Skip to main content

Advertisement

Log in

Origin of Developmental Precursors Dictates the Pathophysiologic Role of Cardiac Fibroblasts

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Fibroblasts in the heart play a critical function in the secretion and modulation of extracellular matrix critical for optimal cellular architecture and mechanical stability required for its mechanical function. Fibroblasts are also intimately involved in both adaptive and nonadaptive responses to cardiac injury. Fibroblasts provide the elaboration of extracellular matrix and, as myofibroblasts, are responsible for cross-linking this matrix to form a mechanically stable scar after myocardial infarction. By contrast, during heart failure, fibroblasts secrete extracellular matrix, which manifests itself as excessive interstitial fibrosis that may mechanically limit cardiac function and distort cardiac architecture (adverse remodeling). This review examines the hypothesis that fibroblasts mediating scar formation and fibroblasts mediating interstitial fibrosis arise from different cellular precursors and in response to different autocoidal signaling cascades. We demonstrate that fibroblasts which generate scars arise from endogenous mesenchymal stem cells, whereas those mediating adverse remodeling are of myeloid origin and represent immunoinflammatory dysregulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sun, Y., Kiani, M. F., Postlethwaite, A. E., & Weber, K. T. (2002). Infarct scar as living tissue. Basic Research in Cardiology, 97, 343–347.

    Article  PubMed  Google Scholar 

  2. Weber, K. T. (1989). Cardiac interstitium in health and disease: the fibrillar collagen network. Journal of the American College of Cardiology, 13, 1637–1652.

    Article  PubMed  CAS  Google Scholar 

  3. Bing, O. H., Matsushita, S., Fanburg, B. L., & Levine, H. J. (1971). Mechanical properties of rat cardiac muscle during experimental hypertrophy. Circulation Research, 28, 234–245.

    Article  PubMed  CAS  Google Scholar 

  4. Jalil, J. E., Janicki, J. S., Pick, R., Abrahams, C., & Weber, K. T. (1989). Fibrosis-induced reduction of endomyocardium in the rat after isoproterenol treatment. Circulation Research, 65, 258–264.

    Article  PubMed  CAS  Google Scholar 

  5. Thiedemann, K. U., Holubarsch, C., Medugorac, I., & Jacob, R. (1983). Connective tissue content and myocardial stiffness in pressure overload hypertrophy. A combined study of morphologic, morphometric, biochemical, and mechanical parameters. Basic Research in Cardiology, 78, 140–155.

    Article  PubMed  CAS  Google Scholar 

  6. Weber, K. T., Brilla, C. G., & Janicki, J. S. (1993). Myocardial fibrosis: functional significance and regulatory factors. Cardiovascular Research, 27, 341–348.

    Article  PubMed  CAS  Google Scholar 

  7. Weber, K. T., Pick, R., Jalil, J. E., Janicki, J. S., & Carroll, E. P. (1989). Patterns of myocardial fibrosis. Journal of Molecular and Cellular Cardiology, 21(Suppl 5), 121–131.

    Article  PubMed  Google Scholar 

  8. Carlson, S., Trial, J., Soeller, C., & Entman, M. L. (2011). Cardiac mesenchymal stem cells contribute to scar formation after myocardial infarction. Cardiovascular Research, 91, 99–107.

    Article  PubMed  CAS  Google Scholar 

  9. Kalluri, R., & Neilson, E. G. (2003). Epithelial-mesenchymal transition and its implications for fibrosis. The Journal of Clinical Investigation, 112, 1776–1784.

    PubMed  CAS  Google Scholar 

  10. Zeisberg, E. M., Tarnavski, O., Zeisberg, M., Dorfman, A. L., McMullen, J. R., Gustafsson, E., et al. (2007). Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nature Medicine, 13, 952–961.

    Article  PubMed  CAS  Google Scholar 

  11. Esposito, M. T., Di Noto, R., Mirabelli, P., Gorrese, M., Parisi, S., Montanaro, D., et al. (2009). Culture conditions allow selection of different mesenchymal progenitors from adult mouse bone marrow. Tissue Engineering. Part A, 15, 2525–2536.

    Article  PubMed  CAS  Google Scholar 

  12. Sarugaser, R., Hanoun, L., Keating, A., Stanford, W. L., & Davies, J. E. (2009). Human mesenchymal stem cells self-renew and differentiate according to a deterministic hierarchy. PLoS One, 4, e6498.

    Article  PubMed  Google Scholar 

  13. Bucala, R., Spiegel, L. A., Chesney, J., Hogan, M., & Cerami, A. (1994). Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Molecular Medicine, 1, 71–81.

    PubMed  CAS  Google Scholar 

  14. Pilling, D., Fan, T., Huang, D., Kaul, B., & Gomer, R. H. (2009). Identification of markers that distinguish monocyte-derived fibrocytes from monocytes, macrophages, and fibroblasts. PLoS One, 4, e7475.

    Article  PubMed  Google Scholar 

  15. Abe, R., Donnelly, S. C., Peng, T., Bucala, R., & Metz, C. N. (2001). Peripheral blood fibrocytes: differentiation pathway and migration to wound sites. Journal of Immunology, 166, 7556–7562.

    CAS  Google Scholar 

  16. Yang, L., Scott, P. G., Giuffre, J., Shankowsky, H. A., Ghahary, A., & Tredget, E. E. (2002). Peripheral blood fibrocytes from burn patients: identification and quantification of fibrocytes in adherent cells cultured from peripheral blood mononuclear cells. Laboratory Investigation, 82, 1183–1192.

    PubMed  CAS  Google Scholar 

  17. Hashimoto, N., Jin, H., Liu, T., Chensue, S. W., & Phan, S. H. (2004). Bone marrow-derived progenitor cells in pulmonary fibrosis. The Journal of Clinical Investigation, 113, 243–252.

    PubMed  CAS  Google Scholar 

  18. Phillips, R. J., Burdick, M. D., Hong, K., Lutz, M. A., Murray, L. A., Xue, Y. Y., et al. (2004). Circulating fibrocytes traffic to the lungs in response to CXCL12 and mediate fibrosis. The Journal of Clinical Investigation, 114, 438–446.

    PubMed  CAS  Google Scholar 

  19. Schmidt, M., Sun, G., Stacey, M. A., Mori, L., & Mattoli, S. (2003). Identification of circulating fibrocytes as precursors of bronchial myofibroblasts in asthma. Journal of Immunology, 171, 380–389.

    CAS  Google Scholar 

  20. Moore, B. B., Kolodsick, J. E., Thannickal, V. J., Cooke, K., Moore, T. A., Hogaboam, C., et al. (2005). CCR2-mediated recruitment of fibrocytes to the alveolar space after fibrotic injury. American Journal of Pathology, 166, 675–684.

    Article  PubMed  CAS  Google Scholar 

  21. Pilling, D., Buckley, C. D., Salmon, M., & Gomer, R. H. (2003). Inhibition of fibrocyte differentiation by serum amyloid P. Journal of Immunology, 171, 5537–5546.

    CAS  Google Scholar 

  22. Pilling, D., Tucker, N. M., & Gomer, R. H. (2006). Aggregated IgG inhibits the differentiation of human fibrocytes. Journal of Leukocyte Biology, 79, 1242–1251.

    Article  PubMed  CAS  Google Scholar 

  23. Shao, D. D., Suresh, R., Vakil, V., Gomer, R. H., & Pilling, D. (2008). Pivotal advance: Th-1 cytokines inhibit, and Th-2 cytokines promote fibrocyte differentiation. Journal of Leukocyte Biology, 83, 1323–1333.

    Article  PubMed  CAS  Google Scholar 

  24. Wynn, T. A. (2008). Cellular and molecular mechanisms of fibrosis. The Journal of Pathology, 214, 199–210.

    Article  PubMed  CAS  Google Scholar 

  25. Dewald, O., Frangogiannis, N. G., Zoerlein, M., Duerr, G. D., Klemm, C., Knuefermann, P., et al. (2003). Development of murine ischemic cardiomyopathy is associated with a transient inflammatory reaction and depends on reactive oxygen species. Proceedings of the National Academy of Sciences, USA, 100, 2700–2705.

    Article  CAS  Google Scholar 

  26. Haudek, S. B., Xia, Y., Huebener, P., Lee, J. M., Carlson, S., Crawford, J. R., et al. (2006). Bone marrow-derived fibroblast precursors mediate ischemic cardiomyopathy in mice. Proceedings of the National Academy of Sciences of the United States of America, 103, 18284–18289.

    Article  PubMed  CAS  Google Scholar 

  27. Dewald, O., Ren, G., Duerr, G. D., Zoerlein, M., Klemm, C., Gersch, C., et al. (2004). Of mice and dogs: species-specific differences in the inflammatory response following myocardial infarction. American Journal of Pathology, 164, 665–677.

    Article  PubMed  CAS  Google Scholar 

  28. Frangogiannis, N. G., Mendoza, L. H., Lewallen, M., Michael, L. H., Smith, C. W., & Entman, M. L. (2001). Induction and suppression of interferon-inducible protein (IP)-10 in reperfused myocardial infarcts may regulate angiogenesis. The FASEB Journal, 15, 1428–1430.

    CAS  Google Scholar 

  29. Kukielka, G. L., Smith, C. W., LaRosa, G. J., Manning, A. M., Mendoza, L. H., Hughes, B. J., et al. (1995). Interleukin-8 gene induction in the myocardium after ischemia and reperfusion in vivo. The Journal of Clinical Investigation, 95, 89–103.

    Article  PubMed  CAS  Google Scholar 

  30. Kumar, A. G., Ballantyne, C. M., Michael, L. H., Kukielka, G. L., Youker, K. A., Lindsey, M. L., et al. (1997). Induction of monocyte chemoattractant protein-1 in the small veins of the ischemic and reperfused canine myocardium. Circulation, 95, 693–700.

    Article  PubMed  CAS  Google Scholar 

  31. Lakshminarayanan, V., Lewallen, M., Frangogiannis, N. G., Evans, A. J., Wedin, K. E., Michael, L. H., et al. (2001). Reactive oxygen intermediates induce monocyte chemotactic protein-1 in vascular endothelium after brief ischemia. American Journal of Pathology, 159, 1301–1311.

    Article  PubMed  CAS  Google Scholar 

  32. Frangogiannis, N. G., Dewald, O., Xia, Y., Ren, G., Haudek, S., Leucker, T., et al. (2007). Critical role of monocyte chemoattractant protein-1/CC chemokine ligand 2 in the pathogenesis of ischemic cardiomyopathy. Circulation, 115, 584–592.

    Article  PubMed  CAS  Google Scholar 

  33. Frangogiannis, N. G., Ren, G., Dewald, O., Zymek, P., Koerting, A., Winkelmann, K., et al. (2005). Critical role of endogenous thrombospondin (TSP)-1 in preventing expansion of healing myocardial infarcts. Circulation, 111, 2935–2942.

    Article  PubMed  CAS  Google Scholar 

  34. Haudek, S. B., Trial, J., Xia, Y., Gupta, D., Pilling, D., & Entman, M. L. (2008). Fc receptor engagement mediates differentiation of cardiac fibroblast precursor cells. Proceedings of the National Academy of Sciences of the United States of America, 105, 10179–10184.

    Article  PubMed  CAS  Google Scholar 

  35. Moreira, A. P., Cavassani, K. A., Hullinger, R., Rosada, R. S., Fong, D. J., Murray, L., et al. (2010). Serum amyloid P attenuates M2 macrophage activation and protects against fungal spore-induced allergic airway disease. The Journal of Allergy and Clinical Immunology, 126, 712–721.

    Article  PubMed  CAS  Google Scholar 

  36. Murray, L. A., Chen, Q., Kramer, M. S., Hesson, D. P., Argentieri, R. L., Peng, X., et al. (2011). TGF-beta driven lung fibrosis is macrophage dependent and blocked by serum amyloid P. The International Journal of Biochemistry & Cell Biology, 43, 154–162.

    Article  CAS  Google Scholar 

  37. Cieslik, K. A., Taffet, G. E., Carlson, S., Hermosillo, J., Trial, J., & Entman, M. L. (2011). Immune-inflammatory dysregulation modulates the incidence of progressive fibrosis and diastolic stiffness in the aging heart. Journal of Molecular and Cellular Cardiology, 50, 248–256.

    Article  PubMed  CAS  Google Scholar 

  38. Friedrich, K., Brändlein, S., Ehrhardt, I., & Krause, S. (2003). Interleukin-4- and interleukin-13 receptors trigger distinct JAK/STAT activation patterns inmouse lymphocytes. Signal Transduction, 1–2, 26–32.

    Article  Google Scholar 

  39. Ingram, J. L., Rice, A. B., Geisenhoffer, K., Madtes, D. K., & Bonner, J. C. (2004). IL-13 and IL-1beta promote lung fibroblast growth through coordinated up-regulation of PDGF-AA and PDGF-Ralpha. The FASEB Journal, 18, 1132–1134.

    CAS  Google Scholar 

  40. Haudek, S. B., Gupta, D., Dewald, O., Schwartz, R. J., Wei, L., Trial, J., et al. (2009). Rho kinase-1 mediates cardiac fibrosis by regulating fibroblast precursor cell differentiation. Cardiovascular Research, 83, 511–518.

    Article  PubMed  CAS  Google Scholar 

  41. Medina, A., & Ghahary, A. (2010). Fibrocytes can be reprogrammed to promote tissue remodeling capacity of dermal fibroblasts. Molecular Cell Biochem, 344(1–2), 11–21.

    Article  CAS  Google Scholar 

  42. Wang, J. F., Jiao, H., Stewart, T. L., Shankowsky, H. A., Scott, P. G., & Tredget, E. E. (2007). Fibrocytes from burn patients regulate the activities of fibroblasts. Wound Repair and Regeneration, 15, 113–121.

    Article  PubMed  Google Scholar 

  43. Liao, W. T., Yu, H. S., Arbiser, J. L., Hong, C. H., Govindarajan, B., Chai, C. Y., et al. (2010). Enhanced MCP-1 release by keloid CD14+ cells augments fibroblast proliferation: role of MCP-1 and Akt pathway in keloids. Experimental Dermatology, 19, e142–e150.

    Article  PubMed  Google Scholar 

  44. Haudek, S. B., Cheng, J., Du, J., Wang, Y., Hermosillo-Rodriguez, J., Trial, J., et al. (2010). Monocytic fibroblast precursors mediate fibrosis in angiotensin-II-induced cardiac hypertrophy. Journal of Molecular and Cellular Cardiology, 49, 499–507.

    Article  PubMed  CAS  Google Scholar 

  45. Chen, G., Lin, S. C., Chen, J., He, L., Dong, F., Xu, J., et al. (2011). CXCL16 recruits bone marrow-derived fibroblast precursors in renal fibrosis. Journal of the American Society of Nephrology, 22, 1876–1886.

    Article  PubMed  CAS  Google Scholar 

  46. Dewald, O., Zymek, P., Winkelmann, K., Koerting, A., Ren, G., Michael, L. H., et al. (2005). CCL2/monocyte chemoattractant protein (MCP)-1 regulates inflammatory responses critical to healing myocardial infarcts. Circulation Research, 96, 881–889.

    Article  PubMed  CAS  Google Scholar 

  47. Bujak, M., Kweon, H. J., Chatila, K., Li, N., Taffet, G., & Frangogiannis, N. G. (2008). Aging-related defects are associated with adverse cardiac remodeling in a mouse model of reperfused myocardial infarction. Journal of the American College of Cardiology, 51, 1384–1392.

    Article  PubMed  Google Scholar 

  48. Gould, K. E., Taffet, G. E., Michael, L. H., Christie, R. M., Konkol, D. L., Pocius, J. S., et al. (2002). Heart failure and greater infarct expansion in middle-aged mice: a relevant model for postinfarction failure. American Journal of Physiology - Heart and Circulatory Physiology, 282, H615–H621.

    PubMed  CAS  Google Scholar 

  49. Thakker, G. D., Frangogiannis, N. G., Bujak, M., Zymek, P., Gaubatz, J. W., Reddy, A. K., et al. (2006). Effects of diet-induced obesity on inflammation and remodeling after myocardial infarction. American Journal of Physiology - Heart and Circulatory Physiology, 291, H2504–H2514.

    Article  PubMed  CAS  Google Scholar 

  50. Goldsmith, E. C., Hoffman, A., Morales, M. O., Potts, J. D., Price, R. L., McFadden, A., et al. (2004). Organization of fibroblasts in the heart. Developmental Dynamics, 230, 787–794.

    Article  PubMed  CAS  Google Scholar 

  51. Cieslik, K. A., Trial, J., & Entman, M. L. (2011). Defective mesenchymal stem cell differentiation in aging murine heart: rescue by Tak1/AMPK/p38 MAPK pathway. American Journal of Pathology, 179, 1792–1806.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by National Institutes of Health RO1 HL-089792 (MLE), the American Heart Association 10SDG4280031 (SBH), the Hankamer Foundation, and the Medallion Foundation. The authors wish to thank Ms. Sharon Malinowski for her editorial assistance with the manuscript.

Ethical Considerations

The Guide for the Care and Use of Animals was followed when performing the experiments described in this paper. The experiments performed comply with the current laws of the country in which they were performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark L. Entman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crawford, J.R., Haudek, S.B., Cieslik, K.A. et al. Origin of Developmental Precursors Dictates the Pathophysiologic Role of Cardiac Fibroblasts. J. of Cardiovasc. Trans. Res. 5, 749–759 (2012). https://doi.org/10.1007/s12265-012-9402-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-012-9402-7

Keywords

Navigation