Skip to main content
Log in

Diagnosing and Characterizing Coronary Artery Disease in Women: Developments in Noninvasive and Invasive Imaging Techniques

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Cardiovascular disease is the leading cause of death in men and women in the USA; yet, coronary artery disease (CAD) continues to be underrecognized and underdiagnosed in women. Noninvasive and invasive imaging techniques are constantly being developed in order to more accurately assess CAD. At the same time, the impact of gender on the interpretation and accuracy of these studies is still being elucidated. Furthermore, new imaging techniques have improved our understanding of CAD pathophysiology and progression and have begun to reveal gender differences in the development of CAD. This article will review current imaging techniques and their application to diagnosing and understanding CAD in women.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Heron, M. (2007). Deaths: Leading causes for 2004. National Vital Statistics Reports, 56, 1–95.

    PubMed  Google Scholar 

  2. Roger, V. L., Go, A. S., Lloyd-Jones, D. M., et al. (2012). Heart disease and stroke statistics—2012 update: A report from the American Heart Association. Circulation, 125, e2–e220.

    PubMed  Google Scholar 

  3. Stramba-Badiale, M., Fox, K. M., Priori, S. G., et al. (2006). Cardiovascular diseases in women: A statement from the policy conference of the European Society of Cardiology. European Heart Journal, 27, 994–1005.

    PubMed  Google Scholar 

  4. Rogers, W. J., Frederick, P. D., Stoehr, E., et al. (2008). Trends in presenting characteristics and hospital mortality among patients with ST elevation and non-ST elevation myocardial infarction in the National Registry of Myocardial Infarction from 1990 to 2006. American Heart Journal, 156, 1026–1034.

    PubMed  Google Scholar 

  5. Shaw, L. J., Miller, D. D., Romeis, J. C., Kargl, D., Younis, L. T., & Chaitman, B. R. (1994). Gender differences in the noninvasive evaluation and management of patients with suspected coronary artery disease. Annals of Internal Medicine, 120, 559–566.

    PubMed  CAS  Google Scholar 

  6. Lerner, D. J., & Kannel, W. B. (1986). Patterns of coronary heart disease morbidity and mortality in the sexes: A 26-year follow-up of the Framingham population. American Heart Journal, 111, 383–390.

    PubMed  CAS  Google Scholar 

  7. Arslanian-Engoren, C., Patel, A., Fang, J., et al. (2006). Symptoms of men and women presenting with acute coronary syndromes. The American Journal of Cardiology, 98, 1177–1181.

    PubMed  Google Scholar 

  8. Patel, H., Rosengren, A., & Ekman, I. (2004). Symptoms in acute coronary syndromes: Does sex make a difference? American Heart Journal, 148, 27–33.

    PubMed  Google Scholar 

  9. Heer, T., Schiele, R., Schneider, S., et al. (2002). Gender differences in acute myocardial infarction in the era of reperfusion (the MITRA registry). The American Journal of Cardiology, 89, 511–517.

    PubMed  Google Scholar 

  10. Hochman, J. S., Tamis, J. E., Thompson, T. D., et al. (1999). Sex, clinical presentation, and outcome in patients with acute coronary syndromes. Global Use of Strategies to Open Occluded Coronary Arteries in Acute Coronary Syndromes IIb Investigators. The New England Journal of Medicine, 341, 226–232.

    PubMed  CAS  Google Scholar 

  11. Goldberg, R. J., O'Donnell, C., Yarzebski, J., Bigelow, C., Savageau, J., & Gore, J. M. (1998). Sex differences in symptom presentation associated with acute myocardial infarction: A population-based perspective. American Heart Journal, 136, 189–195.

    PubMed  CAS  Google Scholar 

  12. Milner, K. A., Funk, M., Richards, S., Wilmes, R. M., Vaccarino, V., & Krumholz, H. M. (1999). Gender differences in symptom presentation associated with coronary heart disease. The American Journal of Cardiology, 84, 396–399.

    PubMed  CAS  Google Scholar 

  13. Dey, S., Flather, M. D., Devlin, G., et al. (2009). Sex-related differences in the presentation, treatment and outcomes among patients with acute coronary syndromes: The Global Registry of Acute Coronary Events. Heart, 95, 20–26.

    PubMed  CAS  Google Scholar 

  14. Meischke, H., Larsen, M. P., & Eisenberg, M. S. (1998). Gender differences in reported symptoms for acute myocardial infarction: Impact on prehospital delay time interval. The American Journal of Emergency Medicine, 16, 363–366.

    PubMed  CAS  Google Scholar 

  15. Kirchberger, I., Heier, M., Kuch, B., Wende, R., & Meisinger, C. (2011). Sex differences in patient-reported symptoms associated with myocardial infarction (from the population-based MONICA/KORA Myocardial Infarction Registry). The American Journal of Cardiology, 107, 1585–1589.

    PubMed  Google Scholar 

  16. Hvelplund, A., Galatius, S., Madsen, M., et al. (2010). Women with acute coronary syndrome are less invasively examined and subsequently less treated than men. European Heart Journal, 31, 684–690.

    PubMed  Google Scholar 

  17. Angeja, B. G., Gibson, C. M., Chin, R., et al. (2002). Predictors of door-to-balloon delay in primary angioplasty. The American Journal of Cardiology, 89, 1156–1161.

    PubMed  Google Scholar 

  18. Daly, C., Clemens, F., Lopez Sendon, J. L., et al. (2006). Gender differences in the management and clinical outcome of stable angina. Circulation, 113, 490–498.

    PubMed  Google Scholar 

  19. Poon, S., Goodman, S. G., Yan, R. T., et al. (2012). Bridging the gender gap: Insights from a contemporary analysis of sex-related differences in the treatment and outcomes of patients with acute coronary syndromes. American Heart Journal, 163, 66–73.

    PubMed  Google Scholar 

  20. Kaul, P., Armstrong, P. W., Sookram, S., Leung, B. K., Brass, N., & Welsh, R. C. (2011). Temporal trends in patient and treatment delay among men and women presenting with ST-elevation myocardial infarction. American Heart Journal, 161, 91–97.

    PubMed  Google Scholar 

  21. Kannel, W. B. (1986). Silent myocardial ischemia and infarction: Insights from the Framingham Study. Cardiology Clinics, 4, 583–591.

    PubMed  CAS  Google Scholar 

  22. Mautner, S. L., Lin, F., Mautner, G. C., & Roberts, W. C. (1993). Comparison in women versus men of composition of atherosclerotic plaques in native coronary arteries and in saphenous veins used as aortocoronary conduits. Journal of the American College of Cardiology, 21, 1312–1318.

    PubMed  CAS  Google Scholar 

  23. Virmani, R., Burke, A. P., Kolodgie, F. D., & Farb, A. (2003). Pathology of the thin-cap fibroatheroma: A type of vulnerable plaque. Journal of Interventional Cardiology, 16, 267–272.

    PubMed  Google Scholar 

  24. Roger, V. L., Weston, S. A., Killian, J. M., et al. (2001). Time trends in the prevalence of atherosclerosis: A population-based autopsy study. American Journal of Medicine, 110, 267–273.

    PubMed  CAS  Google Scholar 

  25. Smilowitz, N. R., Sampson, B. A., Abrecht, C. R., Siegfried, J. S., Hochman, J. S., & Reynolds, H. R. (2011). Women have less severe and extensive coronary atherosclerosis in fatal cases of ischemic heart disease: An autopsy study. American Heart Journal, 161, 681–688.

    PubMed  Google Scholar 

  26. Qian, J., Maehara, A., Mintz, G. S., et al. (2009). Impact of gender and age on in vivo virtual histology–intravascular ultrasound imaging plaque characterization (from the global Virtual Histology Intravascular Ultrasound [VH-IVUS] registry). The American Journal of Cardiology, 103, 1210–1214.

    PubMed  Google Scholar 

  27. Pundziute, G., Schuijf, J. D., van Velzen, J. E., et al. (2010). Assessment with multi-slice computed tomography and gray-scale and virtual histology intravascular ultrasound of gender-specific differences in extent and composition of coronary atherosclerotic plaques in relation to age. The American Journal of Cardiology, 105, 480–486.

    PubMed  Google Scholar 

  28. Cheruvu, P. K., Finn, A. V., Gardner, C., et al. (2007). Frequency and distribution of thin-cap fibroatheroma and ruptured plaques in human coronary arteries: A pathologic study. Journal of the American College of Cardiology, 50, 940–949.

    PubMed  Google Scholar 

  29. Gurfinkel, E., Vigliano, C., Janavel, J. V., et al. (2009). Presence of vulnerable coronary plaques in middle-aged individuals who suffered a brain death. European Heart Journal, 30, 2845–2853.

    PubMed  Google Scholar 

  30. Burke, A. P., Farb, A., Malcom, G. T., Liang, Y., Smialek, J., & Virmani, R. (1998). Effect of risk factors on the mechanism of acute thrombosis and sudden coronary death in women. Circulation, 97, 2110–2116.

    PubMed  CAS  Google Scholar 

  31. Farb, A., Burke, A. P., Tang, A. L., et al. (1996). Coronary plaque erosion without rupture into a lipid core. A frequent cause of coronary thrombosis in sudden coronary death. Circulation, 93, 1354–1363.

    PubMed  CAS  Google Scholar 

  32. Kramer, M. C., Rittersma, S. Z., de Winter, R. J., et al. (2010). Relationship of thrombus healing to underlying plaque morphology in sudden coronary death. Journal of the American College of Cardiology, 55, 122–132.

    PubMed  Google Scholar 

  33. Shaw, L. J., Merz, C. N., Pepine, C. J., et al. (2006). The economic burden of angina in women with suspected ischemic heart disease: Results from the National Institutes of Health–National Heart, Lung, and Blood Institute-sponsored Women's Ischemia Syndrome Evaluation. Circulation, 114, 894–904.

    PubMed  Google Scholar 

  34. Patel, M. R., Chen, A. Y., Peterson, E. D., et al. (2006). Prevalence, predictors, and outcomes of patients with non-ST-segment elevation myocardial infarction and insignificant coronary artery disease: Results from the Can Rapid risk stratification of Unstable angina patients Suppress ADverse outcomes with Early implementation of the ACC/AHA Guidelines (CRUSADE) initiative. American Heart Journal, 152, 641–647.

    PubMed  Google Scholar 

  35. Papanicolaou, M. N., Califf, R. M., Hlatky, M. A., et al. (1986). Prognostic implications of angiographically normal and insignificantly narrowed coronary arteries. The American Journal of Cardiology, 58, 1181–1187.

    PubMed  CAS  Google Scholar 

  36. Bugiardini, R., & Bairey Merz, C. N. (2005). Angina with “normal” coronary arteries: A changing philosophy. Journal of the American Medical Association, 293, 477–484.

    PubMed  CAS  Google Scholar 

  37. Chokshi, N. P., Iqbal, S. N., Berger, R. L., et al. (2010). Sex and race are associated with the absence of epicardial coronary artery obstructive disease at angiography in patients with acute coronary syndromes. Clinical Cardiology, 33, 495–501.

    PubMed  Google Scholar 

  38. Hochman, J. S., McCabe, C. H., Stone, P. H., et al. (1997). Outcome and profile of women and men presenting with acute coronary syndromes: A report from TIMI IIIB. TIMI Investigators. Thrombolysis in Myocardial Infarction. Journal of the American College of Cardiology, 30, 141–148.

    PubMed  CAS  Google Scholar 

  39. Kwok, Y., Kim, C., Grady, D., Segal, M., & Redberg, R. (1999). Meta-analysis of exercise testing to detect coronary artery disease in women. The American Journal of Cardiology, 83, 660–666.

    PubMed  CAS  Google Scholar 

  40. Miller, T. D., Roger, V. L., Milavetz, J. J., et al. (2001). Assessment of the exercise electrocardiogram in women versus men using tomographic myocardial perfusion imaging as the reference standard. The American Journal of Cardiology, 87, 868–873.

    PubMed  CAS  Google Scholar 

  41. Sketch, M. H., Mohiuddin, S. M., Lynch, J. D., Zencka, A. E., & Runco, V. (1975). Significant sex differences in the correlation of electrocardiographic exercise testing and coronary arteriograms. The American Journal of Cardiology, 36, 169–173.

    PubMed  CAS  Google Scholar 

  42. Weiner, D. A., Ryan, T. J., McCabe, C. H., et al. (1979). Exercise stress testing. Correlations among history of angina, ST-segment response and prevalence of coronary-artery disease in the Coronary Artery Surgery Study (CASS). The New England Journal of Medicine, 301, 230–235.

    PubMed  CAS  Google Scholar 

  43. Manca, C., Dei Cas, L., Bernardini, B., et al. (1984). Comparative evaluation of exercise ST response in healthy males and females. A computer study. Cardiology, 71, 341–347.

    PubMed  CAS  Google Scholar 

  44. Barolsky, S. M., Gilbert, C. A., Faruqui, A., Nutter, D. O., & Schlant, R. C. (1979). Differences in electrocardiographic response to exercise of women and men: A non-Bayesian factor. Circulation, 60, 1021–1027.

    PubMed  CAS  Google Scholar 

  45. Lewis, J. F., McGorray, S., Lin, L., et al. (2005). Exercise treadmill testing using a modified exercise protocol in women with suspected myocardial ischemia: Findings from the National Heart, Lung and Blood Institute-sponsored Women's Ischemia Syndrome Evaluation (WISE). American Heart Journal, 149, 527–533.

    PubMed  Google Scholar 

  46. Shaw, L. J., Mieres, J. H., Hendel, R. H., et al. (2011). Comparative effectiveness of exercise electrocardiography with or without myocardial perfusion single photon emission computed tomography in women with suspected coronary artery disease: Results from the What Is the Optimal Method for Ischemia Evaluation in Women (WOMEN) trial. Circulation, 124, 1239–1249.

    PubMed  Google Scholar 

  47. Marwick, T. H., Anderson, T., Williams, M. J., et al. (1995). Exercise echocardiography is an accurate and cost-efficient technique for detection of coronary artery disease in women. Journal of the American College of Cardiology, 26, 335–341.

    PubMed  CAS  Google Scholar 

  48. Dionisopoulos, P. N., Collins, J. D., Smart, S. C., Knickelbine, T. A., & Sagar, K. B. (1997). The value of dobutamine stress echocardiography for the detection of coronary artery disease in women. Journal of the American Society of Echocardiography, 10, 811–817.

    PubMed  CAS  Google Scholar 

  49. Lewis, J. F., Lin, L., McGorray, S., et al. (1999). Dobutamine stress echocardiography in women with chest pain. Pilot phase data from the National Heart, Lung and Blood Institute Women's Ischemia Syndrome Evaluation (WISE). Journal of the American College of Cardiology, 33, 1462–1468.

    PubMed  CAS  Google Scholar 

  50. Roger, V. L., Pellikka, P. A., Bell, M. R., Chow, C. W., Bailey, K. R., & Seward, J. B. (1997). Sex and test verification bias. Impact on the diagnostic value of exercise echocardiography. Circulation, 95, 405–410.

    PubMed  CAS  Google Scholar 

  51. Secknus, M. A., & Marwick, T. H. (1997). Influence of gender on physiologic response and accuracy of dobutamine echocardiography. The American Journal of Cardiology, 80, 721–724.

    PubMed  CAS  Google Scholar 

  52. Mazeika, P. K., Nadazdin, A., & Oakley, C. M. (1992). Dobutamine stress echocardiography for detection and assessment of coronary artery disease. Journal of the American College of Cardiology, 19, 1203–1211.

    PubMed  CAS  Google Scholar 

  53. Davar, J. I., Brull, D. J., Bulugahipitiya, S., Coghlan, J. G., Lipkin, D. P., & Evans, T. R. (1999). Prognostic value of negative dobutamine stress echo in women with intermediate probability of coronary artery disease. Am J Cardiol, 83, 100–102. A8.

    PubMed  CAS  Google Scholar 

  54. Hung, J., Chaitman, B. R., Lam, J., et al. (1984). Noninvasive diagnostic test choices for the evaluation of coronary artery disease in women: A multivariate comparison of cardiac fluoroscopy, exercise electrocardiography and exercise thallium myocardial perfusion scintigraphy. Journal of the American College of Cardiology, 4, 8–16.

    PubMed  CAS  Google Scholar 

  55. Melin, J. A., Wijns, W., Vanbutsele, R. J., et al. (1985). Alternative diagnostic strategies for coronary artery disease in women: Demonstration of the usefulness and efficiency of probability analysis. Circulation, 71, 535–542.

    PubMed  CAS  Google Scholar 

  56. Bailey, I. K., Griffith, L. S., Rouleau, J., Strauss, W., & Pitt, B. (1977). Thallium-201 myocardial perfusion imaging at rest and during exercise. Comparative sensitivity to electrocardiography in coronary artery disease. Circulation, 55, 79–87.

    PubMed  CAS  Google Scholar 

  57. Chae, S. C., Heo, J., Iskandrian, A. S., Wasserleben, V., & Cave, V. (1993). Identification of extensive coronary artery disease in women by exercise single-photon emission computed tomographic (SPECT) thallium imaging. Journal of the American College of Cardiology, 21, 1305–1311.

    PubMed  CAS  Google Scholar 

  58. Hansen, C. L., Crabbe, D., & Rubin, S. (1996). Lower diagnostic accuracy of thallium-201 SPECT myocardial perfusion imaging in women: An effect of smaller chamber size. Journal of the American College of Cardiology, 28, 1214–1219.

    PubMed  CAS  Google Scholar 

  59. Amanullah, A. M., Kiat, H., Friedman, J. D., & Berman, D. S. (1996). Adenosine technetium-99m sestamibi myocardial perfusion SPECT in women: Diagnostic efficacy in detection of coronary artery disease. Journal of the American College of Cardiology, 27, 803–809.

    PubMed  CAS  Google Scholar 

  60. Santana-Boado, C., Candell-Riera, J., Castell-Conesa, J., et al. (1998). Diagnostic accuracy of technetium-99m-MIBI myocardial SPECT in women and men. Journal of Nuclear Medicine, 39, 751–755.

    PubMed  CAS  Google Scholar 

  61. Taillefer, R., DePuey, E. G., Udelson, J. E., Beller, G. A., Latour, Y., & Reeves, F. (1997). Comparative diagnostic accuracy of Tl-201 and Tc-99m sestamibi SPECT imaging (perfusion and ECG-gated SPECT) in detecting coronary artery disease in women. Journal of the American College of Cardiology, 29, 69–77.

    PubMed  CAS  Google Scholar 

  62. Elhendy, A., Schinkel, A. F., Bax, J. J., et al. (2006). Accuracy of stress Tc-99m tetrofosmin myocardial perfusion tomography for the diagnosis and localization of coronary artery disease in women. Journal of Nuclear Cardiology, 13, 629–634.

    PubMed  Google Scholar 

  63. Elhendy, A., Schinkel, A. F., van Domburg, R. T., Bax, J. J., Valkema, R., & Poldermans, D. (2004). Prediction of all-cause mortality in women with known or suspected coronary artery disease by stress technetium-99m tetrofosmin myocardial perfusion imaging. The American Journal of Cardiology, 93, 450–452.

    PubMed  Google Scholar 

  64. Marwick, T. H., Shaw, L. J., Lauer, M. S., et al. (1999). The noninvasive prediction of cardiac mortality in men and women with known or suspected coronary artery disease. Economics of Noninvasive Diagnosis (END) Study Group. American Journal of Medicine, 106, 172–178.

    PubMed  CAS  Google Scholar 

  65. Amanullah, A. M., Berman, D. S., Erel, J., et al. (1998). Incremental prognostic value of adenosine myocardial perfusion single-photon emission computed tomography in women with suspected coronary artery disease. The American Journal of Cardiology, 82, 725–730.

    PubMed  CAS  Google Scholar 

  66. Travin, M. I., Duca, M. D., Kline, G. M., Herman, S. D., Demus, D. D., & Heller, G. V. (1997). Relation of gender to physician use of test results and to the prognostic value of stress technetium 99m sestamibi myocardial single-photon emission computed tomography scintigraphy. American Heart Journal, 134, 73–82.

    PubMed  CAS  Google Scholar 

  67. Hachamovitch, R., Berman, D. S., Kiat, H., et al. (1996). Effective risk stratification using exercise myocardial perfusion SPECT in women: Gender-related differences in prognostic nuclear testing. Journal of the American College of Cardiology, 28, 34–44.

    PubMed  CAS  Google Scholar 

  68. Pancholy, S. B., Fattah, A. A., Kamal, A. M., Ghods, M., Heo, J., & Iskandrian, A. S. (1995). Independent and incremental prognostic value of exercise thallium single-photon emission computed tomographic imaging in women. Journal of Nuclear Cardiology, 2, 110–116.

    PubMed  CAS  Google Scholar 

  69. Geleijnse, M. L., Elhendy, A., van Domburg, R. T., Cornel, J. H., Reijs, A. E., & Fioretti, P. M. (1996). Prognostic significance of normal dobutamine–atropine stress sestamibi scintigraphy in women with chest pain. The American Journal of Cardiology, 77, 1057–1061.

    PubMed  CAS  Google Scholar 

  70. Schwaiger, M. (1994). Myocardial perfusion imaging with PET. Journal of Nuclear Medicine, 35, 693–698.

    PubMed  CAS  Google Scholar 

  71. Tamaki, N., Yonekura, Y., Senda, M., et al. (1988). Value and limitation of stress thallium-201 single photon emission computed tomography: Comparison with nitrogen-13 ammonia positron tomography. Journal of Nuclear Medicine, 29, 1181–1188.

    PubMed  CAS  Google Scholar 

  72. Stewart, R. E., Schwaiger, M., Molina, E., et al. (1991). Comparison of rubidium-82 positron emission tomography and thallium-201 SPECT imaging for detection of coronary artery disease. The American Journal of Cardiology, 67, 1303–1310.

    PubMed  CAS  Google Scholar 

  73. Go, R. T., Marwick, T. H., MacIntyre, W. J., et al. (1990). A prospective comparison of rubidium-82 PET and thallium-201 SPECT myocardial perfusion imaging utilizing a single dipyridamole stress in the diagnosis of coronary artery disease. Journal of Nuclear Medicine, 31, 1899–1905.

    PubMed  CAS  Google Scholar 

  74. Bateman, T. M., Heller, G. V., McGhie, A. I., et al. (2006). Diagnostic accuracy of rest/stress ECG-gated Rb-82 myocardial perfusion PET: Comparison with ECG-gated Tc-99m sestamibi SPECT. Journal of Nuclear Cardiology, 13, 24–33.

    PubMed  Google Scholar 

  75. Dayanikli, F., Grambow, D., Muzik, O., Mosca, L., Rubenfire, M., & Schwaiger, M. (1994). Early detection of abnormal coronary flow reserve in asymptomatic men at high risk for coronary artery disease using positron emission tomography. Circulation, 90, 808–817.

    PubMed  CAS  Google Scholar 

  76. Uren, N. G., Melin, J. A., De Bruyne, B., Wijns, W., Baudhuin, T., & Camici, P. G. (1994). Relation between myocardial blood flow and the severity of coronary-artery stenosis. The New England Journal of Medicine, 330, 1782–1788.

    PubMed  CAS  Google Scholar 

  77. Yoshinaga, K., Katoh, C., Noriyasu, K., et al. (2003). Reduction of coronary flow reserve in areas with and without ischemia on stress perfusion imaging in patients with coronary artery disease: A study using oxygen 15-labeled water PET. Journal of Nuclear Cardiology, 10, 275–283.

    PubMed  Google Scholar 

  78. Pepine, C. J., Anderson, R. D., Sharaf, B. L., et al. (2010). Coronary microvascular reactivity to adenosine predicts adverse outcome in women evaluated for suspected ischemia results from the National Heart, Lung and Blood Institute WISE (Women's Ischemia Syndrome Evaluation) study. Journal of the American College of Cardiology, 55, 2825–2832.

    PubMed  CAS  Google Scholar 

  79. Frink, R. J., Achor, R. W., Brown, A. L., Jr., Kincaid, O. W., & Brandenburg, R. O. (1970). Significance of calcification of the coronary arteries. The American Journal of Cardiology, 26, 241–247.

    PubMed  CAS  Google Scholar 

  80. McCarthy, J. H., & Palmer, F. J. (1974). Incidence and significance of coronary artery calcification. British Heart Journal, 36, 499–506.

    PubMed  CAS  Google Scholar 

  81. Tanenbaum, S. R., Kondos, G. T., Veselik, K. E., Prendergast, M. R., Brundage, B. H., & Chomka, E. V. (1989). Detection of calcific deposits in coronary arteries by ultrafast computed tomography and correlation with angiography. The American Journal of Cardiology, 63, 870–872.

    PubMed  CAS  Google Scholar 

  82. Breen, J. F., Sheedy, P. F., 2nd, Schwartz, R. S., et al. (1992). Coronary artery calcification detected with ultrafast CT as an indication of coronary artery disease. Radiology, 185, 435–439.

    PubMed  CAS  Google Scholar 

  83. Agatston, A. S., Janowitz, W. R., Hildner, F. J., Zusmer, N. R., Viamonte, M., Jr., & Detrano, R. (1990). Quantification of coronary artery calcium using ultrafast computed tomography. Journal of the American College of Cardiology, 15, 827–832.

    PubMed  CAS  Google Scholar 

  84. Devries, S., Wolfkiel, C., Fusman, B., et al. (1995). Influence of age and gender on the presence of coronary calcium detected by ultrafast computed tomography. Journal of the American College of Cardiology, 25, 76–82.

    PubMed  CAS  Google Scholar 

  85. Simons, D. B., Schwartz, R. S., Edwards, W. D., Sheedy, P. F., Breen, J. F., & Rumberger, J. A. (1992). Noninvasive definition of anatomic coronary artery disease by ultrafast computed tomographic scanning: A quantitative pathologic comparison study. Journal of the American College of Cardiology, 20, 1118–1126.

    PubMed  CAS  Google Scholar 

  86. Budoff, M. J., Shaw, L. J., Liu, S. T., et al. (2007). Long-term prognosis associated with coronary calcification: Observations from a registry of 25,253 patients. Journal of the American College of Cardiology, 49, 1860–1870.

    PubMed  Google Scholar 

  87. Lakoski, S. G., Greenland, P., Wong, N. D., et al. (2007). Coronary artery calcium scores and risk for cardiovascular events in women classified as “low risk” based on Framingham risk score: The multi-ethnic study of atherosclerosis (MESA). Archives of Internal Medicine, 167, 2437–2442.

    PubMed  Google Scholar 

  88. Vliegenthart, R., Oudkerk, M., Hofman, A., et al. (2005). Coronary calcification improves cardiovascular risk prediction in the elderly. Circulation, 112, 572–577.

    PubMed  Google Scholar 

  89. Shemesh, J., Fisman, E. Z., Tenenbaum, A., et al. (1997). Coronary artery calcification in women with syndrome X: Usefulness of double-helical CT for detection. Radiology, 205, 697–700.

    PubMed  CAS  Google Scholar 

  90. Banks, K., Puttagunta, D., Murphy, S., et al. (2011). Clinical characteristics, vascular function, and inflammation in women with angina in the absence of coronary atherosclerosis: The Dallas Heart Study. JACC. Cardiovascular Imaging, 4, 65–73.

    PubMed  Google Scholar 

  91. Oei, H. H., Vliegenthart, R., Deckers, J. W., Hofman, A., Oudkerk, M., & Witteman, J. C. (2004). The association of Rose questionnaire angina pectoris and coronary calcification in a general population: The Rotterdam Coronary Calcification Study. Annals of Epidemiology, 14, 431–436.

    PubMed  Google Scholar 

  92. Nagel, E., Klein, C., Paetsch, I., et al. (2003). Magnetic resonance perfusion measurements for the noninvasive detection of coronary artery disease. Circulation, 108, 432–437.

    PubMed  Google Scholar 

  93. Panting, J. R., Gatehouse, P. D., Yang, G. Z., et al. (2002). Abnormal subendocardial perfusion in cardiac syndrome X detected by cardiovascular magnetic resonance imaging. The New England Journal of Medicine, 346, 1948–1953.

    PubMed  Google Scholar 

  94. Buchthal, S. D., den Hollander, J. A., Merz, C. N., et al. (2000). Abnormal myocardial phosphorus-31 nuclear magnetic resonance spectroscopy in women with chest pain but normal coronary angiograms. The New England Journal of Medicine, 342, 829–835.

    PubMed  CAS  Google Scholar 

  95. Doyle, M., Weinberg, N., Pohost, G. M., et al. (2010). Prognostic value of global MR myocardial perfusion imaging in women with suspected myocardial ischemia and no obstructive coronary disease: Results from the NHLBI-sponsored WISE (Women's Ischemia Syndrome Evaluation) study. JACC. Cardiovascular Imaging, 3, 1030–1036.

    PubMed  Google Scholar 

  96. Lanza, G. A., Buffon, A., Sestito, A., et al. (2008). Relation between stress-induced myocardial perfusion defects on cardiovascular magnetic resonance and coronary microvascular dysfunction in patients with cardiac syndrome X. Journal of the American College of Cardiology, 51, 466–472.

    PubMed  Google Scholar 

  97. Vermeltfoort, I. A., Bondarenko, O., Raijmakers, P. G., et al. (2007). Is subendocardial ischaemia present in patients with chest pain and normal coronary angiograms? A cardiovascular MR study. European Heart Journal, 28, 1554–1558.

    PubMed  Google Scholar 

  98. Sheifer, S. E., Canos, M. R., Weinfurt, K. P., et al. (2000). Sex differences in coronary artery size assessed by intravascular ultrasound. American Heart Journal, 139, 649–653.

    PubMed  CAS  Google Scholar 

  99. Yang, F., Minutello, R. M., Bhagan, S., Sharma, A., & Wong, S. C. (2006). The impact of gender on vessel size in patients with angiographically normal coronary arteries. Journal of Interventional Cardiology, 19, 340–344.

    PubMed  Google Scholar 

  100. Kim, S. G., Apple, S., Mintz, G. S., et al. (2004). The importance of gender on coronary artery size: In-vivo assessment by intravascular ultrasound. Clinical Cardiology, 27, 291–294.

    PubMed  Google Scholar 

  101. Cantor, W. J., Miller, J. M., Hellkamp, A. S., et al. (2002). Role of target vessel size and body surface area on outcomes after percutaneous coronary interventions in women. American Heart Journal, 144, 297–302.

    PubMed  Google Scholar 

  102. Robertson, T., Kennard, E. D., Mehta, S., et al. (1997). Influence of gender on in-hospital clinical and angiographic outcomes and on one-year follow-up in the New Approaches to Coronary Intervention (NACI) registry. The American Journal of Cardiology, 80, 26K–39K.

    PubMed  CAS  Google Scholar 

  103. Khuddus, M. A., Pepine, C. J., Handberg, E. M., et al. (2010). An intravascular ultrasound analysis in women experiencing chest pain in the absence of obstructive coronary artery disease: A substudy from the National Heart, Lung and Blood Institute-sponsored Women's Ischemia Syndrome Evaluation (WISE). Journal of Interventional Cardiology, 23, 511–519.

    PubMed  Google Scholar 

  104. Stone, G. W., Maehara, A., Lansky, A. J., et al. (2011). A prospective natural-history study of coronary atherosclerosis. The New England Journal of Medicine, 364, 226–235.

    PubMed  CAS  Google Scholar 

  105. Wu, X., Maehara, A., Mintz, G. S., et al. (2010). Virtual histology intravascular ultrasound analysis of non-culprit attenuated plaques detected by grayscale intravascular ultrasound in patients with acute coronary syndromes. The American Journal of Cardiology, 105, 48–53.

    PubMed  Google Scholar 

  106. Lansky, A. J., Ng, V. G., Maehara, A., et al. (2012). Gender and the extent of coronary atherosclerosis, plaque composition, and clinical outcomes in acute coronary syndromes. JACC. Cardiovascular Imaging, 5, S62–S72.

    PubMed  Google Scholar 

  107. Hayashi, T., Kiyoshima, T., Matsuura, M., et al. (2005). Plaque erosion in the culprit lesion is prone to develop a smaller myocardial infarction size compared with plaque rupture. American Heart Journal, 149, 284–290.

    PubMed  Google Scholar 

  108. Kojima, S., Nonogi, H., Miyao, Y., et al. (2000). Is preinfarction angina related to the presence or absence of coronary plaque rupture? Heart, 83, 64–68.

    PubMed  CAS  Google Scholar 

  109. Yabushita, H., Bouma, B. E., Houser, S. L., et al. (2002). Characterization of human atherosclerosis by optical coherence tomography. Circulation, 106, 1640–1645.

    PubMed  Google Scholar 

  110. Chia, S., Christopher Raffel, O., Takano, M., Tearney, G. J., Bouma, B. E., & Jang, I. K. (2007). In-vivo comparison of coronary plaque characteristics using optical coherence tomography in women vs. men with acute coronary syndrome. Coronary Artery Disease, 18, 423–427.

    PubMed  Google Scholar 

  111. Moreno, P. R., Lodder, R. A., Purushothaman, K. R., Charash, W. E., O'Connor, W. N., & Muller, J. E. (2002). Detection of lipid pool, thin fibrous cap, and inflammatory cells in human aortic atherosclerotic plaques by near-infrared spectroscopy. Circulation, 105, 923–927.

    PubMed  Google Scholar 

  112. Gardner, C. M., Tan, H., Hull, E. L., et al. (2008). Detection of lipid core coronary plaques in autopsy specimens with a novel catheter-based near-infrared spectroscopy system. JACC. Cardiovascular Imaging, 1, 638–648.

    PubMed  Google Scholar 

  113. Caplan, J. D., Waxman, S., Nesto, R. W., & Muller, J. E. (2006). Near-infrared spectroscopy for the detection of vulnerable coronary artery plaques. Journal of the American College of Cardiology, 47, C92–C96.

    PubMed  Google Scholar 

  114. Falk, E., Shah, P. K., & Fuster, V. (1995). Coronary plaque disruption. Circulation, 92, 657–671.

    PubMed  CAS  Google Scholar 

  115. Kolodgie, F. D., Burke, A. P., Farb, A., et al. (2001). The thin-cap fibroatheroma: A type of vulnerable plaque: The major precursor lesion to acute coronary syndromes. Current Opinion in Cardiology, 16, 285–292.

    PubMed  CAS  Google Scholar 

  116. Brugaletta, S., Garcia-Garcia, H. M., Serruys, P. W., et al. (2011). NIRS and IVUS for characterization of atherosclerosis in patients undergoing coronary angiography. JACC. Cardiovascular Imaging, 4, 647–655.

    PubMed  Google Scholar 

  117. Sales, F. J., Falcao, B. A., Falcao, J. L., et al. (2010). Evaluation of plaque composition by intravascular ultrasound “virtual histology”: The impact of dense calcium on the measurement of necrotic tissue. EuroIntervention, 6, 394–399.

    PubMed  Google Scholar 

  118. Waxman, S., Dixon, S. R., L'Allier, P., et al. (2009). In vivo validation of a catheter-based near-infrared spectroscopy system for detection of lipid core coronary plaques: Initial results of the SPECTACL study. JACC. Cardiovascular Imaging, 2, 858–868.

    PubMed  Google Scholar 

  119. Endo, M., Hibi, K., Shimizu, T., et al. (2010). Impact of ultrasound attenuation and plaque rupture as detected by intravascular ultrasound on the incidence of no-reflow phenomenon after percutaneous coronary intervention in ST-segment elevation myocardial infarction. JACC. Cardiovascular Interventions, 3, 540–549.

    PubMed  Google Scholar 

  120. Yamagishi, M., Terashima, M., Awano, K., et al. (2000). Morphology of vulnerable coronary plaque: Insights from follow-up of patients examined by intravascular ultrasound before an acute coronary syndrome. Journal of the American College of Cardiology, 35, 106–111.

    PubMed  CAS  Google Scholar 

  121. Kimura, S., Kakuta, T., Yonetsu, T., et al. (2009). Clinical significance of echo signal attenuation on intravascular ultrasound in patients with coronary artery disease. Circulation. Cardiovascular Interventions, 2, 444–454.

    PubMed  Google Scholar 

  122. Pu, J., Mintz, G. S., Brilakis, E. S., et al. (2012). In vivo characterization of coronary plaques: Novel findings from comparing greyscale and virtual histology intravascular ultrasound and near-infrared spectroscopy. European Heart Journal, 33, 372–383.

    PubMed  Google Scholar 

  123. Kini, A., Moreno, P., Kovacic, J., et al. (2012). Does aggressive statin therapy reduce coronary atherosclerotic plaque lipid content? Results from: Reduction in Yellow Plaque by Aggressive Lipid Lowering Therapy (YELLOW) trial. Journal of the American College of Cardiology, 59, E304 (abstract).

    Google Scholar 

  124. Bairey Merz, C. N., Shaw, L. J., Reis, S. E., et al. (2006). Insights from the NHLBI-sponsored Women's Ischemia Syndrome Evaluation (WISE) study: Part II: Gender differences in presentation, diagnosis, and outcome with regard to gender-based pathophysiology of atherosclerosis and macrovascular and microvascular coronary disease. Journal of the American College of Cardiology, 47, S21–S29.

    PubMed  Google Scholar 

  125. Schachinger, V., Britten, M. B., & Zeiher, A. M. (2000). Prognostic impact of coronary vasodilator dysfunction on adverse long-term outcome of coronary heart disease. Circulation, 101, 1899–1906.

    PubMed  CAS  Google Scholar 

  126. Halcox, J. P., Schenke, W. H., Zalos, G., et al. (2002). Prognostic value of coronary vascular endothelial dysfunction. Circulation, 106, 653–658.

    PubMed  Google Scholar 

  127. Schindler, T. H., Hornig, B., Buser, P. T., et al. (2003). Prognostic value of abnormal vasoreactivity of epicardial coronary arteries to sympathetic stimulation in patients with normal coronary angiograms. Arteriosclerosis, Thrombosis, and Vascular Biology, 23, 495–501.

    PubMed  CAS  Google Scholar 

  128. von Mering, G. O., Arant, C. B., Wessel, T. R., et al. (2004). Abnormal coronary vasomotion as a prognostic indicator of cardiovascular events in women: Results from the National Heart, Lung, and Blood Institute-sponsored Women's Ischemia Syndrome Evaluation (WISE). Circulation, 109, 722–725.

    Google Scholar 

  129. Handberg, E., Johnson, B. D., Arant, C. B., et al. (2006). Impaired coronary vascular reactivity and functional capacity in women: Results from the NHLBI Women's Ischemia Syndrome Evaluation (WISE) study. Journal of the American College of Cardiology, 47, S44–S49.

    PubMed  Google Scholar 

  130. Merz, C. N., Kelsey, S. F., Pepine, C. J., et al. (1999). The Women's Ischemia Syndrome Evaluation (WISE) study: Protocol design, methodology and feasibility report. Journal of the American College of Cardiology, 33, 1453–1461.

    PubMed  CAS  Google Scholar 

  131. Pijls, N. H., Fearon, W. F., Tonino, P. A., et al. (2010). Fractional flow reserve versus angiography for guiding percutaneous coronary intervention in patients with multivessel coronary artery disease: 2-year follow-up of the FAME (Fractional Flow Reserve Versus Angiography for Multivessel Evaluation) study. Journal of the American College of Cardiology, 56, 177–184.

    PubMed  Google Scholar 

  132. Kim, H. S., Tonino, P. A., De Bruyne, B., et al. (2012). The impact of sex differences on fractional flow reserve-guided percutaneous coronary intervention: A FAME (Fractional Flow Reserve Versus Angiography for Multivessel Evaluation) substudy. JACC. Cardiovascular Interventions, 5, 1037–1042.

    PubMed  Google Scholar 

  133. Thomas, G. S., Voros, S., McPherson, J. A., et al. (2013). A blood based gene expression test for obstructive coronary artery disease tested in symptomatic non-diabetic patients referred for myocardial perfusion imaging: The COMPASS study. Circulation: Cardiovascular Genetics, 6, 154–162.

    CAS  Google Scholar 

  134. Lansky, A., Elashoff, M. R., Ng, V., et al. (2012). A gender-specific blood-based gene expression score for assessing obstructive coronary artery disease in nondiabetic patients: Results of the Personalized Risk Evaluation and Diagnosis in the Coronary Tree (PREDICT) trial. American Heart Journal, 164, 320–326.

    PubMed  Google Scholar 

Download references

Conflict of Interest

This has been previously submitted.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra J. Lansky.

Additional information

Associate Editor Angela Taylor oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ng, V.G., Meller, S., Shetty, S. et al. Diagnosing and Characterizing Coronary Artery Disease in Women: Developments in Noninvasive and Invasive Imaging Techniques. J. of Cardiovasc. Trans. Res. 6, 740–751 (2013). https://doi.org/10.1007/s12265-013-9500-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-013-9500-1

Keywords

Navigation