Skip to main content
Log in

Comparison of Lipoprotein Separation and Lipid Analysis Methodologies for Human and Cynomolgus Monkey Plasma Samples

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

To assess cardiovascular risk in both clinical and basic research settings, it is imperative to be able to accurately measure plasma lipid levels. Here, methods commonly used to measure lipoproteins and lipids: ultracentrifugation (UC), fast protein liquid chromatography (FPLC), Roche auto-analyzer, and enzymatic assays were tested and compared. Plasma samples from 20 healthy humans and 22 cynomolgus monkeys were analyzed for their total cholesterol (TC), cholesterol in low density lipoproteins (LDL) and high density lipoproteins (HDL), and triglycerides (TG). Major lipid classes from UC and FPLC separated lipoprotein fractions from human plasma were further characterized by liquid chromatography-mass spectrometry analysis. All the tested methods showed acceptable performance with Roche analyzer among the best in approximate dilution linearity and recovery for most lipids as well as in repeatability between measurements of the same samples. TC, LDL, HDL, and TG values measured in human vs. monkey were—183.9 ± 35.5 (mean ± SD) vs. 105.6 ± 24.6 mg/dl, 106.0 ± 30.1 vs. 42.8 ± 13.0 mg/dl, 50.0 ± 11.4 vs. 53.4 ± 14.8 mg/dl, and 107.6 ± 50.7 vs. 58.0 ± 52.3 mg/dl. While no single method was uniformly the best, we recommend the Roche analyzer for routine measurements. UC or FPLC separation is needed for further functional characterization for specific lipid fraction. We have shown athero-protective profile in cynomolgus monkey compared with humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rader, D. J., & Daugherty, A. (2008). Translating molecular discoveries into new therapies for atherosclerosis. Nature, 451, 904–913.

    Article  PubMed  CAS  Google Scholar 

  2. da Luz, P. L., Favarato, D., Faria-Neto, J. R., Jr., Lemos, P., & Chagas, A. C. (2008). High ratio of triglycerides to HDL-cholesterol predicts extensive coronary disease. Clinics (São Paulo, Brazil), 63, 427–432.

    Article  Google Scholar 

  3. Hajer, G. R., van der Graaf, Y., Bots, M. L., Algra, A., & Visseren, F. L. (2009). Low plasma HDL-c, a vascular risk factor in high risk patients independent of LDL-c. European Journal of Clinical Investigation, 39, 680–688.

    Article  PubMed  CAS  Google Scholar 

  4. Gordon, T., Castelli, W. P., Hjortland, M. C., Kannel, W. B., & Dawber, T. R. (1977). High density lipoprotein as a protective factor against coronary heart disease. The Framingham Study. American Journal of Medicine, 62, 707–714.

    Article  PubMed  CAS  Google Scholar 

  5. Werner, R. M., & Pearson, T. A. (1998). LDL-cholesterol: a risk factor for coronary artery disease—From epidemiology to clinical trials. Canadian Journal of Cardiology, 14(Suppl B), 3B–10B.

    PubMed  CAS  Google Scholar 

  6. Maron, D. J., Fazio, S., & Linton, M. F. (2000). Current perspectives on statins. Circulation, 101, 207–213.

    PubMed  CAS  Google Scholar 

  7. van Dam, M., van Wissen, S., & Kastelein, J. J. (2002). Declaring war on undertreatment: Rationale for an aggressive approach to lowering cholesterol. Journal of Cardiovascular Risk, 9, 89–95.

    Article  PubMed  Google Scholar 

  8. Arca, M. (2007). Atorvastatin efficacy in the prevention of cardiovascular events in patients with diabetes mellitus and/or metabolic syndrome. Drugs, 67(Suppl 1), 43–54.

    Article  PubMed  CAS  Google Scholar 

  9. Havel, R. J., Eder, H. A., & Bragdon, J. H. (1955). The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. The Journal of Clinical Investigation, 34, 1345–1353.

    Article  PubMed  CAS  Google Scholar 

  10. Grundy, S. M. (2004). Richard Havel, Howard Eder, and the evolution of lipoprotein analysis. The Journal of Clinical Investigation, 114, 1034–1037.

    PubMed  CAS  Google Scholar 

  11. Ordovas, J. M., & Osgood, D. (1998). Preparative isolation of plasma lipoproteins using fast protein liquid chromatography (FPLC). Methods in Molecular Biology, 110, 105–111.

    PubMed  CAS  Google Scholar 

  12. Wiesner, P., Leidl, K., Boettcher, A., Schmitz, G., & Liebisch, G. (2009). Lipid profiling of FPLC-separated lipoprotein fractions by electrospray ionization tandem mass spectrometry. Journal of Lipid Research, 50, 574–585.

    Article  PubMed  CAS  Google Scholar 

  13. Miller, W. G., Myers, G. L., Sakurabayashi, I., Bachmann, L. M., Caudill, S. P., Dziekonski, A., et al. (2010). Seven direct methods for measuring HDL and LDL cholesterol compared with ultracentrifugation reference measurement procedures. Clinical Chemistry, 56, 977–986.

    Article  PubMed  CAS  Google Scholar 

  14. Yoshida, A., Naito, M., Kodama, M., & Nomura, H. (2001). Comparison of direct methods and HPLC for the measurement of HDL- and LDL-cholesterol with ultracentrifugation. Journal of Atherosclerosis and Thrombosis, 8, 84–90.

    PubMed  CAS  Google Scholar 

  15. Egloff, M., Leglise, D., Duvillard, L., Steinmetz, J., Boyer, M. J., Ruelland, A., et al. (1999). Multicenter evaluation on different analyzers of three methods for direct HDL-cholesterol assay. Annales de Biologie Clinique, 57, 561–572.

    PubMed  CAS  Google Scholar 

  16. Ordonez-Llanos, J., Wagner, A. M., Bonet-Marques, R., Sanchez-Quesada, J. L., Blanco-Vaca, F., & Gonzalez-Sastre, F. (2001). Which cholesterol are we measuring with the Roche direct, homogeneous LDL-C Plus assay? Clinical Chemistry, 47, 124–126.

    PubMed  CAS  Google Scholar 

  17. Dansky, H. M., Shu, P., Donavan, M., Montagno, J., Nagle, D. L., Smutko, J. S., et al. (2002). A phenotype-sensitizing Apoe-deficient genetic background reveals novel atherosclerosis predisposition loci in the mouse. Genetics, 160, 1599–1608.

    PubMed  CAS  Google Scholar 

  18. Castro-Perez, J. M., Kamphorst, J., DeGroot, J., Lafeber, F., Goshawk, J., & Yu, K. 2009. Comprehensive LC-MS E lipidomic analysis using a shotgun approach and its application to biomarker detection and identification in osteoarthritis patients. Journal of Proteome Research 9:2377–2389.

    Google Scholar 

  19. Bland, J. M., & Altman, D. G. (1986). Statistical methods for assessing agreement between two methods of clinical measurement. Lancet, 1, 307–310.

    Article  PubMed  CAS  Google Scholar 

  20. Warnick, G. R., Nauck, M., & Rifai, N. (2001). Evolution of methods for measurement of HDL-cholesterol: From ultracentrifugation to homogeneous assays. Clinical Chemistry, 47, 1579–1596.

    PubMed  CAS  Google Scholar 

  21. Chen, Z., Strack, A.M., Stefanni, A.C., Chen, Y., Wu, W., Pan, Y., Urosevic-Price, O., Wang, L., McLaughlin, T., Geoghagen, N., et al., (2011). Validation of human ApoB and ApoAI immunoturbidity assays for non-human primate dyslipidemia and atherosclerosis research. J Cardiovasc Transl Res (in press)

  22. Rudel, L. L. (1997). Genetic factors influence the atherogenic response of lipoproteins to dietary fat and cholesterol in nonhuman primates. Journal of the American College of Nutrition, 16, 306–312.

    PubMed  CAS  Google Scholar 

  23. Suzuki, M., Yamamoto, D., Suzuki, T., Fujii, M., Suzuki, N., Fujishiro, M., et al. (2006). High fat and high fructose diet induced intracranial atherosclerosis and enhanced vasoconstrictor responses in non-human primate. Life Sciences, 80, 200–204.

    Article  PubMed  CAS  Google Scholar 

  24. Shively, C. A., & Clarkson, T. B. (1988). Regional obesity and coronary artery atherosclerosis in females: A non-human primate model. Acta Medica Scandinavica. Supplementum, 723, 71–78.

    PubMed  CAS  Google Scholar 

  25. Yamada, T., Yoshikuni, Y., Taira, M., Yoshida-Suzuka, H., Kimura, K., Sakurai, I., et al. (1992). Diet-induced atherosclerosis in cynomolgus monkey aorta and regression by the sixth-month observation. Angiology, 43, 1008–1019.

    Article  PubMed  CAS  Google Scholar 

  26. Leblanc, M., Belanger, M. C., Julien, P., Tchernof, A., Labrie, C., Belanger, A., et al. (2004). Plasma lipoprotein profile in the male cynomolgus monkey under normal, hypogonadal, and combined androgen blockade conditions. Journal of Clinical Endocrinology and Metabolism, 89, 1849–1857.

    Article  PubMed  CAS  Google Scholar 

  27. Baron, B. W., Lyon, R. T., Zarins, C. K., Glagov, S., & Baron, J. M. (1990). Changes in plasma factor VIII complex and serum lipid profile during atherogenesis in cynomolgus monkeys. Arteriosclerosis, 10, 1074–1081.

    Article  PubMed  CAS  Google Scholar 

  28. Goldberg, I. J., Le, N. A., Paterniti, J. R., Jr., Ginsberg, H. N., Lindgren, F. T., & Brown, W. V. (1982). Lipoprotein metabolism during acute inhibition of hepatic triglyceride lipase in the cynomolgus monkey. The Journal of Clinical Investigation, 70, 1184–1192.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Christine Brzostowski for providing cynomolgus monkey plasma, Doree Gorden for collecting human plasma samples, and Dan Xi and Vinit Shah for LC/MS sample process and analysis. For disclosing conflict of interests, all authors are employees and may hold stocks or stock options of Merck & Co.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seongah Han.

Additional information

Clinical relevance: Clinical trial has demonstrated that cardiovascular disease risk can be reduced through lipid-lowering therapy. Reliable laboratory measurements of plasma lipoproteins and lipid measurement are important in research investigations and clinical practice for lipid-lowering therapy and for assessing cardiovascular risks. This study provide comparability of measurement results using four common methodologies (ultracentrifugation, fast protein liquid chromatography, Roche auto-analyzer, and enzymatic assays) in healthy human and cynomolgus monkey plasma samples. We recommend the Roche analyzer for routine measurements while UC or FPLC separation is needed for further functional characterization for specific lipid fraction.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

(PPT 115 kb)

Supplementary Table 2

(PPT 108 kb)

Supplementary Table 3

(PPT 101 kb)

Supplementary Figure 1

Comparison of methods by correlation and by Bland–Altman plot for human plasma. Linear regression lines and Bland–Altman plots for a total cholesterol (TC), b LDL cholesterol (LDL-C), c HDL cholesterol (HDL-C), and d TG in human plasma, comparing ultracentrifugation to each of the other three methods (PPT 302 kb)

Supplementary Figure 2

Comparison of methods by correlation and by Bland–Altman plots for cynomolgus plasma. Linear regression lines and Bland–Altman plots for a total cholesterol (TC), b LDL cholesterol (LDL-C), c HDL cholesterol (HDL-C), and d TG in cynomolgus plasma, comparing ultracentrifugation to each of the other three methods (PPT 311 kb)

Supplementary Figure 3

Relation of cholesterol in LDL or HDL and apolipoproteins. LDL cholesterol, HDL cholesterol, apoB, and apoA1 in cynomolgus plasma samples were determined using Roche analyzer. a Plot of plasma LDL cholesterol concentration against apoB level. b Plot of plasma HDL cholesterol concentration against apoA1 level (PPT 83 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, S., Flattery, A.M., McLaren, D. et al. Comparison of Lipoprotein Separation and Lipid Analysis Methodologies for Human and Cynomolgus Monkey Plasma Samples. J. of Cardiovasc. Trans. Res. 5, 75–83 (2012). https://doi.org/10.1007/s12265-011-9340-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-011-9340-9

Keywords

Navigation