Skip to main content

Advertisement

Log in

Biomaterials to Prevascularize Engineered Tissues

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Tissue engineering promises to restore tissue and organ function following injury or failure by creating functional and transplantable artificial tissues. The development of artificial tissues with dimensions that exceed the diffusion limit (1–2 mm) will require nutrients and oxygen to be delivered via perfusion (or convection) rather than diffusion alone. One strategy of perfusion is to prevascularize tissues; that is, a network of blood vessels is created within the tissue construct prior to implantation, which has the potential to significantly shorten the time of functional vascular perfusion from the host. The prevascularized network of vessels requires an extracellular matrix or scaffold for 3D support, which can be either natural or synthetic. This review surveys the commonly used biomaterials for prevascularizing 3D tissue engineering constructs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Badylak, S. F., Taylor, D., & Uygun, K. (2011). Whole-organ tissue engineering: Decellularization and recellularization of three-dimensional matrix scaffolds. Annual Review of Biomedical Engineering. doi:10.1146/annurev-bioeng-071910-124743.

  2. Lokmic, Z., & Mitchell, G. M. (2008). Engineering the microcirculation. Tissue Engineering. Part B, Reviews, 14(1), 87–103. doi:10.1089/teb.2007.0299.

    Article  PubMed  CAS  Google Scholar 

  3. de Ville de Goyet, J. (2009). Innovative surgical techniques address the organ donation crisis, … don’t they? Current Opinion in Organ Transplantation, 14(5), 507–514. doi:10.1097/MOT.0b013e32833067f3.

    Article  PubMed  Google Scholar 

  4. Lovett, M., Lee, K., Edwards, A., & Kaplan, D. L. (2009). Vascularization strategies for tissue engineering. Tissue Engineering. Part B, Reviews, 15(3), 353–370. doi:10.1089/ten.teb.2009.0085.

    Article  PubMed  CAS  Google Scholar 

  5. Rouwkema, J., Rivron, N. C., & van Blitterswijk, C. A. (2008). Vascularization in tissue engineering. Trends in Biotechnology, 26(8), 434–441. doi:10.1016/j.tibtech.2008.04.009.

    Article  PubMed  CAS  Google Scholar 

  6. Carmeliet, P., & Jain, R. K. (2000). Angiogenesis in cancer and other diseases. Nature, 407(6801), 249–257. doi:10.1038/35025220.

    Article  PubMed  CAS  Google Scholar 

  7. Griffith, L. G., & Naughton, G. (2002). Tissue engineering—Current challenges and expanding opportunities. Science, 295(5557), 1009–1014. doi:10.1126/science.1069210.

    Article  PubMed  CAS  Google Scholar 

  8. Radisic, M., Park, H., Chen, F., Salazar-Lazzaro, J. E., Wang, Y., Dennis, R., et al. (2006). Biomimetic approach to cardiac tissue engineering: Oxygen carriers and channeled scaffolds. Tissue Engineering, 12(8), 2077–2091. doi:10.1089/ten.2006.12.2077.

    Article  PubMed  CAS  Google Scholar 

  9. Radisic, M., Malda, J., Epping, E., Geng, W., Langer, R., & Vunjak-Novakovic, G. (2006). Oxygen gradients correlate with cell density and cell viability in engineered cardiac tissue. Biotechnology and Bioengineering, 93(2), 332–343. doi:10.1002/bit.20722.

    Article  PubMed  CAS  Google Scholar 

  10. MacNeil, S. (2007). Progress and opportunities for tissue-engineered skin. Nature, 445(7130), 874–880. doi:10.1038/nature05664.

    Article  PubMed  CAS  Google Scholar 

  11. Huang, A. H., Farrell, M. J., & Mauck, R. L. (2010). Mechanics and mechanobiology of mesenchymal stem cell-based engineered cartilage. Journal of Biomechanics, 43(1), 128–136. doi:10.1016/j.jbiomech.2009.09.018.

    Article  PubMed  Google Scholar 

  12. Shah, A., Brugnano, J., Sun, S., Vase, A., & Orwin, E. (2008). The development of a tissue-engineered cornea: Biomaterials and culture methods. Pediatric Research, 63(5), 535–544. doi:10.1203/PDR.0b013e31816bdf54.

    Article  PubMed  Google Scholar 

  13. Risau, W. (1997). Mechanisms of angiogenesis. Nature, 386(6626), 671–674. doi:10.1038/386671a0.

    Article  PubMed  CAS  Google Scholar 

  14. Risau, W., & Flamme, I. (1995). Vasculogenesis. Annual Review of Cell and Developmental Biology, 11, 73–91. doi:10.1146/annurev.cb.11.110195.000445.

    Article  PubMed  CAS  Google Scholar 

  15. Jain, R. K., Au, P., Tam, J., Duda, D. G., & Fukumura, D. (2005). Engineering vascularized tissue. Nat Biotech, 23(7), 821–823. doi:10.1038/nbt0705-821.

    Article  CAS  Google Scholar 

  16. Chen, X., Aledia, A. S., Popson, S. A., Him, L., Hughes, C. C., & George, S. C. (2010). Rapid anastomosis of endothelial progenitor cell-derived vessels with host vasculature is promoted by a high density of cotransplanted fibroblasts. Tissue Engineering. Part A, 16(2), 585–594. doi:10.1089/ten.TEA.2009.0491.

    Article  PubMed  CAS  Google Scholar 

  17. Hall, H. (2007). Modified fibrin hydrogel matrices: Both, 3D-scaffolds and local and controlled release systems to stimulate angiogenesis. Current Pharmaceutical Design, 13(35), 3597–3607.

    Article  PubMed  CAS  Google Scholar 

  18. Novosel EC, Kleinhans C, Kluger PJ (2011) Vascularization is the key challenge in tissue engineering. Advanced Drug Delivery Reviews In Press, Uncorrected Proof. doi:10.1016/j.addr.2011.03.004

  19. Ko, H. C., Milthorpe, B. K., & McFarland, C. D. (2007). Engineering thick tissues—The vascularisation problem. European Cells & Materials, 14, 1–18. discussion 18–19.

    CAS  Google Scholar 

  20. Deng, C., Zhang, P., Vulesevic, B., Kuraitis, D., Li, F., Yang, A. F., et al. (2010). A collagen–chitosan hydrogel for endothelial differentiation and angiogenesis. Tissue Engineering. Part A, 16(10), 3099–3109. doi:10.1089/ten.tea.2009.0504.

    Article  PubMed  CAS  Google Scholar 

  21. Chen, X., Aledia, A. S., Ghajar, C. M., Griffith, C. K., Putnam, A. J., Hughes, C. C., et al. (2009). Prevascularization of a fibrin-based tissue construct accelerates the formation of functional anastomosis with host vasculature. Tissue Engineering. Part A, 15(6), 1363–1371. doi:10.1089/ten.tea.2008.0314.

    Article  PubMed  CAS  Google Scholar 

  22. Verseijden, F., Posthumus-van Sluijs, S. J., van Neck, J. W., Hofer, S. O. P., Hovius, S. E. R., & van Osch, G. J. V. M. (2011). Vascularization of prevascularized and non-prevascularized fibrin-based human adipose tissue constructs after implantation in nude mice. Journal of Tissue Engineering and Regenerative Medicine:n/a-n/a. doi:10.1002/term.410.

  23. Pankajakshan, D., & Agrawal, D. K. (2010). Scaffolds in tissue engineering of blood vessels. Canadian Journal of Physiology and Pharmacology, 88(9), 855–873. doi:10.1139/y10-073.

    Article  PubMed  CAS  Google Scholar 

  24. Leong, K. F., Chua, C. K., Sudarmadji, N., & Yeong, W. Y. (2008). Engineering functionally graded tissue engineering scaffolds. Journal of the Mechanical Behavior of Biomedical Materials, 1(2), 140–152. doi:10.1016/j.jmbbm.2007.11.002.

    Article  PubMed  CAS  Google Scholar 

  25. Sill, T. J., & von Recum, H. A. (2008). Electrospinning: Applications in drug delivery and tissue engineering. Biomaterials, 29(13), 1989–2006. doi:10.1016/j.biomaterials.2008.01.011.

    Article  PubMed  CAS  Google Scholar 

  26. Lutolf, M. P., Lauer-Fields, J. L., Schmoekel, H. G., Metters, A. T., Weber, F. E., Fields, G. B., et al. (2003). Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: Engineering cell-invasion characteristics. Proceedings of the National Academy of Sciences of the United States of America, 100(9), 5413–5418. doi:10.1073/pnas.0737381100.

    Article  PubMed  CAS  Google Scholar 

  27. Bahney, C. S., Hsu, C.-W., Yoo, J. U., West, J. L., & Johnstone, B. (2011). A bioresponsive hydrogel tuned to chondrogenesis of human mesenchymal stem cells. The FASEB Journal. doi:10.1096/fj.10-165514.

  28. Tibbitt, M. W., & Anseth, K. S. (2009). Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnology and Bioengineering, 103(4), 655–663. doi:10.1002/bit.22361.

    Article  PubMed  CAS  Google Scholar 

  29. Nicodemus, G. D., & Bryant, S. J. (2008). Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue Engineering. Part B, Reviews, 14(2), 149–165. doi:10.1089/ten.teb.2007.0332.

    Article  PubMed  CAS  Google Scholar 

  30. Chan, B., & Leong, K. (2008). Scaffolding in tissue engineering: General approaches and tissue-specific considerations. European Spine Journal, 17, 467–479. doi:10.1007/s00586-008-0745-3.

    Article  PubMed  CAS  Google Scholar 

  31. Liu, X., Won, Y., & Ma, P. X. (2006). Porogen-induced surface modification of nano-fibrous poly(l-lactic acid) scaffolds for tissue engineering. Biomaterials, 27(21), 3980–3987. doi:10.1016/j.biomaterials.2006.03.008.

    Article  PubMed  CAS  Google Scholar 

  32. Petrie TA, Raynor JE, Dumbauld DW, Lee TT, Jagtap S, Templeman KL, Collard DM, García AJ (2010) Multivalent Integrin-Specific Ligands Enhance Tissue Healing and Biomaterial Integration. Science Translational Medicine 2 (45):45ra60. doi:10.1126/scitranslmed.3001002

  33. Shekaran, A., & García, A. J. (2011). Extracellular matrix-mimetic adhesive biomaterials for bone repair. Journal of Biomedical Materials Research. Part A, 96A(1), 261–272. doi:10.1002/jbm.a.32979.

    Article  CAS  Google Scholar 

  34. Takagi J (2004) Structural basis for ligand recognition by RGD (Arg-Gly-Asp)-dependent integrins. Biochemical Society transactions 32 (Pt3):403–406. doi:10.1042/BST0320403

  35. Geckil, H., Xu, F., Zhang, X., Moon, S., & Demirci, U. (2010). Engineering hydrogels as extracellular matrix mimics. Nanomedicine, 5(3), 469–484. doi:10.2217/nnm.10.12.

    Article  PubMed  CAS  Google Scholar 

  36. Raub, C. B., Unruh, J., Suresh, V., Krasieva, T., Lindmo, T., Gratton, E., et al. (2008). Image correlation spectroscopy of multiphoton images correlates with collagen mechanical properties. Biophysical Journal, 94(6), 2361–2373. doi:10.1529/biophysj.107.120006.

    Article  PubMed  CAS  Google Scholar 

  37. Wei, G., & Ma, P. X. (2004). Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials, 25(19), 4749–4757. doi:10.1016/j.biomaterials.2003.12.005.

    Article  PubMed  CAS  Google Scholar 

  38. Helm, C. L., Zisch, A., & Swartz, M. A. (2007). Engineered blood and lymphatic capillaries in 3-D VEGF-fibrin-collagen matrices with interstitial flow. Biotechnology and Bioengineering, 96(1), 167–176. doi:10.1002/bit.21185.

    Article  PubMed  CAS  Google Scholar 

  39. Annabi, N., Nichol, J. W., Zhong, X., Ji, C., Koshy, S., Khademhosseini, A., et al. (2010). Controlling the porosity and microarchitecture of hydrogels for tissue engineering. Tissue Engineering. Part B, Reviews, 16(4), 371–383. doi:10.1089/ten.teb.2009.0639.

    Article  PubMed  CAS  Google Scholar 

  40. Owen, S. C., & Shoichet, M. S. (2010). Design of three-dimensional biomimetic scaffolds. Journal of Biomedical Materials Research. Part A, 94A(4), 1321–1331. doi:10.1002/jbm.a.32834.

    CAS  Google Scholar 

  41. Oh, S. H., Park, I. K., Kim, J. M., & Lee, J. H. (2007). In vitro and in vivo characteristics of PCL scaffolds with pore size gradient fabricated by a centrifugation method. Biomaterials, 28(9), 1664–1671. doi:10.1016/j.biomaterials.2006.11.024.

    Article  PubMed  CAS  Google Scholar 

  42. O’Brien, F. J., Harley, B. A., Yannas, I. V., & Gibson, L. J. (2005). The effect of pore size on cell adhesion in collagen-GAG scaffolds. Biomaterials, 26(4), 433–441. doi:10.1016/j.biomaterials.2004.02.052.

    Article  PubMed  CAS  Google Scholar 

  43. Liu, X., & Ma, P. X. (2004). Polymeric Scaffolds for Bone Tissue Engineering. Annals of Biomedical Engineering, 32(3), 477–486. doi:10.1023/B:ABME.0000017544.36001.8e.

    Article  PubMed  Google Scholar 

  44. Choi, S.-W., Zhang, Y., & Xia, Y. (2010). Three-dimensional scaffolds for tissue engineering: The importance of uniformity in pore size and structure. Langmuir, 26(24), 19001–19006. doi:10.1021/la104206h.

    Article  PubMed  CAS  Google Scholar 

  45. O’Brien, F. J. (2011). Biomaterials & scaffolds for tissue engineering. Materials Today, 14(3), 88–95. doi:10.1016/s1369-7021(11)70058-x.

    Article  CAS  Google Scholar 

  46. Dutta, R. C., & Dutta, A. K. (2009). Cell-interactive 3D-scaffold; advances and applications. Biotechnology Advances, 27(4), 334–339. doi:10.1016/j.biotechadv.2009.02.002.

    Article  PubMed  CAS  Google Scholar 

  47. Malafaya, P. B., Silva, G. A., & Reis, R. L. (2007). Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Advanced Drug Delivery Reviews, 59(4–5), 207–233. doi:10.1016/j.addr.2007.03.012.

    Article  PubMed  CAS  Google Scholar 

  48. Chen, G., Ushida, T., & Tateishi, T. (2000). Hybrid biomaterials for tissue engineering: A preparative method for PLA or PLGA–collagen hybrid sponges. Advanced Materials, 12(6), 455–457. doi:10.1002/(sici)1521-4095(200003)12:6<455::aid-adma455>3.0.co;2-c.

    Article  CAS  Google Scholar 

  49. Raub, C. B., Suresh, V., Krasieva, T., Lyubovitsky, J., Mih, J. D., Putnam, A. J., et al. (2007). Noninvasive assessment of collagen gel microstructure and mechanics using multiphoton microscopy. Biophysical Journal, 92(6), 2212–2222. doi:10.1529/biophysj.106.097998.

    Article  PubMed  CAS  Google Scholar 

  50. Allen, P., Melero-Martin, J., & Bischoff, J. (2011). Type I collagen, fibrin and PuraMatrix matrices provide permissive environments for human endothelial and mesenchymal progenitor cells to form neovascular networks. Journal of Tissue Engineering and Regenerative Medicine. doi:10.1002/term.389.

  51. Schechner, J. S., Nath, A. K., Zheng, L., Kluger, M. S., Hughes, C. C. W., Sierra-Honigmann, M. R., et al. (2000). In vivo formation of complex microvessels lined by human endothelial cells in an immunodeficient mouse. Proceedings of the National Academy of Sciences, 97(16), 9191–9196. doi:10.1073/pnas.150242297.

    Article  CAS  Google Scholar 

  52. Perng C-K, Wang Y-J, Tsi C-H, Ma H In vivo angiogenesis effect of porous collagen scaffold with hyaluronic acid oligosaccharides. Journal of Surgical Research In Press, Corrected Proof. doi:10.1016/j.jss.2009.09.052

  53. Duffy, G. P., McFadden, T. M., Byrne, E. M., Gill, S. L., Farrell, E., & O’Brien, F. J. (2011). Towards in vitro vascularisation of collagen-GAG scaffolds. European Cells & Materials, 21, 15–30.

    CAS  Google Scholar 

  54. Mosesson, M. W., Siebenlist, K. R., & Meh, D. A. (2001). The structure and biological features of fibrinogen and fibrin. Annals of the New York Academy of Sciences, 936, 11–30. doi:10.1111/j.1749-6632.2001.tb03491.x.

    Article  PubMed  CAS  Google Scholar 

  55. Aper, T., Schmidt, A., Duchrow, M., & Bruch, H. P. (2007). Autologous blood vessels engineered from peripheral blood sample. European Journal of Vascular and Endovascular Surgery, 33(1), 33–39. doi:10.1016/j.ejvs.2006.08.008.

    Article  PubMed  CAS  Google Scholar 

  56. Ye, Q., Zund, G., Benedikt, P., Jockenhoevel, S., Hoerstrup, S. P., Sakyama, S., et al. (2000). Fibrin gel as a three dimensional matrix in cardiovascular tissue engineering. European Journal of Cardio-Thoracic Surgery, 17(5), 587–591. doi:10.1016/S1010-7940(00)00373-0.

    Article  PubMed  CAS  Google Scholar 

  57. Lorentz, K. M., Kontos, S., Frey, P., & Hubbell, J. A. (2011). Engineered aprotinin for improved stability of fibrin biomaterials. Biomaterials, 32(2), 430–438. doi:10.1016/j.biomaterials.2010.08.109.

    Article  PubMed  CAS  Google Scholar 

  58. Liu, H., Collins, S. F., & Suggs, L. J. (2006). Three-dimensional culture for expansion and differentiation of mouse embryonic stem cells. Biomaterials, 27(36), 6004–6014. doi:10.1016/j.biomaterials.2006.06.016.

    Article  PubMed  CAS  Google Scholar 

  59. Soon, A. S. C., Stabenfeldt, S. E., Brown, W. E., & Barker, T. H. (2010). Engineering fibrin matrices: The engagement of polymerization pockets through fibrin knob technology for the delivery and retention of therapeutic proteins. Biomaterials, 31(7), 1944–1954. doi:10.1016/j.biomaterials.2009.10.060.

    Article  PubMed  CAS  Google Scholar 

  60. Soon ASC, Lee CS, Barker TH Modulation of fibrin matrix properties via knob:hole affinity interactions using peptide-PEG conjugates. Biomaterials In Press, Corrected Proof. doi:10.1016/j.biomaterials.2011.02.050

  61. Ghajar, C. M., Blevins, K. S., Hughes, C. C., George, S. C., & Putnam, A. J. (2006). Mesenchymal stem cells enhance angiogenesis in mechanically viable prevascularized tissues via early matrix metalloproteinase upregulation. Tissue Engineering, 12(10), 2875–2888. doi:10.1089/ten.2006.12.2875.

    Article  PubMed  CAS  Google Scholar 

  62. Lugo, L. M., Lei, P., & Andreadis, S. T. (2010). Vascularization of the dermal support enhances wound re-epithelialization by in situ delivery of epidermal keratinocytes. Tissue Engineering. Part A. doi:10.1089/ten.TEA.2010.0125.

  63. Montano, I., Schiestl, C., Schneider, J., Pontiggia, L., Luginbuhl, J., Biedermann, T., et al. (2010). Formation of human capillaries in vitro: The engineering of prevascularized matrices. Tissue Engineering. Part A, 16(1), 269–282. doi:10.1089/ten.TEA.2008.0550.

    Article  PubMed  CAS  Google Scholar 

  64. Borges, J., Torio-Padron, N., Momeni, A., Mueller, M. C., Tegtmeier, F. T., & Stark, B. G. (2006). Adipose precursor cells (preadipocytes) induce formation of new vessels in fibrin glue on the newly developed cylinder chorioallantoic membrane model (CAM). Minimally Invasive Therapy & Allied Technologies, 15(4), 246–252. doi:10.1080/14017450600761620.

    Article  Google Scholar 

  65. Borges, J., Muller, M. C., Momeni, A., Stark, G. B., & Torio-Padron, N. (2007). In vitro analysis of the interactions between preadipocytes and endothelial cells in a 3D fibrin matrix. Minimally Invasive Therapy & Allied Technologies, 16(3), 141–148. doi:10.1080/13645700600935398.

    Article  Google Scholar 

  66. Frerich, B., Lindemann, N., Kurtz-Hoffmann, J., & Oertel, K. (2001). In vitro model of a vascular stroma for the engineering of vascularized tissues. International Journal of Oral and Maxillofacial Surgery, 30(5), 414–420. doi:10.1054/ijom.2001.0130.

    Article  PubMed  CAS  Google Scholar 

  67. Kneser, U., Stangenberg, L., Ohnolz, J., Buettner, O., Stern-Straeter, J., Mobest, D., et al. (2006). Evaluation of processed bovine cancellous bone matrix seeded with syngenic osteoblasts in a critical size calvarial defect rat model. Journal of Cellular and Molecular Medicine, 10(3), 695–707. doi:10.1111/j.1582-4934.2006.tb00429.x.

    Article  PubMed  CAS  Google Scholar 

  68. Steffens L, Wenger A, Stark GB, Finkenzeller G (2009) In vivo engineering of a human vasculature for bone tissue engineering applications. J Cell Mol Med 13 (9B):3380–3386. doi:10.1111/j.1582-4934.2008.00418.x

    Google Scholar 

  69. Tan, H., Yang, B., Duan, X., Wang, F., Zhang, Y., Jin, X., et al. (2009). The promotion of the vascularization of decalcified bone matrix in vivo by rabbit bone marrow mononuclear cell-derived endothelial cells. Biomaterials, 30(21), 3560–3566. doi:10.1016/j.biomaterials.2009.03.029.

    Article  PubMed  CAS  Google Scholar 

  70. Neumeister, M. W., Wu, T., & Chambers, C. (2006). Vascularized tissue-engineered ears. Plast Reconstr Surg, 117(1), 116–122. doi:10.1097/01.prs.0000195071.01699.ce.

    Article  PubMed  CAS  Google Scholar 

  71. Liao, H., & Zhou, G.-Q. (2009). Development and progress of engineering of skeletal muscle tissue. Tissue Engineering. Part B, Reviews, 15(3), 319–331. doi:10.1089/ten.teb.2009.0092.

    Article  PubMed  Google Scholar 

  72. Maier, A. K., Kociok, N., Zahn, G., Vossmeyer, D., Stragies, R., Muether, P. S., et al. (2007). Modulation of hypoxia-induced neovascularization by JSM6427, an integrin alpha5beta1 inhibiting molecule. Current Eye Research, 32(9), 801–812. doi:10.1080/02713680701553052.

    Article  PubMed  CAS  Google Scholar 

  73. Fiegel, H. C., Pryymachuk, G., Rath, S., Bleiziffer, O., Beier, J. P., Bruns, H., et al. (2010). Foetal hepatocyte transplantation in a vascularized AV-Loop transplantation model in the rat. Journal of Cellular and Molecular Medicine, 14(1–2), 267–274. doi:10.1111/j.1582-4934.2008.00369.x.

    Article  PubMed  CAS  Google Scholar 

  74. Vunjak-Novakovic, G., Tandon, N., Godier, A., Maidhof, R., Marsano, A., Martens, T. P., et al. (2010). Challenges in Cardiac Tissue Engineering. Tissue Engineering. Part B, Reviews, 16(2), 169–187. doi:10.1089/ten.teb.2009.0352.

    Article  PubMed  Google Scholar 

  75. Birla, R. K., Borschel, G. H., Dennis, R. G., & Brown, D. L. (2005). Myocardial engineering in vivo: Formation and characterization of contractile, vascularized three-dimensional cardiac tissue. Tissue Engineering, 11(5–6), 803–813. doi:10.1089/ten.2005.11.803.

    Article  PubMed  CAS  Google Scholar 

  76. Kniazeva, E., Kachgal, S., & Putnam, A. J. (2011). Effects of extracellular matrix density and mesenchymal stem cells on neovascularization in vivo. Tissue Engineering. Part A, 17(7–8), 905–914. doi:10.1089/ten.tea.2010.0275.

    Article  PubMed  CAS  Google Scholar 

  77. Uriel, S., Brey, E. M., & Greisler, H. P. (2006). Sustained low levels of fibroblast growth factor-1 promote persistent microvascular network formation. Am J Surg, 192(5), 604–609. doi:10.1016/j.amjsurg.2006.08.012.

    Article  PubMed  CAS  Google Scholar 

  78. Ozawa, C. R., Banfi, A., Glazer, N. L., Thurston, G., Springer, M. L., Kraft, P. E., et al. (2004). Microenvironmental VEGF concentration, not total dose, determines a threshold between normal and aberrant angiogenesis. The Journal of Clinical Investigation, 113(4), 516–527. doi:10.1172/JCI18420.

    PubMed  CAS  Google Scholar 

  79. Breen, A., O’Brien, T., & Pandit, A. (2009). Fibrin as a delivery system for therapeutic drugs and biomolecules. Tissue Engineering. Part B, Reviews, 15(2), 201–214. doi:10.1089/ten.teb.2008.0527.

    Article  PubMed  CAS  Google Scholar 

  80. Brey, E. M., McIntire, L. V., Johnston, C. M., Reece, G. P., & Patrick, C. W., Jr. (2004). Three-dimensional, quantitative analysis of desmin and smooth muscle alpha actin expression during angiogenesis. Annals of Biomedical Engineering, 32(8), 1100–1107. doi:10.1114/B:ABME.0000036646.17362.c4.

    Article  PubMed  Google Scholar 

  81. Oliveira, J. T., & Reis, R. L. (2010). Polysaccharide-based materials for cartilage tissue engineering applications. Journal of Tissue Engineering and Regenerative Medicine. doi:10.1002/term.335.

  82. Gomes, M. E., Sikavitsas, V. I., Behravesh, E., Reis, R. L., & Mikos, A. G. (2003). Effect of flow perfusion on the osteogenic differentiation of bone marrow stromal cells cultured on starch-based three-dimensional scaffolds. Journal of Biomedical Materials Research. Part A, 67(1), 87–95. doi:10.1002/jbm.a.10075.

    PubMed  Google Scholar 

  83. Gomes, M. E., Azevedo, H. S., Moreira, A. R., Ellä, V., Kellomäki, M., & Reis, R. L. (2008). Starch–poly(ε-caprolactone) and starch–poly(lactic acid) fibre-mesh scaffolds for bone tissue engineering applications: Structure, mechanical properties and degradation behaviour. Journal of Tissue Engineering and Regenerative Medicine, 2(5), 243–252. doi:10.1002/term.89.

    Article  PubMed  CAS  Google Scholar 

  84. Oliveira, J. T., Crawford, A., Mundy, J. M., Moreira, A. R., Gomes, M. E., Hatton, P. V., et al. (2007). A cartilage tissue engineering approach combining starch-polycaprolactone fibre mesh scaffolds with bovine articular chondrocytes. Journal of Materials Science. Materials in Medicine, 18(2), 295–302. doi:10.1007/s10856-006-0692-7.

    Article  PubMed  CAS  Google Scholar 

  85. Santos, M. I., Fuchs, S., Gomes, M. E., Unger, R. E., Reis, R. L., & Kirkpatrick, C. J. (2007). Response of micro- and macrovascular endothelial cells to starch-based fiber meshes for bone tissue engineering. Biomaterials, 28(2), 240–248. doi:10.1016/j.biomaterials.2006.08.006.

    Article  PubMed  CAS  Google Scholar 

  86. Santos, M. I., Tuzlakoglu, K., Fuchs, S., Gomes, M. E., Peters, K., Unger, R. E., et al. (2008). Endothelial cell colonization and angiogenic potential of combined nano- and micro-fibrous scaffolds for bone tissue engineering. Biomaterials, 29(32), 4306–4313. doi:10.1016/j.biomaterials.2008.07.033.

    Article  PubMed  CAS  Google Scholar 

  87. Santos, T. C., Marques, A. P., Höring, B., Martins, A. R., Tuzlakoglu, K., Castro, A. G., et al. (2010). In vivo short-term and long-term host reaction to starch-based scaffolds. Acta Biomaterialia, 6(11), 4314–4326. doi:10.1016/j.actbio.2010.06.020.

    Article  PubMed  CAS  Google Scholar 

  88. Martins, A. M., Saraf, A., Sousa, R. A., Alves, C. M., Mikos, A. G., Kasper, F. K., et al. (2010). Combination of enzymes and flow perfusion conditions improves osteogenic differentiation of bone marrow stromal cells cultured upon starch/poly(ε-caprolactone) fiber meshes. Journal of Biomedical Materials Research. Part A, 94A(4), 1061–1069. doi:10.1002/jbm.a.32785.

    CAS  Google Scholar 

  89. Gomes, M. E., Holtorf, H. L., Reis, R. L., & Mikos, A. G. (2006). Influence of the porosity of starch-based fiber mesh scaffolds on the proliferation and osteogenic differentiation of bone marrow stromal cells cultured in a flow perfusion bioreactor. Tissue Engineering, 12(4), 801–809. doi:10.1089/ten.2006.12.801.

    Article  PubMed  CAS  Google Scholar 

  90. Santos, M. I., Unger, R. E., Sousa, R. A., Reis, R. L., & Kirkpatrick, C. J. (2009). Crosstalk between osteoblasts and endothelial cells co-cultured on a polycaprolactone-starch scaffold and the in vitro development of vascularization. Biomaterials, 30(26), 4407–4415. doi:10.1016/j.biomaterials.2009.05.004.

    Article  PubMed  CAS  Google Scholar 

  91. Fuchs, S., Ghanaati, S., Orth, C., Barbeck, M., Kolbe, M., Hofmann, A., et al. (2009). Contribution of outgrowth endothelial cells from human peripheral blood on in vivo vascularization of bone tissue engineered constructs based on starch polycaprolactone scaffolds. Biomaterials, 30(4), 526–534. doi:10.1016/j.biomaterials.2008.09.058.

    Article  PubMed  CAS  Google Scholar 

  92. Ghanaati, S., Fuchs, S., Webber, M. J., Orth, C., Barbeck, M., Gomes, M. E., et al. (2010). Rapid vascularization of starch-poly(caprolactone) in vivo by outgrowth endothelial cells in co-culture with primary osteoblasts. Journal of Tissue Engineering and Regenerative Medicine. doi:10.1002/term.373.

  93. Kleinman, H. K., & Martin, G. R. (2005). Matrigel: Basement membrane matrix with biological activity. Seminars in Cancer Biology, 15(5), 378–386. doi:10.1016/j.semcancer.2005.05.004.

    Article  PubMed  CAS  Google Scholar 

  94. Melero-Martin, J. M., De Obaldia, M. E., Kang, S. Y., Khan, Z. A., Yuan, L., Oettgen, P., et al. (2008). Engineering robust and functional vascular networks in vivo with human adult and cord blood-derived progenitor cells. Circulation Research, 103(2), 194–202. doi:10.1161/CIRCRESAHA.108.178590.

    Article  PubMed  CAS  Google Scholar 

  95. Lee, J., Cuddihy, M. J., & Kotov, N. A. (2008). Three-dimensional cell culture matrices: State of the art. Tissue Engineering. Part B, Reviews, 14(1), 61–86. doi:10.1089/teb.2007.0150.

    Article  PubMed  CAS  Google Scholar 

  96. Shepherd, B. R., Enis, D. R., Wang, F., Suarez, Y., Pober, J. S., & Schechner, J. S. (2006). Vascularization and engraftment of a human skin substitute using circulating progenitor cell-derived endothelial cells. The FASEB Journal, 20(10), 1739–1741. doi:10.1096/fj.05-5682fje.

    Article  PubMed  CAS  Google Scholar 

  97. Zhang, X., Yang, J., Li, Y., Liu, S., Long, K., Zhao, Q., et al. (2010). Functional neovascularization in tissue engineering with porcine acellular dermal matrix and human umbilical vein endothelial cells. Tissue Engineering. Part C, Methods. doi:10.1089/ten.TEC.2010.0466.

  98. Cho, S. W., Park, H. J., Ryu, J. H., Kim, S. H., Kim, Y. H., Choi, C. Y., et al. (2005). Vascular patches tissue-engineered with autologous bone marrow-derived cells and decellularized tissue matrices. Biomaterials, 26(14), 1915–1924. doi:10.1016/j.biomaterials.2004.06.018.

    Article  PubMed  CAS  Google Scholar 

  99. Conklin, B. S., Richter, E. R., Kreutziger, K. L., Zhong, D. S., & Chen, C. (2002). Development and evaluation of a novel decellularized vascular xenograft. Medical Engineering & Physics, 24(3), 173–183. doi:10.1016/S1350-4533(02)00010-3.

    Article  CAS  Google Scholar 

  100. Schenke-Layland, K., Vasilevski, O., Opitz, F., Konig, K., Riemann, I., Halbhuber, K. J., et al. (2003). Impact of decellularization of xenogeneic tissue on extracellular matrix integrity for tissue engineering of heart valves. Journal of Structural Biology, 143(3), 201–208. doi:10.1016/j.jsb.2003.08.002.

    Article  PubMed  CAS  Google Scholar 

  101. Chen, F., Yoo, J. J., & Atala, A. (1999). Acellular collagen matrix as a possible “off the shelf” biomaterial for urethral repair. Urology, 54(3), 407–410. doi:10.1016/S0090-4295(99)00179-X.

    Article  PubMed  CAS  Google Scholar 

  102. Ott, H. C., Matthiesen, T. S., Goh, S. K., Black, L. D., Kren, S. M., Netoff, T. I., et al. (2008). Perfusion-decellularized matrix: Using nature’s platform to engineer a bioartificial heart. Nature Medicine, 14(2), 213–221. doi:10.1038/nm1684.

    Article  PubMed  CAS  Google Scholar 

  103. Uygun, B. E., Soto-Gutierrez, A., Yagi, H., Izamis, M. L., Guzzardi, M. A., Shulman, C., et al. (2010). Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nature Medicine, 16(7), 814–820. doi:10.1038/nm.2170.

    Article  PubMed  CAS  Google Scholar 

  104. Wang, Y., Cui, C. B., Yamauchi, M., Miguez, P., Roach, M., Malavarca, R., et al. (2011). Lineage restriction of human hepatic stem cells to mature fates is made efficient by tissue-specific biomatrix scaffolds. Hepatology, 53(1), 293–305. doi:10.1002/hep.24012.

    Article  PubMed  CAS  Google Scholar 

  105. Baptista, P. M., Siddiqui, M. M., Lozier, G., Rodriguez, S. R., Atala, A., & Soker, S. (2011). The use of whole organ decellularization for the generation of a vascularized liver organoid. Hepatology, 53(2), 604–617. doi:10.1002/hep.24067.

    Article  PubMed  CAS  Google Scholar 

  106. Badylak SF, Zhang L, Medberry CJ, Fukumitsu K, Faulk D, Jiang H, Reing JE, Gramignoli R, Komori J, Ross M, Nagaya M, Lagasse E, Beer Stolz D, Strom S, Fox IJ (2011) A whole organ regenerative medicine approach for liver replacement. Tissue Engineering Part C: Methods 0 (ja):null. doi:10.1089/ten.TEC.2010.0698

  107. Ott, H. C., Clippinger, B., Conrad, C., Schuetz, C., Pomerantseva, I., Ikonomou, L., et al. (2010). Regeneration and orthotopic transplantation of a bioartificial lung. Nature Medicine, 16(8), 927–933. doi:10.1038/nm.2193.

    Article  PubMed  CAS  Google Scholar 

  108. Petersen, T. H., Calle, E. A., Zhao, L., Lee, E. J., Gui, L., Raredon, M. B., et al. (2010). Tissue-engineered lungs for in vivo implantation. Science, 329(5991), 538–541. doi:10.1126/science.1189345.

    Article  PubMed  CAS  Google Scholar 

  109. Price, A. P., England, K. A., Matson, A. M., Blazar, B. R., & Panoskaltsis-Mortari, A. (2010). Development of a decellularized lung bioreactor system for bioengineering the lung: The matrix reloaded. Tissue Engineering. Part A, 16(8), 2581–2591. doi:10.1089/ten.TEA.2009.0659.

    Article  PubMed  CAS  Google Scholar 

  110. Gilbert, T. W., Sellaro, T. L., & Badylak, S. F. (2006). Decellularization of tissues and organs. Biomaterials, 27(19), 3675–3683. doi:10.1016/j.biomaterials.2006.02.014.

    PubMed  CAS  Google Scholar 

  111. Crapo, P. M., Gilbert, T. W., & Badylak, S. F. (2011). An overview of tissue and whole organ decellularization processes. Biomaterials, 32(12), 3233–3243. doi:10.1016/j.biomaterials.2011.01.057.

    Article  PubMed  CAS  Google Scholar 

  112. Rieder, E., Kasimir, M. T., Silberhumer, G., Seebacher, G., Wolner, E., Simon, P., et al. (2004). Decellularization protocols of porcine heart valves differ importantly in efficiency of cell removal and susceptibility of the matrix to recellularization with human vascular cells. The Journal of Thoracic and Cardiovascular Surgery, 127(2), 399–405. doi:10.1016/j.jtcvs.2003.06.017.

    Article  PubMed  Google Scholar 

  113. Dahl, S. L., Koh, J., Prabhakar, V., & Niklason, L. E. (2003). Decellularized native and engineered arterial scaffolds for transplantation. Cell Transplantation, 12(6), 659–666.

    PubMed  Google Scholar 

  114. Velema J, Kaplan D (2006) Biopolymer-based biomaterials as scaffolds for tissue engineering. In: Lee K, Kaplan D (eds) Tissue Engineering I, vol 102. Advances in Biochemical Engineering/Biotechnology. Springer Berlin/Heidelberg, pp 187–238. doi:10.1007/10_013

  115. Mathur, A. B., & Gupta, V. (2010). Silk fibroin-derived nanoparticles for biomedical applications. Nanomedicine, 5(5), 807–820. doi:10.2217/nnm.10.51.

    Article  PubMed  CAS  Google Scholar 

  116. Jeong, L., Yeo, I.-S., Kim, H. N., Yoon, Y. I., Jang, D. H., Jung, S. Y., et al. (2009). Plasma-treated silk fibroin nanofibers for skin regeneration. International Journal of Biological Macromolecules, 44(3), 222–228. doi:10.1016/j.ijbiomac.2008.12.008.

    Article  PubMed  CAS  Google Scholar 

  117. Pierschbacher, M. D., & Ruoslahti, E. (1984). Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature, 309(5963), 30–33. doi:10.1038/309030a0.

    Article  PubMed  CAS  Google Scholar 

  118. Guerette, P. A., Ginzinger, D. G., Weber, B. H. F., & Gosline, J. M. (1996). Silk properties determined by gland-specific expression of a spider fibroin gene family. Science, 272(5258), 112–115. doi:10.1126/science.272.5258.112.

    Article  PubMed  CAS  Google Scholar 

  119. Leal-Egaña, A., & Scheibel, T. (2010). Silk-based materials for biomedical applications. Biotechnology and Applied Biochemistry, 55(3), 155–167. doi:10.1042/ba20090229.

    Article  PubMed  Google Scholar 

  120. Lv, Q., Hu, K., Feng, Q., & Cui, F. (2008). Fibroin/collagen hybrid hydrogels with crosslinking method: Preparation, properties, and cytocompatibility. Journal of Biomedical Materials Research. Part A, 84(1), 198–207. doi:10.1002/jbm.a.31366.

    Article  PubMed  CAS  Google Scholar 

  121. Kasoju, N., Bhonde, R. R., & Bora, U. (2009). Preparation and characterization of Antheraea assama silk fibroin based novel non-woven scaffold for tissue engineering applications. Journal of Tissue Engineering and Regenerative Medicine, 3(7), 539–552. doi:10.1002/term.196.

    Article  PubMed  CAS  Google Scholar 

  122. Altman, G. H., Horan, R. L., Lu, H. H., Moreau, J., Martin, I., Richmond, J. C., et al. (2002). Silk matrix for tissue engineered anterior cruciate ligaments. Biomaterials, 23(20), 4131–4141. doi:10.1016/s0142-9612(02)00156-4.

    Article  PubMed  CAS  Google Scholar 

  123. Nahmias, Y., Berthiaume, F., & Yarmush, M. L. (2007). Integration of technologies for hepatic tissue engineering. Advances in Biochemical Engineering/Biotechnology, 103, 309–329. doi:10.1007/10_029.

    Article  PubMed  Google Scholar 

  124. Zhang, X., Baughman, C. B., & Kaplan, D. L. (2008). In vitro evaluation of electrospun silk fibroin scaffolds for vascular cell growth. Biomaterials, 29(14), 2217–2227. doi:10.1016/j.biomaterials.2008.01.022.

    Article  PubMed  CAS  Google Scholar 

  125. Unger, R. E., Ghanaati, S., Orth, C., Sartoris, A., Barbeck, M., Halstenberg, S., et al. (2010). The rapid anastomosis between prevascularized networks on silk fibroin scaffolds generated in vitro with cocultures of human microvascular endothelial and osteoblast cells and the host vasculature. Biomaterials, 31(27), 6959–6967. doi:10.1016/j.biomaterials.2010.05.057.

    Article  PubMed  CAS  Google Scholar 

  126. Unger, R. E., Sartoris, A., Peters, K., Motta, A., Migliaresi, C., Kunkel, M., et al. (2007). Tissue-like self-assembly in cocultures of endothelial cells and osteoblasts and the formation of microcapillary-like structures on three-dimensional porous biomaterials. Biomaterials, 28(27), 3965–3976. doi:10.1016/j.biomaterials.2007.05.032.

    Article  PubMed  CAS  Google Scholar 

  127. Fuchs, S., Motta, A., Migliaresi, C., & Kirkpatrick, C. J. (2006). Outgrowth endothelial cells isolated and expanded from human peripheral blood progenitor cells as a potential source of autologous cells for endothelialization of silk fibroin biomaterials. Biomaterials, 27(31), 5399–5408. doi:10.1016/j.biomaterials.2006.06.015.

    Article  PubMed  CAS  Google Scholar 

  128. Fuchs, S., Jiang, X., Schmidt, H., Dohle, E., Ghanaati, S., Orth, C., et al. (2009). Dynamic processes involved in the pre-vascularization of silk fibroin constructs for bone regeneration using outgrowth endothelial cells. Biomaterials, 30(7), 1329–1338. doi:10.1016/j.biomaterials.2008.11.028.

    Article  PubMed  CAS  Google Scholar 

  129. Bramfeldt, H., Sabra, G., Centis, V., & Vermette, P. (2010). Scaffold vascularization: A challenge for three-dimensional tissue engineering. Current Medicinal Chemistry, 17(33), 3944–3967. doi:10.2174/092986710793205327.

    Article  PubMed  CAS  Google Scholar 

  130. de Mel, A., Jell, G., Stevens, M. M., & Seifalian, A. M. (2008). Biofunctionalization of biomaterials for accelerated in situ endothelialization: A review. Biomacromolecules, 9(11), 2969–2979. doi:10.1021/bm800681k.

    Article  PubMed  CAS  Google Scholar 

  131. Harley, B. A. C., & Gibson, L. J. (2008). In vivo and in vitro applications of collagen-GAG scaffolds. Chemical Engineering Journal, 137(1), 102–121. doi:10.1016/j.cej.2007.09.009.

    Article  CAS  Google Scholar 

  132. Sung, H. J., Meredith, C., Johnson, C., & Galis, Z. S. (2004). The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis. Biomaterials, 25(26), 5735–5742. doi:10.1016/j.biomaterials.2004.01.066.

    Article  PubMed  CAS  Google Scholar 

  133. Smith, I. O., Liu, X. H., Smith, L. A., & Ma, P. X. (2009). Nanostructured polymer scaffolds for tissue engineering and regenerative medicine. Wiley Interdisciplinary Reviews. Nanomedicine and Nanobiotechnology, 1(2), 226–236. doi:10.1002/wnan.26.

    Article  PubMed  CAS  Google Scholar 

  134. Zhu, J. (2010). Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering. Biomaterials, 31(17), 4639–4656. doi:10.1016/j.biomaterials.2010.02.044.

    Article  PubMed  CAS  Google Scholar 

  135. Gombotz, W. R., Guanghui, W., Horbett, T. A., & Hoffman, A. S. (1991). Protein adsorption to poly(ethylene oxide) surfaces. Journal of Biomedical Materials Research, 25(12), 1547–1562. doi:10.1002/jbm.820251211.

    Article  PubMed  CAS  Google Scholar 

  136. Lee, J. H., Lee, H. B., & Andrade, J. D. (1995). Blood compatibility of polyethylene oxide surfaces. Progress in Polymer Science, 20(6), 1043–1079. doi:10.1016/0079-6700(95)00011-4.

    Article  CAS  Google Scholar 

  137. Lee, D. Y., Nam, J. H., & Byun, Y. (2004). Effect of polyethylene glycol grafted onto islet capsules on prevention of splenocyte and cytokine attacks. J Biomater Sci Polym Ed, 15(6), 753–766. doi:10.1163/156856204774196144.

    Article  PubMed  CAS  Google Scholar 

  138. Mason, M. N., & Mahoney, M. J. (2010). A novel composite construct increases the vascularization potential of PEG hydrogels through the incorporation of large fibrin ribbons. Journal of Biomedical Materials Research. Part A, 95(1), 283–293. doi:10.1002/jbm.a.32825.

    Article  PubMed  CAS  Google Scholar 

  139. Hern, D. L., & Hubbell, J. A. (1998). Incorporation of adhesion peptides into nonadhesive hydrogels useful for tissue resurfacing. Journal of Biomedical Materials Research, 39(2), 266–276. doi:10.1002/(SICI)1097-4636(199802)39:2<266::AID-JBM14>3.0.CO;2-B.

    Article  PubMed  CAS  Google Scholar 

  140. Benton, J. A., DeForest, C. A., Vivekanandan, V., & Anseth, K. S. (2009). Photocrosslinking of gelatin macromers to synthesize porous hydrogels that promote valvular interstitial cell function. Tissue Engineering. Part A, 15(11), 3221–3230. doi:10.1089/ten.TEA.2008.0545.

    Article  PubMed  CAS  Google Scholar 

  141. Moon, J. J., Saik, J. E., Poché, R. A., Leslie-Barbick, J. E., Lee, S.-H., Smith, A. A., et al. (2010). Biomimetic hydrogels with pro-angiogenic properties. Biomaterials, 31(14), 3840–3847. doi:10.1016/j.biomaterials.2010.01.104.

    Article  PubMed  CAS  Google Scholar 

  142. Shah, N. M., Pool, M. D., & Metters, A. T. (2006). Influence of network structure on the degradation of photo-cross-linked PLA-b-PEG-b-PLA hydrogels. Biomacromolecules, 7(11), 3171–3177. doi:10.1021/bm060339z.

    Article  PubMed  CAS  Google Scholar 

  143. Martens, P. J., Bryant, S. J., & Anseth, K. S. (2003). Tailoring the degradation of hydrogels formed from multivinyl poly(ethylene glycol) and poly(vinyl alcohol) macromers for cartilage tissue engineering. Biomacromolecules, 4(2), 283–292. doi:10.1021/bm025666v.

    Article  PubMed  CAS  Google Scholar 

  144. Lin, C.-C., & Anseth, K. (2009). PEG hydrogels for the controlled release of biomolecules in regenerative medicine. Pharmaceutical Research, 26(3), 631–643. doi:10.1007/s11095-008-9801-2.

    Article  PubMed  CAS  Google Scholar 

  145. Bryant, S. J., Nuttelman, C. R., & Anseth, K. S. (2000). Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro. J Biomater Sci Polym Ed, 11(5), 439–457. doi:10.1163/156856200743805.

    Article  PubMed  CAS  Google Scholar 

  146. Kloxin, A. M., Kloxin, C. J., Bowman, C. N., & Anseth, K. S. (2010). Mechanical properties of cellularly responsive hydrogels and their experimental determination. Advanced Materials, 22(31), 3484–3494. doi:10.1002/adma.200904179.

    Article  PubMed  CAS  Google Scholar 

  147. Zustiak, S. P., & Leach, J. B. (2010). Hydrolytically degradable poly(ethylene glycol) hydrogel scaffolds with tunable degradation and mechanical properties. Biomacromolecules, 11(5), 1348–1357. doi:10.1021/bm100137q.

    Article  PubMed  CAS  Google Scholar 

  148. Phelps, E. A., & García, A. J. (2010). Engineering more than a cell: Vascularization strategies in tissue engineering. Current Opinion in Biotechnology, 21(5), 704–709. doi:10.1016/j.copbio.2010.06.005.

    Article  PubMed  CAS  Google Scholar 

  149. Chiu Y-C, Cheng M-H, Engel H, Kao S-W, Larson JC, Gupta S, Brey EM (2011). The role of pore size on vascularization and tissue remodeling in PEG hydrogels. Biomaterial, 32(26), 6045–6051. doi:10.1016/j.biomaterials.2011.04.066

    Google Scholar 

  150. Natesan, S., Zhang, G., Baer, D. G., Walters, T. J., Christy, R. J., & Suggs, L. J. (2011). A bilayer construct controls adipose-derived stem cell differentiation into endothelial cells and pericytes without growth factor stimulation. Tissue Engineering. Part A. doi:10.1089/ten.TEA.2010.0294.

  151. Dong, Y., Liao, S., Ngiam, M., Chan, C. K., & Ramakrishna, S. (2009). Degradation behaviors of electrospun resorbable polyester nanofibers. Tissue Engineering. Part B, Reviews, 15(3), 333–351. doi:10.1089/ten.TEB.2008.0619.

    Article  PubMed  CAS  Google Scholar 

  152. Miller, D. C., Haberstroh, K. M., & Webster, T. J. (2007). PLGA nanometer surface features manipulate fibronectin interactions for improved vascular cell adhesion. Journal of Biomedical Materials Research. Part A, 81A(3), 678–684. doi:10.1002/jbm.a.31093.

    Article  CAS  Google Scholar 

  153. Kim, T. G., & Park, T. G. (2006). Biomimicking extracellular matrix: Cell adhesive RGD peptide modified electrospun poly(d, l-lactic-co-glycolic acid) nanofiber mesh. Tissue Engineering, 12(2), 221–233. doi:10.1089/ten.2006.12.221.

    Article  PubMed  CAS  Google Scholar 

  154. You, Y., Lee, S. W., Youk, J. H., Min, B.-M., Lee, S. J., & Park, W. H. (2005). In vitro degradation behaviour of non-porous ultra-fine poly(glycolic acid)/poly(l-lactic acid) fibres and porous ultra-fine poly(glycolic acid) fibres. Polymer Degradation and Stability, 90(3), 441–448. doi:10.1016/j.polymdegradstab.2005.04.015.

    Article  CAS  Google Scholar 

  155. Sabir, M., Xu, X., & Li, L. (2009). A review on biodegradable polymeric materials for bone tissue engineering applications. Journal of Materials Science, 44(21), 5713–5724. doi:10.1007/s10853-009-3770-7.

    Article  CAS  Google Scholar 

  156. Fu, K., Pack, D. W., Klibanov, A. M., & Langer, R. (2000). Visual evidence of acidic environment within degrading poly(lactic-co-glycolic acid) (PLGA) microspheres. Pharmaceutical Research, 17(1), 100–106. doi:10.1023/A:1007582911958.

    Article  PubMed  CAS  Google Scholar 

  157. Boland, E. D., Telemeco, T. A., Simpson, D. G., Wnek, G. E., & Bowlin, G. L. (2004). Utilizing acid pretreatment and electrospinning to improve biocompatibility of poly(glycolic acid) for tissue engineering. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 71B(1), 144–152. doi:10.1002/jbm.b.30105.

    Article  CAS  Google Scholar 

  158. Agrawal, C. M., & Athanasiou, K. A. (1997). Technique to control pH in vicinity of biodegrading PLA–PGA implants. Journal of Biomedical Materials Research, 38(2), 105–114. doi:10.1002/(sici)1097-4636(199722)38:2<105::aid-jbm4>3.0.co;2-u.

    Article  PubMed  CAS  Google Scholar 

  159. Li, H., & Chang, J. (2005). pH-compensation effect of bioactive inorganic fillers on the degradation of PLGA. Composites Science and Technology, 65(14), 2226–2232. doi:10.1016/j.compscitech.2005.04.051.

    Article  CAS  Google Scholar 

  160. Sun, H., Qu, Z., Guo, Y., Zang, G., & Yang, B. (2007). In vitro and in vivo effects of rat kidney vascular endothelial cells on osteogenesis of rat bone marrow mesenchymal stem cells growing on polylactide-glycoli acid (PLGA) scaffolds. Biomedical Engineering Online, 6(1), 41.

    Article  PubMed  CAS  Google Scholar 

  161. Laschke, M. W., Rucker, M., Jensen, G., Carvalho, C., Mulhaupt, R., Gellrich, N. C., et al. (2008). Improvement of vascularization of PLGA scaffolds by inosculation of in situ-preformed functional blood vessels with the host microvasculature. Annals of Surgery, 248(6), 939–948. doi:10.1097/SLA.0b013e31818fa52f.

    Article  PubMed  Google Scholar 

  162. Rauch, M. F., Hynes, S. R., Bertram, J., Redmond, A., Robinson, R., Williams, C., et al. (2009). Engineering angiogenesis following spinal cord injury: A coculture of neural progenitor and endothelial cells in a degradable polymer implant leads to an increase in vessel density and formation of the blood-spinal cord barrier. Eur J Neurosci, 29(1), 132–145. doi:10.1111/j.1460-9568.2008.06567.x.

    Article  PubMed  Google Scholar 

  163. Stuart, K., & Panitch, A. (2008). Influence of chondroitin sulfate on collagen gel structure and mechanical properties at physiologically relevant levels. Biopolymers, 89(10), 841–851. doi:10.1002/bip.21024.

    Article  PubMed  CAS  Google Scholar 

  164. Janmey, P. A., Winer, J. P., & Weisel, J. W. (2009). Fibrin gels and their clinical and bioengineering applications. Journal of the Royal Society, Interface, 6(30), 1–10. doi:10.1098/rsif.2008.0327.

    Article  PubMed  CAS  Google Scholar 

  165. Bondar, B., Fuchs, S., Motta, A., Migliaresi, C., & Kirkpatrick, C. J. (2008). Functionality of endothelial cells on silk fibroin nets: Comparative study of micro- and nanometric fibre size. Biomaterials, 29(5), 561–572. doi:10.1016/j.biomaterials.2007.10.002.

    Article  PubMed  CAS  Google Scholar 

  166. Chaw KCM, M.; Tay, Francis E. H.; Swaminathan, S. (2006) Three-dimensional (3D) extra-cellular matrix coating of a microfluidic device. Journal of Physics: Conference Series 34 (1):747–751. doi:10.1088/1742-6596/34/1/123

  167. Kubo, T., Kimura, N., Hosoya, K., & Kaya, K. (2007). Novel polymer monolith prepared from a water-soluble crosslinking agent. Journal of Polymer Science Part A: Polymer Chemistry, 45(17), 3811–3817. doi:10.1002/pola.22130.

    Article  CAS  Google Scholar 

  168. Lee, J. Y., Bashur, C. A., Goldstein, A. S., & Schmidt, C. E. (2009). Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications. Biomaterials, 30(26), 4325–4335. doi:10.1016/j.biomaterials.2009.04.042.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work is funded, in part, by grants from the National Institutes of Health (RC1 ES018361 and R21 HL104203) and a training grant from the California Institute of Regenerative Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven C. George.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, L., George, S.C. Biomaterials to Prevascularize Engineered Tissues. J. of Cardiovasc. Trans. Res. 4, 685–698 (2011). https://doi.org/10.1007/s12265-011-9301-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-011-9301-3

Keywords

Navigation