Mijailovsky, N. E., Filippa, G. C., et al. (2005). Etchegoyen MC; PROCORDIS investigators: Effects of an angiotensin-converting enzyme inhibitor: (ramipril) on inflammatory markers in secondary prevention patients: RAICES Study. Coronary Artery Disease, 16(7), 423–429.

    PubMed  Google Scholar 

  40. Verma, S., Lonn, E. M., Nanji, A., Browne, K., Ward, R., Robertson, A., et al. (2009). Effect of angiotensin-converting enzyme inhibition on C-reactive protein levels: the ramipril C-reactive protein randomized evaluation: (4R) trial results. The Canadian Journal of Cardiology, 25(7), e236–e240.

    CAS  PubMed  Google Scholar 

  41. Vicenová, B., Vopálenskẏ, V., Burẏsek, L., & Pospísek, M. (2009). Emerging role of interleukin-1 in cardiovascular diseases. Physiological Research, 58, 481–498.

    PubMed  Google Scholar 

  42. Merhi-Soussi, F., Kwak, B. R., Magne, D., et al. (2005). Interleukin-1 plays a major role in vascular inflammation and atherosclerosis in male apolipoprotein E-knockout mice. Cardiovascular Research, 66(3), 583–593.

    CAS  PubMed  Google Scholar 

  43. Isoda, K., Sawada, S., Ishigami, N., et al. (2004). Lack of interleukin-1 receptor antagonist modulates plaque composition in apolipoprotein E-deficient mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 24(6), 1068–1073.

    CAS  PubMed  Google Scholar 

  44. Bujak, M., & Frangogiannis, N. G. (2009). The role of IL-1 in the pathogenesis of heart disease. Archivum Immunologiae et Therapiae Experimentalis (Warsz), 57(3), 165–176. doi:10.1007/s00005-009-0024-y.

    CAS  Google Scholar 

  45. Kaplanski, G., Porat, R., Aiura, K., Erban, J. K., Gelfand, J. A., & Dinarello, C. A. (1993). Activated platelets induce endothelial secretion of interleukin-8 in vitro via an interleukin-1-mediated event. Blood, 81(10), 2492–2495.

    CAS  PubMed  Google Scholar 

  46. Fearon, W. F., & Fearon, D. T. (2008). Inflammation and cardiovascular disease: role of the interleukin-1 receptor antagonist. Circulation, 117(20), 2577–2579. doi:10.1161/CIRCULATIONAHA.108.772491.

    PubMed  Google Scholar 

  47. Abbate, A., Salloum, F. N., Vecile, E., Das, A., Hoke, N. N., Straino, S., et al. (2008). Anakinra, a recombinant human interleukin-1 receptor antagonist, inhibits apoptosis in experimental acute myocardial infarction. Circulation, 117(20), 2670–2683. doi:10.1161/CIRCULATIONAHA.107.740233.

    CAS  PubMed  Google Scholar 

  48. Abbate, A., Kontos, M. C., Grizzard, J. D., Biondi-Zoccai, G. G., Van Tassell, B. W., Robati, R., et al. (2010). VCU-ART Investigators: Interleukin-1 blockade with anakinra to prevent adverse cardiac remodeling after acute myocardial infarction (Virginia Commonwealth University Anakinra Remodeling Trial [VCU-ART] Pilot study). American Journal of Cardiology, 105(10), 1371–1377.e1. doi:10.1016/j.amjcard.2009.12.059.

    CAS  PubMed  Google Scholar 

  49. Ridker, P. M., Thuren, T., Zalewski, A., & Libby, P. (2011). Interleukin-1β inhibition and the prevention of recurrent cardiovascular events: rationale and design of the Canakinumab anti-inflammatory Thrombosis Outcomes Study (CANTOS). American Heart Journal, 162(4), 597–605. doi:10.1016/j.ahj.2011.06.012.

    CAS  PubMed  Google Scholar 

  50. Pasceri, V., & Yeh, E. T. (1999). A tale of two diseases: atherosclerosis and rheumatoid arthritis. Circulation, 100(21), 2124–2126.

    CAS  PubMed  Google Scholar 

  51. Walsh, L. J., Trinchieri, G., Waldorf, H. A., Whitaker, D., & Murphy, G. F. (1991). Human dermal mast cells contain and release tumor necrosis factor alpha, which induces endothelial leukocyte adhesion molecule 1. Proceedings of the National Academy of Sciences of the United States of America, 88(10), 4220–4224.

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Liuzzo, G., Kopecky, S. L., Frye, R. L., O'Fallon, W. M., Maseri, A., Goronzy, J. J., et al. (1999). Perturbation of the T-cell repertoire in patients with unstable angina. Circulation, 100(21), 2135–2139.

    CAS  PubMed  Google Scholar 

  53. Schmidt, D., Goronzy, J. J., & Weyand, C. M. (1996). CD4+ CD7–CD28- T cells are expanded in rheumatoid arthritis and are characterized by autoreactivity. The Journal of Clinical Investigation, 97(9), 2027–2037.

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Rizzello, V., Liuzzo, G., Brugaletta, S., Rebuzzi, A., Biasucci, L. M., & Crea, F. (2006). Modulation of CD4(+)CD28null T lymphocytes by tumor necrosis factor-alpha blockade in patients with unstable angina. Circulation, 113(19), 2272–2277.

    CAS  PubMed  Google Scholar 

  55. Chung, E. S., Packer, M., Lo, K. H., & Fasanmade, A. A. (2003). Willerson JT; Anti-TNF Therapy Against Congestive Heart Failure Investigators: Randomized, double-blind, placebo-controlled, pilot trial of infliximab, a chimeric monoclonal antibody to tumor necrosis factor-alpha, in patients with moderate-to-severe heart failure: results of the anti-TNF therapy against congestive heart failure (ATTACH) trial. Circulation, 107(25), 3133–3140.

    CAS  PubMed  Google Scholar 

  56. Ridker, P. M. (2009). Testing the inflammatory hypothesis of atherothrombosis: scientific rationale for the cardiovascular inflammation reduction trial (CIRT). Journal of Thrombosis and Haemostasis, 7(Suppl 1), 332–339. doi:10.1111/j.1538-7836.2009.03404.x.

    CAS  PubMed  Google Scholar 

  57. Elango, T., Dayalan, H., Subramanian, S., Gnanaraj, P., & Malligarjunan, H. (2012). Serum interleukin-6 levels in response to methotrexate treatment in psoriatic patients. Clinica Chimica Acta, 413(19–20), 1652–1656. doi:10.1016/j.cca.2012.05.007.

    CAS  Google Scholar 

  58. Gerards, A. H., de Lathouder, S., de Groot, E. R., Dijkmans, B. A., & Aarden, L. A. (2003). Inhibition of cytokine production by methotrexate. Studies in healthy volunteers and patients with rheumatoid arthritis. Rheumatology (Oxford), 42(10), 1189–1196.

    CAS  Google Scholar 

  59. Ridker, P. M. (2013). Moving beyond JUPITER: will inhibiting inflammation reduce vascular event rates? Current Atherosclerosis Reports, 15(1), 295. doi:10.1007/s11883-012-0295-3.

    PubMed  Google Scholar 

  60. Coomes, E., Chan, E. S., & Reiss, A. B. (2011). Methotrexate in atherogenesis and cholesterol metabolism. Cholesterol. doi:10.1155/2011/503028. 503028.

    PubMed Central  PubMed  Google Scholar 

  61. Reiss, A. B., Carsons, S. E., Anwar, K., Rao, S., Edelman, S. D., Zhang, H., et al. (2008). Atheroprotective effects of methotrexate on reverse cholesterol transport proteins and foam cell transformation in human THP-1 monocyte/macrophages. Arthritis and Rheumatism, 58(12), 3675–3683. doi:10.1002/art.24040.

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Bulgarelli, A., Martins Dias, A. A., Caramelli, B., & Maranhao, R. C. (2012). Treatment with methotrexate inhibits atherogenesis in cholesterol-fed rabbits. Journal of Cardiovascular Pharmacology, 59(4), 308–314. doi:10.1097/FJC.0b013e318241c385.

    CAS  PubMed  Google Scholar 

  63. Micha, R., & Imamura, F. (2011). Wyler von Ballmoos M, Solomon DH, Hernán MA, Ridker PM, Mozaffarian D: Systematic review and meta-analysis of methotrexate use and risk of cardiovascular disease. The American Journal of Cardiology, 108(9), 1362–1370. doi:10.1016/j.amjcard.2011.06.054.

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Abbate, A., Santini, D., Biondi-Zoccai, G. G., Scarpa, S., Vasaturo, F., Liuzzo, G., et al. (2004). Cyclo-oxygenase-2 (COX-2) expression at the site of recent myocardial infarction: friend or foe? Heart, 90(4), 440–443.

    CAS  PubMed  Google Scholar 

  65. Baker, C. S., Hall, R. J., Evans, T. J., et al. (1999). Cyclooxygenase-2 is widely expressed in atherosclerotic lesions affecting native and transplanted human coronary arteries and colocalizes with inducible nitric oxide synthase and nitrotyrosine particularly in macrophages. Arteriosclerosis, Thrombosis, and Vascular Biology, 19(3), 646–655.

    CAS  PubMed  Google Scholar 

  66. Schönbeck, U., Sukhova, G. K., Graber, P., Coulter, S., & Libby, P. (1999). Augmented expression of cyclooxygenase-2 in human atherosclerotic lesions. The American Journal of Pathology, 155(4), 1281–1291.

    PubMed  Google Scholar 

  67. Willoughby, D. A., Moore, A. R., & Colville-Nash, P. R. (2000). COX-1, COX-2, and COX-3 and the future treatment of chronic inflammatory disease. Lancet, 355(9204), 646–648.

    CAS  PubMed  Google Scholar 

  68. Saito, T., Rodger, I. W., Hu, F., Shennib, H., & Giaid, A. (2000). Inhibition of cyclooxygenase-2 improves cardiac function in myocardial infarction. Biochemical and Biophysical Research Communications, 273(2), 772–775.

    CAS  PubMed  Google Scholar 

  69. Abbate, A., Limana, F., Capogrossi, M. C., Santini, D., Biondi-Zoccai, G. G., Scarpa, S., et al. (2006). Cyclo-oxygenase-2 (COX-2) inhibition reduces apoptosis in acute myocardial infarction. Apoptosis, 11(6), 1061–1063.

    CAS  PubMed  Google Scholar 

  70. Bombardier, C., Laine, L., Reicin, A., et al. (2000). VIGOR Study Group: Comparison of upper gastrointestinal toxicity of rofecoxib and naproxen in patients with rheumatoid arthritis. New England Journal of Medicine, 343(21), 1520–1528. 2 pp following 1528.

    CAS  PubMed  Google Scholar 

  71. Bresalier, R. S., Sandler, R. S., Quan, H., et al. (2005). Cardiovascular events associated with rofecoxib in a colorectal adenoma chemoprevention trial. The New England Journal of Medicine, 352(11), 1092–1102.

    CAS  PubMed  Google Scholar 

  72. Farmer, J. A. (2000). Pleiotropic effects of statins. Current Atherosclerosis Reports, 2(3), 208–217.

    CAS  PubMed  Google Scholar 

  73. Heart Protection Study Collaborative Group. (2002). MRC/BHF heart protection study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet, 360(9326), 7–22.

    Google Scholar 

  74. Amarenco, P., Bogousslavsky, J., Callahan, A., 3rd, Goldstein, L. B., Hennerici, M., Rudolph, A. E., et al. (2006). Zivin JA; Stroke Prevention by Aggressive Reduction in Cholesterol Levels (SPARCL) Investigators: High-dose atorvastatin after stroke or transient ischemic attack. The New England Journal of Medicine, 355(6), 549–559.

    CAS  PubMed  Google Scholar 

  75. Shahar, E., Chambless, L. E., Rosamond, W. D., Boland, L. L., Ballantyne, C. M., & McGovern, P. G. (2003). Sharrett AR; Atherosclerosis Risk in Communities Study: Plasma lipid profile and incident ischemic stroke. Stroke, 34(3), 623–631.

    PubMed  Google Scholar 

  76. Brugaletta, S., Biasucci, L. M., Pinnelli, M., Biondi-Zoccai, G., Di Giannuario, G., Trotta, G., et al. (2006). Novel anti-inflammatory effect of statins: reduction of CD4 + CD28null T lymphocyte frequency in patients with unstable angina. Heart, 92(2), 249–250.

    CAS  PubMed  Google Scholar 

  77. Lijnen, P., Echevaria-Vazquez, D., & Petrov, V. (1996). Influence of cholesterol lowering on plasma membrane lipids and function. Methods and Findings in Experimental and Clinical Pharmacology, 18(2), 123–136.

    CAS  PubMed  Google Scholar 

  78. Ridker, P. M., Rifai, N., Pfeffer, M. A., Sacks, F. M., Moye, L. A., Goldman, S., et al. (1998). Braunwald E; Cholesterol and Recurrent Events (CARE) Investigators: Inflammation, pravastatin, and the risk of coronary events after myocardial infarction in patients with average cholesterol levels. Circulation, 98(9), 839–844.

    CAS  PubMed  Google Scholar 

  79. Patel, M.J., Blazing, M.A. (2013) Inflammation and atherosclerosis: disease modulating therapies. Current Treat Options Cardiovascular Medicine. 15(6):681–695.

    Google Scholar 

  80. Ridker, P. M., Rifai, N., Clearfield, M., Downs, J. R., Weis, S. E., Miles, J. S., et al. (2001). Air Force/Texas Coronary Atherosclerosis Prevention Study Investigators: Measurement of C-reactive protein for the targeting of statin therapy in the primary prevention of acute coronary events. The New England Journal of Medicine, 344(26), 1959–1965.

    CAS  PubMed  Google Scholar 

  81. Ridker, P. M., Cannon, C. P., Morrow, D., Rifai, N., Rose, L. M., McCabe, C. H., et al. (2005). Braunwald E; Thrombolysis in Myocardial Infarction 22 (PROVE IT-TIMI 22) Investigators: Pravastatin or atorvastatin evaluation and infection therapy: C-reactive protein levels and outcomes after statin therapy. The New England Journal of Medicine, 352(1), 20–28.

    CAS  PubMed  Google Scholar 

  82. Nissen, S. E., Tuzcu, E. M., Schoenhagen, P., Crowe, T., Sasiela, W. J., Tsai, J., et al. (2005). Ganz P; Reversal of Atherosclerosis with Aggressive Lipid Lowering (REVERSAL) Investigators: Statin therapy, LDL cholesterol, C-reactive protein, and coronary artery disease. The New England Journal of Medicine, 352(1), 29–38.

    CAS  PubMed  Google Scholar 

  83. Albert, M. A., Danielson, E., & Rifai, N. (2001). Ridker PM; PRINCE Investigators: Effect of statin therapy on C-reactive protein levels: the pravastatin inflammation/CRP evaluation (PRINCE): a randomized trial and cohort study. JAMA, 286(1), 64–70.

    CAS  PubMed  Google Scholar 

  84. Ridker, P. M., & JUPITER Study Group. (2003). Rosuvastatin in the primary prevention of cardiovascular disease among patients with low levels of low-density lipoprotein cholesterol and elevated high-sensitivity C-reactive protein: rationale and design of the JUPITER trial. Circulation, 108(19), 2292–2297.

    PubMed  Google Scholar 

  85. Yousuf, O., Mohanty, B. D., Martin, S. S., Joshi, P. H., Blaha, M. J., Nasir, K., et al. (2013). High-sensitivity C-reactive protein and cardiovascular disease: a resolute belief or an elusive link. Journal of the American College of Cardiology, 62(5), 397–408. doi:10.1016/j.jacc.2013.05.016.

    CAS  PubMed  Google Scholar 

  86. Kaul, S., Morrissey, R. P., & Diamond, G. A. (2010). By Jove! What is a clinician to make of JUPITER? Arch. Internal Medicine, 170(12), 1073–1077. doi:10.1001/archinternmed.2010.189.

    CAS  Google Scholar 

  87. Ridker, P. M., & Glynn, R. J. (2010). The JUPITER trial: responding to the critics. The American Journal of Cardiology, 106(9), 1351–1356. doi:10.1016/j.amjcard.2010.08.025.

    PubMed  Google Scholar 

  88. Chu, A. Y., Guilianini, F., Barratt, B. J., Nyberg, F., Chasman, D. I., & Ridker, P. M. (2012). Pharmacogenetic determinants of statin-induced reduction in C-reactive protein. Circulation Cardiovascular Genetics, 5(1), 58–65. doi:10.1161/CIRCGENETICS.111.961847.

    CAS  PubMed  Google Scholar 

  89. Chasman, D. I., Guilianini, F., MacFadyen, J., Barratt, B. J., Nyberg, F., Ridker, P. M., et al. (2012). Genetic determinants of statin-induced low-density lipoprotein cholesterol reduction. The justificaton for the use of statins in prevention: an intervention trial evalauting rosuvastatin (JUPITER) trial. Circulation Cardiovascular Genetics, 5, 257–264. doi:10.1161/CIRCGENETICS.111.961144.

    CAS  PubMed  Google Scholar 

  90. Burke, J. E., & Dennis, E. A. (2009). Phospholipase A2 biochemistry. Cardiovascular Drugs and Therapy, 23(1), 49–59. doi:10.1007/s10557-008-6132-9.

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Rosenson, R. S. (2009). Future role for selective phospholipase A2 inhibitors in the prevention of atherosclerotic cardiovascular disease. Cardiovascular Drugs and Therapy, 23(1), 93–101. doi:10.1007/s10557-008-6148-1.

    PubMed  Google Scholar 

  92. White, H., Held, C., Stewart, R., Watson, D., Harrington, R., Budaj, A., et al. (2010). Study design and rationale for the clinical outcomes of the STABILITY trial (STabilization of Atherosclerotic plaque By Initiation of darapLadIb TherapY) comparing darapladib vs. placebo in patients with coronary heart disease. American Heart Journal, 160(4), 655–661. doi:10.1016/j.ahj.2010.07.006.

    CAS  PubMed  Google Scholar 

  93. O’Donoghue, M. L., Braunwald, E., White, H. D., Serruys, P., Steg, P. G., Hochman, J., et al. (2011). Study design and rationale for the Stabilization Of pLaques usIng Darapladib—Thrombolysis in Myocardial Infarction (SOLID-TIMI 52) trial in patients after an acute coronary syndrome. American Heart Journal, 162(4), 613–619.e1. doi:10.1016/j.ahj.2011.07.018.

    PubMed  Google Scholar 

  94. García-García, H. M., Klauss, V., Gonzalo, N., Garg, S., Onuma, Y., Hamm, C. W., et al. (2012). Relationship between cardiovascular risk factors and biomarkers with necrotic core and atheroma size: a serial intravascular ultrasound radiofrequency data analysis. The International Journal of Cardiovascular Imaging, 28(4), 695–703. doi:10.1007/s10554-011-9882-6.

    PubMed Central  PubMed  Google Scholar 

  95. Nicholls, S. J., Cavender, M. A., Kastelein, J. J., Schwartz, G., Waters, D. D., Rosenson, R. S., et al. (2012). Inhibition of secretory phospholipase A(2) in patients with acute coronary syndromes: rationale and design of the vascular inflammation suppression to treat acute coronary syndrome for 16 weeks (VISTA-16) trial. Cardiovascular Drugs and Therapy, 26(1), 71–75. doi:10.1007/s10557-011-6358-9.

    CAS  PubMed  Google Scholar 

  96. Epstein, S. E., Zhu, J., Najafi, A. H., & Burnett, M. S. (2009). Insights into the role of infection in atherogenesis and in plaque rupture. Circulation, 119(24), 3133–3141. doi:10.1161/CIRCULATIONAHA.109.849455.

    CAS  PubMed  Google Scholar 

  97. Biasucci, L. M., Liuzzo, G., Ciervo, A., et al. (2003). Antibody response to chlamydial heat shock protein 60 is strongly associated with acute coronary syndromes. Circulation, 107(24), 3015–3017.

    CAS  PubMed  Google Scholar 

  98. Liuzzo, G., Ciervo, A., Niccoli, G., et al. (2011). Chlamydia pneumoniae in coronary atherosclerotic plaques and coronary instability. International Journal of Cardiology, 147(1), 176–178. doi:10.1016/j.ijcard.2010.12.029.

    PubMed  Google Scholar 

  99. Rosenfeld, M. E., & Campbell, L. A. (2011). Pathogens and atherosclerosis: update on the potential contribution of multiple infectious organisms to the pathogenesis of atherosclerosis. Thrombosis and Haemostasis, 106(5), 858–867. doi:10.1160/TH11-06-0392.

    CAS  PubMed  Google Scholar 

  100. Grayston, J. T. (2003). Antibiotic treatment of atherosclerotic cardiovascular disease. Circulation, 107(9), 1228–1230.

    PubMed  Google Scholar 

  101. O'Connor, C. M., et al. (2003). Azithromycin for the secondary prevention of coronary heart disease events: the WIZARD study: a randomized controlled trial. Journal of the American Medical Association, 290(11), 1459–1466.

    PubMed  Google Scholar 

  102. Grayston, J. T., et al. (2005). Azithromycin for the secondary prevention of coronary events. The New England Journal of Medicine, 352(16), 1637–1645.

    CAS  PubMed  Google Scholar 

  103. Cannon, C. P., et al. (2005). Antibiotic treatment of Chlamydia pneumoniae after acute coronary syndrome. The New England Journal of Medicine, 352(16), 1646–1654.

    CAS  PubMed  Google Scholar 

  104. Jespersen, C. M., et al. (2006). Randomised placebo controlled multicentre trial to assess short term clarithromycin for patients with stable coronary heart disease: CLARICOR trial. British Medical Journal, 332(7532), 22–27.

    PubMed  Google Scholar 

  105. Danesh, J. (2005). Antibiotics in the prevention of heart attacks. Lancet, 365(9457), 365–367.

    PubMed  Google Scholar 

  106. Caroli, A., Cardillo, M. T., Galea, R., & Biasucci, L. M. (2013). Potential therapeutic role of microRNAs in ischemic heart disease. Journal of Cardiology, 61(5), 315–320. doi:10.1016/j.jjcc.2013.01.012.

    PubMed  Google Scholar 

Download references

Acknowledgments

This manuscript has been supported by grant 70201077/2013 from the Catholic University of Rome.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi M. Biasucci.

Additional information

Associate Editor Emanuele Barbato oversaw the review of this article

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marini, M.G., Sonnino, C., Previtero, M. et al. Targeting Inflammation: Impact on Atherothrombosis. J. of Cardiovasc. Trans. Res. 7, 9–18 (2014). https://doi.org/10.1007/s12265-013-9523-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-013-9523-7

Keywords

Navigation