Skip to main content

Advertisement

Log in

Bioengineering the Infarcted Heart by Applying Bio-inspired Materials

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Induction of cardiac muscle regeneration following myocardial infarction (MI) represents a major challenge in cardiovascular therapy, as the current clinical approaches are limited in their ability to regenerate a new muscle tissue and to replace infarcted myocardium. Here, we describe the conception of two strategies based on bio-inspired materials, aimed at myocardial repair after MI. In the first strategy, alginate biomaterial was designed with affinity-binding moieties, enabling the binding of heparin-binding proteins and their controlled presentation and release. The combined features of this unique alginate hydrogel, as a temporary extracellular matrix replacement and a depot for bio-molecules such as insulin-like growth factor-1 and hepatocyte growth factor, led to improvements in cardiac structure and function, as demonstrated by the biomaterial’s abilities to thicken the scar and prevent left-ventricular remodeling and dilatation. Endogenous regeneration occurring at the infarct as manifested by the enhanced angiogenesis, cardiomyocyte proliferation, and appearance of cardiac-related stem cells is likely to have contributed to this. In the second strategy, phosphatidylserine (PS)-presenting liposomes were developed to mimic apoptotic cells bodies, specifically their capability of immunomodulating activated macrophages into anti-inflammatory state. In a rat model of acute MI, targeting of PS-presenting liposomes to infarct macrophages after injection via the femoral vein was demonstrated by magnetic resonance imaging. The treatment promoted angiogenesis, the preservation of small scars, and prevention of ventricular dilatation and remodeling. Collectively, the two bio-inspired material-based strategies presented herein represent unique and clinical accessible approaches for myocardial infarct repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. World Health Organization. The atlas of heart disease and stroke. http://www.who.int/cardiovascular_diseases/resources/atlas/en/

  2. Lloyd-Jones, D., Adams, R. J., Brown, T. M., et al. (2010). Heart disease and stroke statistics—2010 update: a report from the American Heart Association. Circulation, 121(7), e46–e215.

    Article  PubMed  Google Scholar 

  3. McMurray, J. J. (2010). Clinical practice. Systolic heart failure. The New England Journal of Medicine, 362(3), 228–238.

    Article  PubMed  CAS  Google Scholar 

  4. Bergmann, O., Bhardwaj, R. D., Bernard, S., Zdunek, S., Barnabe-Heider, F., Walsh, S., et al. (2009). Evidence for cardiomyocyte renewal in humans. Science, 324(5923), 98–102.

    Article  PubMed  CAS  Google Scholar 

  5. Kajstura, J., Urbanek, K., Perl, S., Hosoda, T., Zheng, H., Ogorek, B., et al. (2010). Cardiomyogenesis in the adult human heart. Circulation Research, 107(2), 305–315.

    Article  PubMed  CAS  Google Scholar 

  6. Hsieh, P. C., Segers, V. F., Davis, M. E., MacGillivray, C., Gannon, J., Molkentin, J. D., et al. (2007). Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nature Medicine, 13(8), 970–974.

    Article  PubMed  CAS  Google Scholar 

  7. Parmacek, M. S., & Epstein, J. A. (2009). Cardiomyocyte renewal. New England Journal of Medicine, 361(1), 86–88.

    Article  PubMed  CAS  Google Scholar 

  8. Porrello, E. R., Mahmoud, A. I., Simpson, E., Hill, J. A., Richardson, J. A., Olson, E. N., et al. (2011). Transient regenerative potential of the neonatal mouse heart. Science, 331(6020), 1078–1080.

    Article  PubMed  CAS  Google Scholar 

  9. Jopling, C., Sleep, E., Raya, M., Marti, M., Raya, A., & Belmonte, J. C. (2010). Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature, 464(7288), 606–609.

    Article  PubMed  CAS  Google Scholar 

  10. Novoyatleva, T., Diehl, F., van Amerongen, M. J., Patra, C., Ferrazzi, F., Bellazzi, R., et al. (2010). TWEAK is a positive regulator of cardiomyocyte proliferation. Cardiovascular Research, 85(4), 681–690.

    Article  PubMed  CAS  Google Scholar 

  11. Bersell, K., Arab, S., Haring, B., & Kuhn, B. (2009). Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell, 138(2), 257–270.

    Article  PubMed  CAS  Google Scholar 

  12. Hassink, R. J., Pasumarthi, K. B., Nakajima, H., Rubart, M., Soonpaa, M. H., de la Riviere, A. B., et al. (2008). Cardiomyocyte cell cycle activation improves cardiac function after myocardial infarction. Cardiovascular Research, 78(1), 18–25.

    Article  PubMed  CAS  Google Scholar 

  13. Campa, V. M., Gutierrez-Lanza, R., Cerignoli, F., Diaz-Trelles, R., Nelson, B., Tsuji, T., et al. (2008). Notch activates cell cycle reentry and progression in quiescent cardiomyocytes. The Journal of Cell Biology, 183(1), 129–141.

    Article  PubMed  CAS  Google Scholar 

  14. Ahuja, P., Sdek, P., & MacLellan, W. R. (2007). Cardiac myocyte cell cycle control in development, disease, and regeneration. Physiological Reviews, 87(2), 521–544.

    Article  PubMed  CAS  Google Scholar 

  15. Bollini, S., Smart, N., & Riley, P. R. (2011). Resident cardiac progenitor cells: at the heart of regeneration. Journal of Molecular and Cellular Cardiology, 50, 296–303. doi:10.1016/j.yjmcc.2010.07.006.

    Article  PubMed  CAS  Google Scholar 

  16. Ruvinov, E., Dvir, T., Leor, J., & Cohen, S. (2008). Myocardial repair: From salvage to tissue reconstruction. Expert Review of Cardiovascular Therapy, 6(5), 669–686.

    Article  PubMed  CAS  Google Scholar 

  17. Abbate, A., Bussani, R., Amin, M. S., Vetrovec, G. W., & Baldi, A. (2006). Acute myocardial infarction and heart failure: Role of apoptosis. The International Journal of Biochemistry & Cell Biology, 38(11), 1834–1840.

    Article  CAS  Google Scholar 

  18. Garg, S., Narula, J., & Chandrashekhar, Y. (2005). Apoptosis and heart failure: Clinical relevance and therapeutic target. Journal of Molecular and Cellular Cardiology, 38(1), 73–79.

    Article  PubMed  CAS  Google Scholar 

  19. Nian, M., Lee, P., Khaper, N., & Liu, P. (2004). Inflammatory cytokines and postmyocardial infarction remodeling. Circulation Research, 94(12), 1543–1553.

    Article  PubMed  CAS  Google Scholar 

  20. Frangogiannis, N. G., Smith, C. W., & Entman, M. L. (2002). The inflammatory response in myocardial infarction. Cardiovascular Research, 53(1), 31–47.

    Article  PubMed  CAS  Google Scholar 

  21. Leask, A. (2007). TGFbeta, cardiac fibroblasts, and the fibrotic response. Cardiovascular Research, 74(2), 207–212.

    Article  PubMed  CAS  Google Scholar 

  22. Vanhoutte, D., Schellings, M., Pinto, Y., & Heymans, S. (2006). Relevance of matrix metalloproteinases and their inhibitors after myocardial infarction: a temporal and spatial window. Cardiovascular Research, 69(3), 604–613.

    Article  PubMed  CAS  Google Scholar 

  23. Renault, M. A., & Losordo, D. W. (2007). Therapeutic myocardial angiogenesis. Microvascular Research, 74(2–3), 159–171.

    Article  PubMed  CAS  Google Scholar 

  24. Tomanek, R. J., Zheng, W., & Yue, X. (2004). Growth factor activation in myocardial vascularization: Therapeutic implications. Molecular and Cellular Biochemistry, 264(1–2), 3–11.

    Article  PubMed  CAS  Google Scholar 

  25. Zampetaki, A., Kirton, J. P., & Xu, Q. (2008). Vascular repair by endothelial progenitor cells. Cardiovascular Research, 78(3), 413–421.

    Article  PubMed  CAS  Google Scholar 

  26. Menasche, P. (2011). Cardiac cell therapy: Lessons from clinical trials. Journal of Molecular and Cellular Cardiology, 50, 258–265. doi:10.1016/j.yjmcc.2010.06.010.

    Article  PubMed  CAS  Google Scholar 

  27. Segers, V. F., & Lee, R. T. (2008). Stem-cell therapy for cardiac disease. Nature, 451(7181), 937–942.

    Article  PubMed  CAS  Google Scholar 

  28. Chavakis, E., Koyanagi, M., & Dimmeler, S. (2010). Enhancing the outcome of cell therapy for cardiac repair: progress from bench to bedside and back. Circulation, 121(2), 325–335.

    Article  PubMed  Google Scholar 

  29. Hansson, E. M., Lindsay, M. E., & Chien, K. R. (2009). Regeneration next: toward heart stem cell therapeutics. Cell Stem Cell, 5(4), 364–377.

    Article  PubMed  CAS  Google Scholar 

  30. Dimmeler, S., Burchfield, J., & Zeiher, A. M. (2008). Cell-based therapy of myocardial infarction. Arteriosclerosis, Thrombosis, and Vascular Biology, 28(2), 208–216.

    Article  PubMed  CAS  Google Scholar 

  31. Maltais, S., Tremblay, J. P., Perrault, L. P., & Ly, H. Q. (2010). The paracrine effect: pivotal mechanism in cell-based cardiac repair. Journal of Cardiovascular Translational Research, 3(6), 652–662.

    Article  PubMed  Google Scholar 

  32. Mirotsou, M., Jayawardena, T. M., Schmeckpeper, J., Gnecchi, M., & Dzau, V. J. (2011). Paracrine mechanisms of stem cell reparative and regenerative actions in the heart. Journal of Molecular and Cellular Cardiology, 50, 280–289. doi:10.1016/j.yjmcc.2010.08.005.

    Article  PubMed  CAS  Google Scholar 

  33. Gnecchi, M., Zhang, Z., Ni, A., & Dzau, V. J. (2008). Paracrine mechanisms in adult stem cell signaling and therapy. Circulation Research, 103(11), 1204–1219.

    Article  PubMed  CAS  Google Scholar 

  34. Laflamme, M. A., Zbinden, S., Epstein, S. E., & Murry, C. E. (2007). Cell-based therapy for myocardial ischemia and infarction: pathophysiological mechanisms. Annual Review of Pathology, 2, 307–339.

    Article  PubMed  CAS  Google Scholar 

  35. Beohar, N., Rapp, J., Pandya, S., & Losordo, D. W. (2010). Rebuilding the damaged heart the potential of cytokines and growth factors in the treatment of ischemic heart disease. Journal of the American College of Cardiology, 56(16), 1287–1297.

    Article  PubMed  Google Scholar 

  36. Vandervelde, S., van Luyn, M. J., Tio, R. A., & Harmsen, M. C. (2005). Signaling factors in stem cell-mediated repair of infarcted myocardium. Journal of Molecular and Cellular Cardiology, 39(2), 363–376.

    Article  PubMed  CAS  Google Scholar 

  37. Hausenloy, D. J., & Yellon, D. M. (2009). Cardioprotective growth factors. Cardiovascular Research, 83(2), 179–194.

    Article  PubMed  CAS  Google Scholar 

  38. Zohlnhofer, D., Dibra, A., Koppara, T., de Waha, A., Ripa, R. S., Kastrup, J., et al. (2008). Stem cell mobilization by granulocyte colony-stimulating factor for myocardial recovery after acute myocardial infarction: a meta-analysis. Journal of the American College of Cardiology, 51(15), 1429–1437.

    Article  PubMed  CAS  Google Scholar 

  39. Abdel-Latif, A., Bolli, R., Zuba-Surma, E. K., Tleyjeh, I. M., Hornung, C. A., & Dawn, B. (2008). Granulocyte colony-stimulating factor therapy for cardiac repair after acute myocardial infarction: A systematic review and meta-analysis of randomized controlled trials. American Heart Journal, 156(2), 216–226.

    Article  PubMed  CAS  Google Scholar 

  40. Lee, T. M., Chen, C. C., & Chang, N. C. (2009). Granulocyte colony-stimulating factor increases sympathetic reinnervation and the arrhythmogenic response to programmed electrical stimulation after myocardial infarction in rats. The American Journal of Physiology, 297(2), H512–H522.

    CAS  Google Scholar 

  41. Christman, K. L., & Lee, R. J. (2006). Biomaterials for the treatment of myocardial infarction. Journal of the American College of Cardiology, 48(5), 907–913.

    Article  PubMed  CAS  Google Scholar 

  42. Nelson, D. M., Ma, Z., Fujimoto, K. L., Hashizume, R., & Wagner, W. R. (2011). Intra-myocardial biomaterial injection therapy in the treatment of heart failure: Materials, outcomes and challenges. Acta Biomaterialia, 7(1), 1–15.

    Article  PubMed  CAS  Google Scholar 

  43. Miyagawa, S., Roth, M., Saito, A., Sawa, Y., & Kostin, S. (2011). Tissue-engineered cardiac constructs for cardiac repair. The Annals of Thoracic Surgery, 91(1), 320–329.

    Article  PubMed  Google Scholar 

  44. Vunjak-Novakovic, G., Tandon, N., Godier, A., Maidhof, R., Marsano, A., Martens, T. P., et al. (2010). Challenges in cardiac tissue engineering. Tissue Engineering. Part B, Reviews, 16(2), 169–187.

    Article  PubMed  Google Scholar 

  45. Jugdutt, B. I. (2003). Ventricular remodeling after infarction and the extracellular collagen matrix: When is enough enough? Circulation, 108(11), 1395–1403.

    Article  PubMed  Google Scholar 

  46. Spinale, F. G. (2007). Myocardial matrix remodeling and the matrix metalloproteinases: influence on cardiac form and function. Physiological Reviews, 87(4), 1285–1342.

    Article  PubMed  CAS  Google Scholar 

  47. Iraqi, W., Rossignol, P., Angioi, M., Fay, R., Nuee, J., Ketelslegers, J. M., et al. (2009). Extracellular cardiac matrix biomarkers in patients with acute myocardial infarction complicated by left ventricular dysfunction and heart failure: Insights from the Eplerenone Post-Acute Myocardial Infarction Heart Failure Efficacy and Survival Study (EPHESUS) Study. Circulation, 119(18), 2471–2479.

    Article  PubMed  CAS  Google Scholar 

  48. Akhyari, P., Kamiya, H., Haverich, A., Karck, M., & Lichtenberg, A. (2008). Myocardial tissue engineering: The extracellular matrix. European Journal of Cardio-Thoracic Surgery, 34(2), 229–241.

    Article  PubMed  Google Scholar 

  49. Dobaczewski, M., Gonzalez-Quesada, C., & Frangogiannis, N. G. (2010). The extracellular matrix as a modulator of the inflammatory and reparative response following myocardial infarction. Journal of Molecular and Cellular Cardiology, 48(3), 504–511.

    Article  PubMed  CAS  Google Scholar 

  50. Landa, N., Miller, L., Feinberg, M. S., Holbova, R., Shachar, M., Freeman, I., et al. (2008). Effect of injectable alginate implant on cardiac remodeling and function after recent and old infarcts in rat. Circulation, 117(11), 1388–1396.

    Article  PubMed  CAS  Google Scholar 

  51. Leor, J., Tuvia, S., Guetta, V., Manczur, F., Castel, D., Willenz, U., et al. (2009). Intracoronary injection of in situ forming alginate hydrogel reverses left ventricular remodeling after myocardial infarction in Swine. Journal of the American College of Cardiology, 54(11), 1014–1023.

    Article  PubMed  Google Scholar 

  52. Dai, W., Wold, L. E., Dow, J. S., & Kloner, R. A. (2005). Thickening of the infarcted wall by collagen injection improves left ventricular function in rats: A novel approach to preserve cardiac function after myocardial infarction. Journal of the American College of Cardiology, 46(4), 714–719.

    Article  PubMed  CAS  Google Scholar 

  53. Christman, K. L., Fok, H. H., Sievers, R. E., Fang, Q., & Lee, R. J. (2004). Fibrin glue alone and skeletal myoblasts in a fibrin scaffold preserve cardiac function after myocardial infarction. Tissue Engineering, 10(3–4), 403–409.

    Article  PubMed  CAS  Google Scholar 

  54. Christman, K. L., Vardanian, A. J., Fang, Q., Sievers, R. E., Fok, H. H., & Lee, R. J. (2004). Injectable fibrin scaffold improves cell transplant survival, reduces infarct expansion, and induces neovasculature formation in ischemic myocardium. Journal of the American College of Cardiology, 44(3), 654–660.

    Article  PubMed  CAS  Google Scholar 

  55. Masuda, S., Shimizu, T., Yamato, M., & Okano, T. (2008). Cell sheet engineering for heart tissue repair. Advanced Drug Delivery Reviews, 60(2), 277–285.

    Article  PubMed  CAS  Google Scholar 

  56. Shimizu, T., Yamato, M., Kikuchi, A., & Okano, T. (2003). Cell sheet engineering for myocardial tissue reconstruction. Biomaterials, 24(13), 2309–2316.

    Article  PubMed  CAS  Google Scholar 

  57. Wang, T., Wu, D. Q., Jiang, X. J., Zhang, X. Z., Li, X. Y., Zhang, J. F., et al. (2009). Novel thermosensitive hydrogel injection inhibits post-infarct ventricle remodelling. European Journal of Heart Failure, 11(1), 14–19.

    Article  PubMed  CAS  Google Scholar 

  58. Yu, J., Christman, K. L., Chin, E., Sievers, R. E., Saeed, M., & Lee, R. J. (2009). Restoration of left ventricular geometry and improvement of left ventricular function in a rodent model of chronic ischemic cardiomyopathy. The Journal of Thoracic and Cardiovascular Surgery, 137(1), 180–187.

    Article  PubMed  Google Scholar 

  59. Mukherjee, R., Zavadzkas, J. A., Saunders, S. M., McLean, J. E., Jeffords, L. B., Beck, C., et al. (2008). Targeted myocardial microinjections of a biocomposite material reduces infarct expansion in pigs. The Annals of Thoracic Surgery, 86(4), 1268–1276.

    Article  PubMed  Google Scholar 

  60. Ifkovits, J. L., Tous, E., Minakawa, M., Morita, M., Robb, J. D., Koomalsingh, K. J., et al. (2010). Injectable hydrogel properties influence infarct expansion and extent of postinfarction left ventricular remodeling in an ovine model. Proceedings of the National Academy of Sciences of the United States of America, 107(25), 11507–11512.

    Article  PubMed  CAS  Google Scholar 

  61. Wall, S. T., Walker, J. C., Healy, K. E., Ratcliffe, M. B., & Guccione, J. M. (2006). Theoretical impact of the injection of material into the myocardium: A finite element model simulation. Circulation, 114(24), 2627–2635.

    Article  PubMed  Google Scholar 

  62. Gaudette, G. R., & Cohen, I. S. (2006). Cardiac regeneration: materials can improve the passive properties of myocardium, but cell therapy must do more. Circulation, 114(24), 2575–2577.

    Article  PubMed  Google Scholar 

  63. Davis, M. E., Hsieh, P. C., Grodzinsky, A. J., & Lee, R. T. (2005). Custom design of the cardiac microenvironment with biomaterials. Circulation Research, 97(1), 8–15.

    Article  PubMed  CAS  Google Scholar 

  64. Freeman, I., Kedem, A., & Cohen, S. (2008). The effect of sulfation of alginate hydrogels on the specific binding and controlled release of heparin-binding proteins. Biomaterials, 29(22), 3260–3268.

    Article  PubMed  CAS  Google Scholar 

  65. Freeman, I., & Cohen, S. (2009). The influence of the sequential delivery of angiogenic factors from affinity-binding alginate scaffolds on vascularization. Biomaterials, 30(11), 2122–2131.

    Article  PubMed  CAS  Google Scholar 

  66. Shriver, Z., Liu, D., & Sasisekharan, R. (2002). Emerging views of heparan sulfate glycosaminoglycan structure/activity relationships modulating dynamic biological functions. European Journal of Heart Failure, 12(2), 71–77.

    CAS  Google Scholar 

  67. Dvir, T., Kedem, A., Ruvinov, E., Levy, O., Freeman, I., Landa, N., et al. (2009). Prevascularization of cardiac patch on the omentum improves its therapeutic outcome. Proceedings of the National Academy of Sciences of the United States of America, 106(35), 14990–14995.

    Article  PubMed  CAS  Google Scholar 

  68. Conti, E., Carrozza, C., Capoluongo, E., Volpe, M., Crea, F., Zuppi, C., et al. (2004). Insulin-like growth factor-1 as a vascular protective factor. Circulation, 110, 2260–2265.

    Article  PubMed  Google Scholar 

  69. Nakamura, T., Mizuno, S., Matsumoto, K., Sawa, Y., & Matsuda, H. (2000). Myocardial protection from ischemia/reperfusion injury by endogenous and exogenous HGF. Journal of Clinical Investigation, 106(12), 1511–1519.

    Article  PubMed  CAS  Google Scholar 

  70. Ruvinov, E., Leor, J., & Cohen, S. (2011). The promotion of myocardial repair by the sequential delivery of IGF-1 and HGF from an injectable alginate biomaterial in a model of acute myocardial infarction. Biomaterials, 32(2), 565–578.

    Article  PubMed  CAS  Google Scholar 

  71. Suleiman, M. S., Singh, R. J., & Stewart, C. E. (2007). Apoptosis and the cardiac action of insulin-like growth factor I. Pharmacology & Therapeutics, 114(3), 278–294.

    Article  CAS  Google Scholar 

  72. Li, Q., Li, B., Wang, X., Leri, A., Jana, K. P., Liu, Y., et al. (1997). Overexpression of insulin-like growth factor-1 in mice protects from myocyte death after infarction, attenuating ventricular dilation, wall stress, and cardiac hypertrophy. Journal of Clinical Investigation, 100(8), 1991–1999.

    Article  PubMed  CAS  Google Scholar 

  73. Webster, K. A. (2007). Programmed death as a therapeutic target to reduce myocardial infarction. Trends in Pharmacological Sciences, 28(9), 492–499.

    Article  PubMed  CAS  Google Scholar 

  74. Tomita, N., Morishita, R., Taniyama, Y., Koike, H., Aoki, M., Shimizu, H., et al. (2003). Angiogenic property of hepatocyte growth factor is dependent on upregulation of essential transcription factor for angiogenesis, ets-1. Circulation, 107(10), 1411–1417.

    Article  PubMed  CAS  Google Scholar 

  75. Nakamura, T., Matsumoto, K., Mizuno, S., Sawa, Y., & Matsuda, H. (2005). Hepatocyte growth factor prevents tissue fibrosis, remodeling, and dysfunction in cardiomyopathic hamster hearts. American Journal of Physiology, 288(5), H2131–H2139.

    PubMed  CAS  Google Scholar 

  76. Wang, Y., Ahmad, N., Wani, M. A., & Ashraf, M. (2004). Hepatocyte growth factor prevents ventricular remodeling and dysfunction in mice via Akt pathway and angiogenesis. Journal of Molecular and Cellular Cardiology, 37(5), 1041–1052.

    Article  PubMed  CAS  Google Scholar 

  77. Frantz, S., Bauersachs, J., & Ertl, G. (2009). Post-infarct remodelling: contribution of wound healing and inflammation. Cardiovascular Research, 81(3), 474–481.

    Article  PubMed  CAS  Google Scholar 

  78. Ruvinov, E., Leor, J., & Cohen, S. (2010). The effects of controlled HGF delivery from an affinity-binding alginate biomaterial on angiogenesis and blood perfusion in a hindlimb ischemia model. Biomaterials, 31(16), 4573–4582.

    Article  PubMed  CAS  Google Scholar 

  79. Segers, V. F., & Lee, R. T. (2007). Local delivery of proteins and the use of self-assembling peptides. Drug Discovery Today, 12(13–14), 561–568.

    Article  PubMed  CAS  Google Scholar 

  80. Hsieh, P. C., Davis, M. E., Gannon, J., MacGillivray, C., & Lee, R. T. (2006). Controlled delivery of PDGF-BB for myocardial protection using injectable self-assembling peptide nanofibers. Journal of Clinical Investigation, 116(1), 237–248.

    Article  PubMed  CAS  Google Scholar 

  81. Davis, M. E., Hsieh, P. C., Takahashi, T., Song, Q., Zhang, S., Kamm, R. D., et al. (2006). Local myocardial insulin-like growth factor 1 (IGF-1) delivery with biotinylated peptide nanofibers improves cell therapy for myocardial infarction. Proceedings of the National Academy of Sciences of the United States of America, 103(21), 8155–8160.

    Article  PubMed  CAS  Google Scholar 

  82. Segers, V. F., Tokunou, T., Higgins, L. J., MacGillivray, C., Gannon, J., & Lee, R. T. (2007). Local delivery of protease-resistant stromal cell derived factor-1 for stem cell recruitment after myocardial infarction. Circulation, 116(15), 1683–1692.

    Article  PubMed  CAS  Google Scholar 

  83. Richardson, T. P., Peters, M. C., Ennett, A. B., & Mooney, D. J. (2001). Polymeric system for dual growth factor delivery. Nature Biotechnology, 19(11), 1029–1034.

    Article  PubMed  CAS  Google Scholar 

  84. Lu, H., Xu, X., Zhang, M., Cao, R., Brakenhielm, E., Li, C., et al. (2007). Combinatorial protein therapy of angiogenic and arteriogenic factors remarkably improves collaterogenesis and cardiac function in pigs. Proceedings of the National Academy of Sciences of the United States of America, 104(29), 12140–12145.

    Article  PubMed  CAS  Google Scholar 

  85. Hao, X., Silva, E. A., Mansson-Broberg, A., Grinnemo, K. H., Siddiqui, A. J., Dellgren, G., et al. (2007). Angiogenic effects of sequential release of VEGF-A(165) and PDGF-BB with alginate hydrogels after myocardial infarction. Cardiovascular Research, 75(1), 178–185.

    Article  PubMed  CAS  Google Scholar 

  86. Lambert, J. M., Lopez, E. F., & Lindsey, M. L. (2008). Macrophage roles following myocardial infarction. International Journal of Cardiology, 130(2), 147–158.

    Article  PubMed  Google Scholar 

  87. Nahrendorf, M., Swirski, F. K., Aikawa, E., Stangenberg, L., Wurdinger, T., Figueiredo, J. L., et al. (2007). The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. Journal of Clinical Immunology, 204(12), 3037–3047.

    CAS  Google Scholar 

  88. Troidl, C., Mollmann, H., Nef, H., Masseli, F., Voss, S., Szardien, S., et al. (2009). Classically and alternatively activated macrophages contribute to tissue remodelling after myocardial infarction. Journal of Cellular and Molecular Medicine, 13(9B), 3485–3496.

    Article  PubMed  CAS  Google Scholar 

  89. Torre-Amione, G., Anker, S. D., Bourge, R. C., Colucci, W. S., Greenberg, B. H., Hildebrandt, P., et al. (2008). Results of a non-specific immunomodulation therapy in chronic heart failure (ACCLAIM trial): a placebo-controlled randomised trial. Lancet, 371(9608), 228–236.

    Article  PubMed  CAS  Google Scholar 

  90. Leor, J., Rozen, L., Zuloff-Shani, A., Feinberg, M. S., Amsalem, Y., Barbash, I. M., et al. (2006). Ex vivo activated human macrophages improve healing, remodeling, and function of the infarcted heart. Circulation, 114(1 Suppl), I94–I100.

    PubMed  Google Scholar 

  91. Fürnrohr, B. G., Sheriff, A., Munoz, L., von Briesen, H., Urbonaviciute, V., Neubert, K., et al. (2005). Signals, receptors, and cytokines involved in the immunomodulatory and anti-inflammatory properties of apoptotic cells. Signal Transduction, 5(6), 356–365.

    Article  CAS  Google Scholar 

  92. Bose, J., Gruber, A. D., Helming, L., Schiebe, S., Wegener, I., Hafner, M., et al. (2004). The phosphatidylserine receptor has essential functions during embryogenesis but not in apoptotic cell removal. Journal of Biology, 3(4), 15.

    Article  PubMed  Google Scholar 

  93. Fadok, V. A., Voelker, D. R., Campbell, P. A., Cohen, J. J., Bratton, D. L., & Henson, P. M. (1992). Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. Journal of Immunology, 148(7), 2207–2216.

    CAS  Google Scholar 

  94. Huynh, M. L., Fadok, V. A., & Henson, P. M. (2002). Phosphatidylserine-dependent ingestion of apoptotic cells promotes TGF-beta1 secretion and the resolution of inflammation. Journal of Clinical Investigation, 109(1), 41–50.

    PubMed  CAS  Google Scholar 

  95. Thum, T., Bauersachs, J., Poole-Wilson, P. A., Volk, H. D., & Anker, S. D. (2005). The dying stem cell hypothesis: immune modulation as a novel mechanism for progenitor cell therapy in cardiac muscle. Journal of the American College of Cardiology, 46(10), 1799–1802.

    Article  PubMed  CAS  Google Scholar 

  96. Harel-Adar, T., Ben Mordechai, T., Amsalem, Y., Feinberg, M. S., Leor, J., & Cohen, S. (2011). Modulation of cardiac macrophages by phosphatidylserine-presenting liposomes improves infarct repair. Proceedings of the National Academy of Sciences of the United States of America, 108(5), 1827–1832.

    Article  PubMed  CAS  Google Scholar 

  97. van der Meer, P., Lipsic, E., Henning, R. H., Boddeus, K., van der Velden, J., Voors, A. A., et al. (2005). Erythropoietin induces neovascularization and improves cardiac function in rats with heart failure after myocardial infarction. Journal of the American College of Cardiology, 46(1), 125–133.

    Article  PubMed  CAS  Google Scholar 

  98. Parsa, C. J., Matsumoto, A., Kim, J., Riel, R. U., Pascal, L. S., Walton, G. B., et al. (2003). A novel protective effect of erythropoietin in the infarcted heart. Journal of Clinical Investigation, 112(7), 999–1007.

    PubMed  CAS  Google Scholar 

  99. Torella, D., Rota, M., Nurzinska, D., Musso, E., Monsen, A., Shiraishi, I., et al. (2004). Cardiac stem cell and myocyte aging, heart failure, and insulin-like growth factor-1 overexpression. Circulation Research, 94, 514–524.

    Article  PubMed  CAS  Google Scholar 

  100. Liao, S., Porter, D., Scott, A., Newman, G., Doetschman, T., & Schultz Jel, J. (2007). The cardioprotective effect of the low molecular weight isoform of fibroblast growth factor-2: The role of JNK signaling. Journal of Molecular and Cellular Cardiology, 42(1), 106–120.

    Article  PubMed  CAS  Google Scholar 

  101. Bougioukas, I., Didilis, V., Ypsilantis, P., Giatromanolaki, A., Sivridis, E., Lialiaris, T., et al. (2007). Intramyocardial injection of low-dose basic fibroblast growth factor or vascular endothelial growth factor induces angiogenesis in the infarcted rabbit myocardium. Cardiovascular Pathology, 16(2), 63–68.

    Article  PubMed  CAS  Google Scholar 

  102. Harada, M., Qin, Y., Takano, H., Minamino, T., Zou, Y., Toko, H., et al. (2005). G-CSF prevents cardiac remodeling after myocardial infarction by activating the Jak-Stat pathway in cardiomyocytes. Nature Medicine, 11(3), 305–311.

    Article  PubMed  CAS  Google Scholar 

  103. Takano, H., Ueda, K., Hasegawa, H., & Komuro, I. (2007). G-CSF therapy for acute myocardial infarction. Trends in Pharmacological Sciences, 28(10), 512–517.

    Article  PubMed  CAS  Google Scholar 

  104. Kondo, I., Ohmori, K., Oshita, A., Takeuchi, H., Fuke, S., Shinomiya, K., et al. (2004). Treatment of acute myocardial infarction by hepatocyte growth factor gene transfer: the first demonstration of myocardial transfer of a "functional" gene using ultrasonic microbubble destruction. Journal of the American College of Cardiology, 44(3), 644–653.

    Article  PubMed  CAS  Google Scholar 

  105. Jayasankar, V., Woo, Y. J., Bish, L. T., Pirolli, T. J., Chatterjee, S., Berry, M. F., et al. (2003). Gene transfer of hepatocyte growth factor attenuates postinfarction heart failure. Circulation, 108(Suppl 1), II230–II236.

    PubMed  Google Scholar 

  106. Hsieh, P. C. H., MacGillivray, C., Gannon, J., Cruz, F. U., & Lee, R. T. (2006). Local controlled intramyocardial delivery of platelet-derived growth factor improves postinfarction ventricular function without pulmonary toxicity. Circulation, 114, 637–644.

    Article  PubMed  CAS  Google Scholar 

  107. Hiasa, K., Ishibashi, M., Ohtani, K., Inoue, S., Zhao, Q., Kitamoto, S., et al. (2004). Gene transfer of stromal cell-derived factor-1alpha enhances ischemic vasculogenesis and angiogenesis via vascular endothelial growth factor/endothelial nitric oxide synthase-related pathway: next-generation chemokine therapy for therapeutic neovascularization. Circulation, 109(20), 2454–2461.

    Article  PubMed  CAS  Google Scholar 

  108. Hu, X., Dai, S., Wu, W. J., Tan, W., Zhu, X., Mu, J., et al. (2007). Stromal cell derived factor-1 alpha confers protection against myocardial ischemia/reperfusion injury: role of the cardiac stromal cell derived factor-1 alpha CXCR4 axis. Circulation, 116(6), 654–663.

    Article  PubMed  CAS  Google Scholar 

  109. Ferrarini, M., Arsic, N., Recchia, F. A., Zentilin, L., Zacchigna, S., Xu, X., et al. (2006). Adeno-associated virus-mediated transduction of VEGF165 improves cardiac tissue viability and functional recovery after permanent coronary occlusion in conscious dogs. Circulation Research, 98(7), 954–961.

    Article  PubMed  CAS  Google Scholar 

  110. Vera Janavel, G., Crottogini, A., Cabeza Meckert, P., Cuniberti, L., Mele, A., Papouchado, M., et al. (2006). Plasmid-mediated VEGF gene transfer induces cardiomyogenesis and reduces myocardial infarct size in sheep. Gene Therapy, 13(15), 1133–1142.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The research was supported in part by grants from the Israel Science Foundation (793/04 and 1368/08) and European Union FWP7 (INELPY). Prof. Cohen holds the Claire and Harold Oshry Professor Chair in Biotechnology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emil Ruvinov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruvinov, E., Harel-Adar, T. & Cohen, S. Bioengineering the Infarcted Heart by Applying Bio-inspired Materials. J. of Cardiovasc. Trans. Res. 4, 559–574 (2011). https://doi.org/10.1007/s12265-011-9288-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-011-9288-9

Keywords

Navigation