Skip to main content

Advertisement

Log in

Effect of ABCB1 Genotype on Pre- and Post-Cardiac Transplantation Plasma Lipid Concentrations

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Genetic variation of ATP-binding cassette subfamily B member 1 (ABCB1) which encodes P-glycoprotein (P-gp) has been associated with lipid levels and response to statins. Here, we studied these associations in patients with advanced heart failure who subsequently underwent transplantation. Fasting total cholesterol (TC), low density lipoprotein (LDL) cholesterol, high density lipoprotein (HDL) cholesterol and triglycerides (TG) concentrations in 268 adult heart transplant recipients were analysed retrospectively before and at 1 year after transplantation (n = 176). ABCB1 genotyping and haplotyping for C1236T, G2677T/A and C3435T was performed using polymerase chain reaction. Pre-transplant LDL cholesterol was found to be associated with the C3435T genotype and the G2677T/A-C3435T and C1236T-G2677T/A-C3435T haplotypes. T-allele carriers at all loci (n = 77) had higher LDL levels than non-T-allele carriers (n = 24, 3.5 ± 1.2 vs. 2.8 ± 1.2 mmol/L, respectively, p = 0.025). This association remained after adjustment for age, sex, body mass index, statin use and underlying ischaemic heart disease. ABCB1 genotype was not associated with post-transplant lipid parameters. Hypercholesterolaemia (TC >5.7 mmol/L) was more prevalent post-transplant than pre-transplant (51% vs. 30%, respectively) and was likely related to steroid and calcineurin inhibitor use. Muscle-related statin effects were only seen in patients possessing the T-haplotype. In conclusion, an association between ABCB1 haplotype and plasma fasting LDL cholesterol concentration was found in patients with advanced heart failure. This association was not seen 1 year after cardiac transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ABCB1 :

ATP-binding cassette, subfamily B, member 1

HDL:

High density lipoprotein

LDL:

Low density lipoprotein

MDR1 :

Multidrug resistance gene 1

ns:

Non-significant

PCR:

Polymerase chain reaction

SNP:

Single nucleotide polymorphism

TC:

Total cholesterol

TG:

Triglycerides

References

  1. Wenke, K. (2004). Management of hyperlipidaemia associated with heart transplantation. Drugs, 64(10), 1053–1068.

    Article  PubMed  CAS  Google Scholar 

  2. Escobar, A., Ventura, H. O., Stapleton, D. D., Mehra, M. R., Ramee, S. R., Collins, T. J., et al. (1994). Cardiac allograft vasculopathy assessed by intravascular ultrasonography and nonimmunologic risk factors. The American Journal of Cardiology, 74(10), 1042–1046.

    Article  PubMed  CAS  Google Scholar 

  3. Kapadia, S. R., Nissen, S. E., Ziada, K. M., Rincon, G., Crowe, T. D., Boparai, N., et al. (2001). Impact of lipid abnormalities in development and progression of transplant coronary disease: a serial intravascular ultrasound study. Journal of the American College of Cardiology, 38(1), 206–213.

    Article  PubMed  CAS  Google Scholar 

  4. Bilchick, K. C., Henrikson, C. A., Skojec, D., Kasper, E. K., & Blumenthal, R. S. (2004). Treatment of hyperlipidemia in cardiac transplant recipients. American Heart Journal, 148(2), 200–210.

    Article  PubMed  CAS  Google Scholar 

  5. Hosenpud, J. D., Bennett, L. E., Keck, B. M., Boucek, M. M., & Novick, R. J. (2000). The Registry of the International Society for Heart and Lung Transplantation: seventeenth official report—2000. The Journal of Heart and Lung Transplantation, 19(10), 909–931.

    Article  PubMed  CAS  Google Scholar 

  6. Tous, M., Ribas, V., Ferre, N., Escola-Gil, J. C., Blanco-Vaca, F., Alonso-Villaverde, C., et al. (2005). Turpentine-induced inflammation reduces the hepatic expression of the multiple drug resistance gene, the plasma cholesterol concentration and the development of atherosclerosis in apolipoprotein E deficient mice. Biochimica et Biophysica Acta, 1733(2–3), 192–198.

    PubMed  CAS  Google Scholar 

  7. Metherall, J. E., Li, H., & Waugh, K. (1996). Role of multidrug resistance P-glycoproteins in cholesterol biosynthesis. The Journal of Biological Chemistry, 271, 2634–2640.

    Article  PubMed  CAS  Google Scholar 

  8. Rodrigues, A. C., Rebecchi, I. M., Bertolami, M. C., Faludi, A. A., Hirata, M. H., & Hirata, R. D. (2005). High baseline serum total and LDL cholesterol levels are associated with MDR1 haplotypes in Brazilian hypercholesterolemic individuals of European descent. Brazilian Journal of Medical and Biological Research, 38(9), 1389–1397.

    Article  PubMed  CAS  Google Scholar 

  9. Jeannesson, E., Siest, G., Bastien, B., Albertini, L., Aslanidis, C., Schmitz, G., et al. (2009). Association of ABCB1 gene polymorphisms with plasma lipid and apolipoprotein concentrations in the STANISLAS cohort. Clinica Chimica Acta, 403(1–2), 198–202.

    Article  CAS  Google Scholar 

  10. Kajinami, K., Brousseau, M. E., Ordovas, J. M., & Schaefer, E. J. (2004). Polymorphisms in the multidrug resistance-1 (MDR1) gene influence the response to atorvastatin treatment in a gender-specific manner. The American Journal of Cardiology, 93(8), 1046–1050.

    Article  PubMed  CAS  Google Scholar 

  11. Chinn, L. W., & Kroetz, D. L. (2007). ABCB1 pharmacogenetics: progress, pitfalls, and promise. Clinical Pharmacology and Therapeutics, 81(2), 265–269.

    Article  PubMed  CAS  Google Scholar 

  12. Salama, N. N., Yang, Z., Bui, T., & Ho, R. J. (2006). MDR1 haplotypes significantly minimize intracellular uptake and transcellular P-gp substrate transport in recombinant LLC-PK1 cells. Journal of Pharmaceutical Sciences, 95, 2293–2308.

    Article  PubMed  CAS  Google Scholar 

  13. Goard, C. A., Mather, R. G., Vinepal, B., Clendening, J. W., Martirosyan, A., Boutros, P. C., Sharom, F. J., Penn, L. Z. (2010). Differential interactions between statins and P-glycoprotein: implications for exploiting statins as anticancer agents. International Journal of Cancer [Epub ahead of print].

  14. Bogman, K., Peyer, A. K., Torok, M., Kusters, E., & Drewe, J. (2001). HMG-CoA reductase inhibitors and P-glycoprotein modulation. British Journal of Pharmacology, 132(6), 1183–1192.

    Article  PubMed  CAS  Google Scholar 

  15. Neuvonen, P. J., Niemi, M., & Backman, J. T. (2006). Drug interactions with lipid-lowering drugs: mechanisms and clinical relevance. Clinical Pharmacology and Therapeutics, 80(6), 565–581.

    Article  PubMed  CAS  Google Scholar 

  16. Keskitalo, J. E., Kurkinen, K. J., Neuvoneni, P. J., & Niemi, M. (2008). ABCB1 haplotypes differentially affect the pharmacokinetics of the acid and lactone forms of simvastatin and atorvastatin. Clinical Pharmacology and Therapeutics, 84(4), 457–461.

    Article  PubMed  CAS  Google Scholar 

  17. Becker, M. L., Visser, L. E., van Schaik, R. H., Hofman, A., Uitterlinden, A. G., & Stricker, B. H. (2009). Common genetic variation in the ABCB1 gene is associated with the cholesterol-lowering effect of simvastatin in males. Pharmacogenomics, 10(11), 1743–1751.

    Article  PubMed  CAS  Google Scholar 

  18. Fiegenbaum, M., da Silveira, F. R., Van der Sand, C. R., Van der Sand, L. C., Ferreira, M. E., Pires, R. C., et al. (2005). The role of common variants of ABCB1, CYP3A4, and CYP3A5 genes in lipid-lowering efficacy and safety of simvastatin treatment. Clinical Pharmacology and Therapeutics, 78(5), 551–558.

    Article  PubMed  CAS  Google Scholar 

  19. Olerup, O., & Zetterquist, H. (1992). HLA-DR typing by PCR amplification with sequence-specific primers (PCR-SSP) in 2 hours: an alternative to serological DR typing in clinical practice including donor-recipient matching in cadaveric transplantation. Tissue Antigens, 39(5), 225–235.

    Article  PubMed  CAS  Google Scholar 

  20. Taegtmeyer, A. B., Breen, J. B., Smith, J., Burke, M., Leaver, N., Pantelidis, P., et al. (2010). ATP-binding cassette subfamily B member 1 polymorphisms do not determine cyclosporin exposure, acute rejection or nephrotoxicity after heart transplantation. Transplantation, 89(1), 75–82.

    Article  PubMed  CAS  Google Scholar 

  21. Friedewald, W. T., Levy, R. I., & Fredrickson, D. S. (1972). Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clinical Chemistry, 18(6), 499–502.

    PubMed  CAS  Google Scholar 

  22. Kroetz, D. L., Pauli-Magnus, C., Hodges, L. M., Huang, C. C., Kawamoto, M., Johns, S. J., et al. (2003). Sequence diversity and haplotype structure in the human ABCB1 (MDR1, multidrug resistance transporter) gene. Pharmacogenetics, 13(8), 481–494.

    Article  PubMed  CAS  Google Scholar 

  23. Cascorbi, I., Gerloff, T., Johne, A., Meisel, C., Hoffmeyer, S., Schwab, M., et al. (2001). Frequency of single nucleotide polymorphisms in the P-glycoprotein drug transporter MDR1 gene in white subjects. Clinical Pharmacology and Therapeutics, 69(3), 169–174.

    Article  PubMed  CAS  Google Scholar 

  24. Rauchhaus, M., Clark, A. L., Doehner, W., Davos, C., Bolger, A., Sharma, R., et al. (2003). The relationship between cholesterol and survival in patients with chronic heart failure. Journal of the American College of Cardiology, 42(11), 1933–1940.

    Article  PubMed  CAS  Google Scholar 

  25. Wedel, H., McMurray, J. J., Lindberg, M., Wikstrand, J., Cleland, J. G., Cornel, J. H., et al. (2009). Predictors of fatal and non-fatal outcomes in the Controlled Rosuvastatin Multinational Trial in Heart Failure (CORONA): incremental value of apolipoprotein A-1, high-sensitivity C-reactive peptide and N-terminal pro B-type natriuretic peptide. European Journal of Heart Failure, 11(3), 281–291.

    Article  PubMed  CAS  Google Scholar 

  26. Berry, C., & Clark, A. L. (2000). Catabolism in chronic heart failure. European Heart Journal, 21(7), 521–532.

    Article  PubMed  CAS  Google Scholar 

  27. Akhlaghi, F., Jackson, C. H., Parameshwar, J., Sharples, L. D., & Trull, A. K. (2002). Risk factors for the development and progression of dyslipidemia after heart transplantation. Transplantation, 73(8), 1258–1264.

    Article  PubMed  CAS  Google Scholar 

  28. Ballantyne, C. M., Radovancevic, B., Farmer, J. A., Frazier, O. H., Chandler, L., Payton-Ross, C., et al. (1992). Hyperlipidemia after heart transplantation: report of a 6-year experience, with treatment recommendations. Journal of the American College of Cardiology, 19(6), 1315–1321.

    Article  PubMed  CAS  Google Scholar 

  29. Kobashigawa, J. A., Katznelson, S., Laks, H., Johnson, J. A., Yeatman, L., Wang, X. M., et al. (1995). Effect of pravastatin on outcomes after cardiac transplantation. The New England Journal of Medicine, 333(10), 621–627.

    Article  PubMed  CAS  Google Scholar 

  30. Kathiresan, S., Willer, C. J., Peloso, G. M., Demissie, S., Musunuru, K., Schadt, E. E., et al. (2009). Common variants at 30 loci contribute to polygenic dyslipidemia. Nature Genetics, 41, 56–65.

    Article  PubMed  CAS  Google Scholar 

  31. Keskitalo, J. E., Kurkinen, K. J., Neuvonen, M., Backman, J. T., Neuvonen, P. J., & Niemi, M. (2009). No significant effect of ABCB1 haplotypes on the pharmacokinetics of fluvastatin, pravastatin, lovastatin, and rosuvastatin. British Journal of Clinical Pharmacology, 68(2), 207–213.

    Article  PubMed  CAS  Google Scholar 

  32. Moghadasian, M. H. (2002). A safety look at currently available statins. Expert Opinion on Drug Safety, 1(3), 269–274.

    Article  PubMed  CAS  Google Scholar 

  33. Penninga, L., Moller, C. H., Gustafsson, F., Steinbruchel, D. A., & Gluud, C. (2010). Tacrolimus versus cyclosporine as primary immunosuppression after heart transplantation: systematic review with meta-analyses and trial sequential analyses of randomised trials. European Journal of Clinical Pharmacology, 66(12), 1177–1187.

    Article  PubMed  CAS  Google Scholar 

  34. Cummins, C. L., Jacobsen, W., & Benet, L. Z. (2002). Unmasking the dynamic interplay between intestinal P-glycoprotein and CYP3A4. The Journal of Pharmacology and Experimental Therapeutics, 300(3), 1036–1045.

    Article  PubMed  CAS  Google Scholar 

  35. Link, E., Parish, S., Armitage, J., Bowman, L., Heath, S., Matsuda, F., et al. (2008). SLCO1B1 variants and statin-induced myopathy—a genomewide study. The New England Journal of Medicine, 359(8), 789–799.

    Article  PubMed  CAS  Google Scholar 

  36. Niemi, M. (2010). Transporter pharmacogenetics and statin toxicity. Clinical Pharmacology and Therapeutics, 87(1), 130–133.

    Article  PubMed  CAS  Google Scholar 

Download references

Funding Sources

This work was supported by Magdi Yacoub Institute and the Royal Brompton, the Harefield NHS Trust Clinical Research Committee and the National Institutes of Health Research Cardiovascular Biomedical Research Unit at the Royal Brompton and Harefield NHS Foundation Trust and Imperial College.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne B. Taegtmeyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taegtmeyer, A.B., Breen, J.B., Smith, J. et al. Effect of ABCB1 Genotype on Pre- and Post-Cardiac Transplantation Plasma Lipid Concentrations. J. of Cardiovasc. Trans. Res. 4, 304–312 (2011). https://doi.org/10.1007/s12265-011-9269-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-011-9269-z

Keywords

Navigation