Skip to main content
Log in

Non Optical Semi-Conductor Next Generation Sequencing of the Main Cardiac QT-Interval Duration Genes in Pooled DNA Samples

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

DNA variants at the genes encoding cardiac channels have been associated with inherited arrhythmias and the QT interval in the general population. Next generation sequencing technologies would be of special interest to uncover the genetic variation at these genes. The amplification and sequencing of DNA pools (instead of single individuals) would facilitate the rapid and cost-effective screening of large amounts of individuals. However, this pooling strategy could result in a signal of the rare variants below the detection capacity. To validate this approach, a pool of 20 individuals with known rare unique variants in five genes was amplified in only two tubes and sequenced using the non optical semi-conductor (Ion Torrent PGM, Life Technologies) technology. We show that this could be an effective strategy for the screening of large cohorts. Among others, this would facilitate the discovery of new sequence variants linked to cardiac arrhythmia in the general population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Cerrone, M., Napolitano, C., & Priori, S. G. (2012). Genetics of ion-channel disorders. Current Opinion in Cardiology, 27, 242–52.

    Article  PubMed  Google Scholar 

  2. Napolitano, C., Bloise, R., Monteforte, N., et al. (2012). Sudden cardiac death and genetic ion channelopathies: long QT, Brugada, short QT, catecholaminergic polymorphic ventricular tachycardia, and idiopathic ventricular fibrillation. Circulation, 125, 2027–34.

    Article  PubMed  Google Scholar 

  3. Kapa, S., Tester, D. J., Salisbury, B. A., et al. (2009). Genetic testing for long-QT syndrome: distinguishing pathogenic mutations from benign variants. Circulation, 120, 1752–60.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Giudicessi, J. R., & Ackerman, M. J. (2013). Genetic testing in heritable cardiac arrhythmia syndromes: differentiating pathogenic mutations from background genetic noise. Current Opinion in Cardiology, 28, 63–71.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Gouas, L., Nicaud, V., Chaouch, S., et al. (2007). Confirmation of associations between ion channel gene SNPs and QTc interval duration in healthy subjects. European Journal of Human Genetics, 15, 974–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Marjamaa, A., Newton-Cheh, C., Porthan, K., et al. (2009). Common candidate gene variants are associated with QT interval duration in the general population. Journal of Internal Medicine, 265, 448–58.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Yang, P., Kanki, H., Drolet, B., et al. (2002). Allelic variants in long-QT disease genes in patients with drug-associated torsades de pointes. Circulation, 105, 1943–8.

    Article  CAS  PubMed  Google Scholar 

  8. Paulussen, A. D., Gilissen, R. A., Armstrong, M., et al. (2004). Genetic variations of KCNQ1, KCNH2, SCN5A, KCNE1, and KCNE2 in drug-induced long QT syndrome patients. Journal of Molecular Medicine, 82, 182–8.

    Article  CAS  PubMed  Google Scholar 

  9. Rothberg, J. M., Hinz, W., Rearick, T. M., et al. (2011). An integrated semiconductor device enabling non-optical genome sequencing. Nature, 475, 348–52.

    Article  CAS  PubMed  Google Scholar 

  10. Loman, N. J., Misra, R. V., Dallman, T. J., et al. (2012). Performance comparison of benchtop high-throughput sequencing platforms. Nature Biotechnology, 30, 434–9.

    Article  CAS  PubMed  Google Scholar 

  11. Quail, M. A., Smith, M., Coupland, P., et al. (2012). A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics, 13, 341.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Elliott, A. M., Radecki, J., Moghis, B., et al. (2012). Rapid detection of the ACMG/ACOG-recommended 23 CFTR disease-causing mutations using ion torrent semiconductor sequencing. Journal of Biomolecular Techniques, 23, 24–30.

    Article  PubMed  Google Scholar 

  13. Costa, J. L., Sousa, S., Justino, A., et al. (2013). Nonoptical massive parallel DNA sequencing of BRCA1 and BRCA2 genes in a diagnostic setting. Human Mutation, 34, 629–35.

    Article  CAS  PubMed  Google Scholar 

  14. Li, X., Buckton, A. J., Wilkinson, S. L., et al. (2013). Towards clinical molecular diagnosis of inherited cardiac conditions: a comparison of bench-top genome DNA sequencers. PLoS One, 8, e67744.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Nejentsev, S., Walker, N., Riches, D., et al. (2009). Rare variants of IFIH1, a gene implicated in antiviral responses, protect against type 1 diabetes. Science, 324, 387–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Jin, S. C., Pastor, P., Cooper, B., et al. (2012). Pooled-DNA sequencing identifies novel causative variants in PSEN1, GRN and MAPT in a clinical early onset and familial Alzheimer's disease Ibero-American cohort. Alzheimer's Research & Therapy, 4, 34.

    Article  CAS  Google Scholar 

  17. Harakalova, M., Nijman, I. J., Medic, J., et al. (2011). Genomic DNA pooling strategy for next-generation sequencing-based rare variant discovery in abdominal aortic aneurysm regions of interest-challenges and limitations. Journal of Cardiovascular Translational Research, 4, 271–80.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank José L. Martínez, Marcos García, Belén Alonso, and Sara Iglesias for technical assistance. This work was supported by a grant from Instituto de Salud Carlos III-Fondo Europeo de Desarrollo Regional (FIS-12/00287).

Conflict of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eliecer Coto.

Additional information

Associate Editor Enrique Lara-Pezzi oversaw the review of this article

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 610 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gómez, J., Reguero, J.R., Morís, C. et al. Non Optical Semi-Conductor Next Generation Sequencing of the Main Cardiac QT-Interval Duration Genes in Pooled DNA Samples. J. of Cardiovasc. Trans. Res. 7, 133–137 (2014). https://doi.org/10.1007/s12265-013-9516-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-013-9516-6

Keywords

Navigation