Skip to main content
Log in

Extracorporeal Membrane Oxygenation Induced Cardiac Dysfunction in Newborn Lambs

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Extracorporeal membrane oxygenation (ECMO) is routinely used to support cardiopulmonary failure in infants and children. Suboptimal outcomes for primary cardiac support suggest a need for investigation of the impact of ECMO on the heart. Twenty-four newborn lambs received a brief period of ECMO support to investigate the hypothesis that ECMO produces cardiac dysfunction in newborn lamb. Dorset newborn lambs, 4–7 days of age, were exposed to ECMO for 5 min at a 100 ml/kg flow rate and quickly weaned off. Measurements included echocardiographic mean left ventricular (LV) velocity of circumferential fiber shortening corrected for heart rate (mVCFc), LV shortening fraction, and peak systolic wall stress plus hemodynamic measurement of LV maximum rate of pressure change with time (LV dp/dt max), maximum rate of pressure change divided by developed pressure (LV dp/dtP), right atrial pressure, pulmonary capillary wedge pressure, mean pulmonary artery pressure, LV peak and end-diastolic pressure, and aortic pressure. These measures were also obtained after an exposure to 5 min of ECMO and immediate disconnect for 5 min, followed by ECMO administration for 1 h again, followed by discontinuation of ECMO. LV mVCFc is decreased after exposure to 5 min of ECMO support despite a decrease in LV peak systolic wall stress that provides afterload reduction. LV mVCFc is inversely related to peak systolic wall stress at a significance level of p < 0.0001. The time period after initiation of ECMO is a significant factor in the model (p = 0.0097). Time [baseline] was different from the other time points with p = 0.0010. Average mVCFc at baseline is 1.27 ± 0.35 and decreases to 1.01 ± 0.42 after 5 min of ECMO that is then withdrawn. Peak systolic wall stress decreases from 36.0 ± 13.1 at baseline to 29.8 ± 12.1 after 5 min of ECMO. LV dp/dt max decreases from 1,769 ± 453 mmHg/s at baseline to 1,311 ± 513 mmHg/s after exposure to 5 min of ECMO (p = 0.0005). Baseline LV dp/dt max is different from each point after start of ECMO. Diastolic LVdp/dt min increased from −1,340 ± 477 mmHg/s to −908 ± 393 mmHg/s at 5 min. Echocardiographic mVCFc, when considered in isolation or as a function of LV peak systolic wall stress, shows diminished LV function after ECMO. Hemodynamic measurement of LV dp/dt max and LV dp/dt min confirms the observation. Separation of the humoral from mechanical effect of ECMO with the short exposure to the extracorporeal circuit shows that an immediate decrement of LV function occurs at initiation of ECMO, a finding that has not been stressed with previous studies of extracorporeal support. This implies a potentially outcome-limiting deleterious effect for the patient who requires ECMO support for the heart rather than the lungs. We should continue to strive to understand and ameliorate this deleterious effect of the extracorporeal circulation circuit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Klein, M. D., Shaheen, K. W., Whittlesey, G. C., Pinsky, W. W., & Arciniegas, E. (1990). Extracorporeal membrane oxygenation for the support of children after repair of congenital heart disease. The Journal of Thoracic and Cardiovascular Surgery, 100, 498–505.

    PubMed  CAS  Google Scholar 

  2. Martin, G. R., Short, B. L., Abbott, C., & O’Brien, A. M. (1991). Cardiac stun in infants undergoing extracorporeal membrane oxygenation. The Journal of Thoracic and Cardiovascular Surgery, 101, 607–611.

    PubMed  CAS  Google Scholar 

  3. Pyles, L. A., Xu, R., Fortney, J. E., Gustafson, R. A., Rosen, D. A., Dalal, N. S., et al. (1994). Oxygen radical generation at onset of cardiac bypass. Pediatric Research, 35(part 2), 40A.

    Google Scholar 

  4. Cooper, D. S., Jacobs, J. P., Moore, L., et al. (2007). Cardiac extracorporeal life support: State of the art in 2007. Cardiology in the Young, 17(suppl. 2), 104–115.

    PubMed  Google Scholar 

  5. Haines, N. M., Rycus, P. T., Zwischenberger, J. B., Bartlett, R. H., & Undar, A. (2009). Extracorporeal life support registry report 2008: Neonatal and pediatric cardiac cases. ASAIO Journal, 55, 111–116.

    Article  PubMed  Google Scholar 

  6. Del Nido, P. J., Dalton, H. J., Thompson, A. E., & Siewers, R. D. (1992). Extracorporeal membrane oxygenator rescue in children during cardiac arrest after cardiac surgery. Circ, 86, II300–II304.

    Google Scholar 

  7. Ihnken, K., Morita, K., Buckberg, G. D., Sherman, M. P., & Young, H. (1995). Studies of hypoxemic/reoxygenation injury without aortic clamping III. Comparison of the magnitude of damage by hypoxemia/reogygenation versus ischemia/reperfusion. The Journal of Thoracic and Cardiovascular Surgery, 110, 1182–1189.

    Article  PubMed  CAS  Google Scholar 

  8. Colan, S. D., Borow, K. M., & Neumann, A. (1984). Left ventricular end-systolic wall stress-velocity of fiber shortening relation: A load independent index of myocardial contractility. Journal of the American College of Cardiology, 4, 715–724.

    Article  PubMed  CAS  Google Scholar 

  9. Sandor, G. G., Popov, R. O., deSouza, E. S., Morris, S., & Johnston, B. (1992). Rate-corrected mean velocity of fiber shortening-stress at peak systole as a load-independent measure of contractility. The American Journal of Cardiology, 69, 403–407.

    Article  PubMed  CAS  Google Scholar 

  10. Yang, S. S., Bentivoglio, L. G., Maranhao, V., & Goldberg, H. (1988). From cardiac catheterization to hemodynamic parameters (3rd ed.). Philadelphia: F.A. Davis.

    Google Scholar 

  11. Mergner, G. W., Weglicki, W. B., & Kramer, J. H. (1991). Postischemic free radical production in the venous blood of the regionally ischemic swine heart. Circ, 84, 2079–2090.

    CAS  Google Scholar 

  12. Aharon, A. S., Drinkwater, D. C., Jr., Churchwell, K. B., et al. (2001). Extracorporeal membrane oxygenation in children after repair of congenital cardiac lesions. The Annals of Thoracic Surgery, 72(6), 2095–2101.

    Article  PubMed  CAS  Google Scholar 

  13. Lequier, L., Joffe, A. R., Robertson, C. M., et al. (2008). Two-year survival, mental, and motor outcomes after extracorporeal life support at less than 5 years of age. The Journal of Thoracic and Cardiovascular Surgery, 136, 976–983.

    Article  PubMed  Google Scholar 

  14. Martin, G. R., & Short, B. L. (1988). Doppler echocardiographic evaluation of cardiac performance in infants on prolonged extracorporeal membrane oxygenation. The American Journal of Cardiology, 62, 929–934.

    Article  PubMed  CAS  Google Scholar 

  15. Martin, G. R., Chauvin, L., & Short, B. L. (1991). Effects of hydralazine on cardiac performance in infants receiving extracorporeal membrane oxygenation. Journal of Pediatrics, 118, 944–948.

    Article  PubMed  CAS  Google Scholar 

  16. Kimball, T. R., Daniels, S. R., Weiss, R. G., et al. (1991). Changes in cardiac function during extracorporeal membrane oxygenation for persistent pulmonary hypertension in the newborn infant. Journal of Pediatrics, 118, 431–436.

    Article  PubMed  CAS  Google Scholar 

  17. Walther, F. J., van de Bor, M., Gangitano, E. S., & Snyder, J. R. (1990). Left and right ventricular output in newborn infants undergoing extracorporeal membrane oxygenation. Critical Care Medicine, 18, 148–151.

    Article  PubMed  CAS  Google Scholar 

  18. Bolli, R., Patel, B. S., Jeroudi, M. O., et al. (1988). Demonstration of free radical generation in “stunned” myocardium of intact dogs with the use of the spin trap a-phenyl-tert-butylnitrone. Journal of Clinical Investigation, 82, 476–485.

    Article  PubMed  CAS  Google Scholar 

  19. Nilsson, L., Kulander, L., Nystrom, S., & Eriksson, O. (1990). Endotoxins in cardiopulmonary bypass. The Journal of Thoracic and Cardiovascular Surgery, 100, 777–780.

    PubMed  CAS  Google Scholar 

  20. Barry, Y. A., Labow, R. S., Keon, W. J., Tocchi, M., & Rock, G. (1989). Perioperative exposure to plasticizers in patients undergoing cardiopulmonary bypass. The Journal of Thoracic and Cardiovascular Surgery, 97, 900–905.

    PubMed  CAS  Google Scholar 

  21. Shen, I., Levy, F. H., Akimoto, H., Benak, A. M., Thomas, R., O'Rourke, P. P., et al. (1993). Depression of left ventricular systolic performance during veno-arterial extracorporeal membrane oxygenation. Circ, 88I, 143. Abstract 0751.

    Google Scholar 

  22. Shen, I., Levy, F. H., Vocelka, C. R., O'Rourke, P. P., Duncan, B. W., Thomas, R., et al. (2001). Effect of extracorporeal membrane oxygenation on left ventricular function of swine. The Annals of Thoracic Surgery, 71(3), 862–867.

    Article  PubMed  CAS  Google Scholar 

  23. Kinsella, J. P., Gerstmann, D. R., & Rosenberg, A. A. (1992). The effect of extracorporeal membrane oxygenation on coronary perfusion and regional blood flow distribution. Pediatric Research, 31, 80–84.

    Article  PubMed  CAS  Google Scholar 

  24. Chaturvedi, R. R., Lincoln, C., Gothard, J. W. W., et al. (1998). Left ventricular dysfunction after open repair of simple congenital heart defects in infants and children: Quantitation with the use of a conductance catheter immediately after bypass. The Journal of Thoracic and Cardiovascular Surgery, 115, 77–83.

    Article  PubMed  CAS  Google Scholar 

  25. Rastan, A. J., Bittner, H. B., Gummert, J. F., et al. (2005). On-pump beating heart versus off-pump coronary artery bypass surgery—Evidence of pump induced myocardial injury. European Journal of Cardiothoracic Surgery, 27, 1057–1064.

    Article  PubMed  Google Scholar 

  26. Chowdhury, U. K., Malik, V., Yadav, R., et al. (2008). Myocardial injury in coronary artery bypass grafting: On-pump versus off-pump comparison by measuring high-sensitivity C-reactive protein, cardiac troponin I, heart-type fatty acid-binding protein, creatine kinase-MB, and myoglobin release. The Journal of Thoracic and Cardiovascular Surgery, 135, 1110–1119.

    Article  PubMed  CAS  Google Scholar 

  27. Kozik, D. J., & Tweddell, J. S. (2006). Characterizing the inflammatory response to cardiopulmonary bypass in children. The Annals of Thoracic Surgery, 81, S2347–S2354.

    Article  PubMed  Google Scholar 

  28. Labow, R. S., Barry, J. A., Tocchi, M., & Keon, W. J. (1990). The effect of mono(2-ethylhexyl)phthalate on an isolated perfused rat heart–lung preparation. Environmental Health Perspectives, 89, 189–193.

    Article  PubMed  CAS  Google Scholar 

  29. Molicki, J. S., Draaisma, A. M., Verbeet, N., et al. (2001). Prime solutions for cardiopulmonary bypass in neonates: Antioxidant capacity of prime based on albumin or fresh frozen plasma. The Journal of Thoracic and Cardiovascular Surgery, 122, 449–456.

    Article  PubMed  CAS  Google Scholar 

  30. Pyles, L. A., Fortney, J. E., Kudlak, J. J., Gustafson, R. A., & Einzig, S. (1995). Plasma antioxidant depletion after cardiopulmonary bypass for congenital heart surgery. The Journal of Thoracic and Cardiovascular Surgery, 110, 166–171.

    Article  Google Scholar 

  31. Yoshizumi, K., Ishino, K., Ugaki, S., et al. (2009). Effect of a miniaturized cardiopulmonary bypass system on the inflammatory response and cardiac function in neonatal piglets. Artificial Organs, 33, 941–946.

    Article  PubMed  Google Scholar 

  32. Hickey, E., Karamlou, T., You, J., & Ungerleider, R. M. (2006). Effects of circuit miniaturization in reducing inflammatory response to infant cardiopulmonary bypass by elimination of allogeneic blood products. The Annals of Thoracic Surgery, 81, S2367–S2372.

    Article  PubMed  Google Scholar 

  33. Gaynor, J. W. (1998). Use of modified ultrafiltration after repair of congenital heart defects. Seminars in thoracic and cardiovascular surgery. Pediatric Cardiac Surgery Annual, 1, 81–90.

    PubMed  Google Scholar 

  34. Hammerschmidt, D. E., Stroncek, D. F., Bowers, T. K., et al. (1981). Complement activation and neutropenia occurring during cardiopulmonary bypass. The Journal of Thoracic and Cardiovascular Surgery, 81, 370–377.

    PubMed  CAS  Google Scholar 

  35. Faymonville, M. E., Pincemail, J., Duchateau, J., et al. (1991). Myeloperoxidase and elastase as markers of leukocyte activation during cardiopulmonary bypass in humans. The Journal of Thoracic and Cardiovascular Surgery, 102, 309–317.

    PubMed  CAS  Google Scholar 

  36. Chenoweth, D. E., Cooper, S. W., Hugli, T. E., et al. (1981). Complement activation during cardiopulmonary bypass: Evidence for generation of C3a and C5a anaphylatoxins. The New England Journal of Medicine, 304, 497–503.

    Article  PubMed  CAS  Google Scholar 

  37. Braude, S., Nolop, K. B., Fleming, J. S., Krausz, T., Taylor, K. M., & Royston, D. (1986). Increased pulmonary transvascular protein flux after canine cardiopulmonary bypass: Association with lung neutrophil sequestration and tissue peroxidation. The American Review of Respiratory Disease, 143, 867–872.

    Google Scholar 

  38. Clermont, G., Vergely, C., Jazayeri, S., et al. (2002). Ssytemic free radical activation is a major event involved in myocardial oxidative stress related to cardiac bypass. Anesthesiology, 96, 80–87.

    Article  PubMed  CAS  Google Scholar 

  39. Cavarocchi, N. C., England, M. D., Schaff, H. V., et al. (1986). Oxygen free radical generation during cardiopulmonary bypass: Correlation with complement activation. Circ, 74(supp III), III130–III133.

    CAS  Google Scholar 

  40. Cavarocchi, N., England, M. D., O'Brien, J. F., et al. (1986). Superoxide generation during cardiopulmonary bypass: Is there a role for vitamin E? The Journal of Surgical Research, 40, 519–527.

    Article  PubMed  CAS  Google Scholar 

  41. Roysten, D., & Fleming, J. S. (1986). Increased production of peroxidation products associated with cardiac operations. The Journal of Thoracic and Cardiovascular Surgery, 91, 759–766.

    Google Scholar 

  42. Fleming, J. S. (1984). Production of thiobarbituric acid-reactive material during experimental cardiopulmonary bypass in cows. Artificial Organs, 8, 91–96.

    Article  PubMed  CAS  Google Scholar 

  43. Kamada, T., McMillan, D. E., Sternlieb, J. J., et al. (1987). Erythrocyte crenation induced by free fatty acids in patients undergoing extracorporeal circulation. Lancet, 330, 818–821.

    Article  Google Scholar 

  44. Wenwu, Z., Debing, Z., Renwei, C., et al. (2010). Limb ischemic preconditioning reduces heart and lung injury after an open heart operation in infants. Pediatric Cardiology, 31, 22–29.

    Article  Google Scholar 

  45. Dauber, I.M., Welsh, C.H., & Weil, J.V. (1988). Cardiopulmonary bypass-induced pulmonary and coronary vascular injury is decreased by pentoxyfylline in pentoxifylline and leukocyte function. In: G.L. Mandell & W.J. Novick (Eds.) Somerville: Hoechst-Roussel Pharm.

  46. Liakopoulos, O. J., Teucher, N., Muhlfeld, C., et al. (2006). Prevention of TNF-α-associated myocardial dysfunction resulting from cardiopulmonary bypass and cardioplegic arrest by glucocorticoid treatment. European journal of cardio-thoracic surgery, 30, 263–270.

    Article  PubMed  Google Scholar 

  47. Zhang, M., & Chen, Li. (2008). Status of cytokines in ischemia reperfusion induced heart injury. Cardiovascular & Hematological Disorders Drug Targets, 8, 161–172.

    Article  CAS  Google Scholar 

  48. Baig, K., Nassar, R., Craig, D. M., et al. (2007). Complement factor 1 inhibition improves cardiopulmonary function in neonatal cardiopulmonary bypass. The Annals of Thoracic Surgery, 83, 1477–1483.

    Article  PubMed  Google Scholar 

  49. Pearl, J. M., Nelson, D. P., Wagner, C. J., Lombardi, J. P., & Duffy, J. Y. (2001). Endothelin receptor blockade reduces ventricular dysfunction and injury after reoxygenation. The Annals of Thoracic Surgery, 72, 565–570.

    Article  PubMed  CAS  Google Scholar 

  50. Wilson, I., Gillinov, A. M., Curtis, W. E., et al. (1993). Inhibition of neutrophil adherence improves postischemic ventricular performance of the neonatal heart. Circ, 88(part 2), 372–379.

    Google Scholar 

  51. Shen, I., Levy, F. H., Benak, A. M., et al. (2001). Left Ventricular dysfunction during extracorporeal membrane oxygenation in a hypoxemic swine model. The Annals of Thoracic Surgery, 71, 868–871.

    Article  PubMed  CAS  Google Scholar 

  52. Shen, I., Levy, F. H., Vocelka, C. R., et al. (2001). Effect of extracorporeal membrane oxygenation on left ventricular function of swine. The Annals of Thoracic Surgery, 71, 862–867.

    Article  PubMed  CAS  Google Scholar 

  53. Kolocassides, K. G., Galinanes, M., & Hearse, D. J. (1996). Ischemic preconditioning, cardioplegia or both? Differing approaches to myocardial and vascular protection. Journal of Molecular and Cellular Cardiology, 28, 623–634.

    Article  PubMed  CAS  Google Scholar 

  54. Castella, M., Buckberg, G. D., Tan, Z., & Ignarro, L. J. (2002). Myocyte and endothelial effects of preconditioning the jeopardized heart by inhibiting Na+/H+ exchange. The Journal of Thoracic and Cardiovascular Surgery, 124, 1113–1121.

    Article  PubMed  CAS  Google Scholar 

  55. Baines, M., & Shenkin, A. (2002). Use of antioxidants in surgery: A measure to reduce postoperative complications. Current Opinion in Clinical Nutrition and Metabolic Care, 5, 665–670.

    Article  PubMed  CAS  Google Scholar 

  56. Millei, J., Ferreira, R., Grana, D. R., & Boveris, A. (2001). Oxidative stress and mitochondrial damage in coronary artery bypass graft surgery: Effects of antioxidant treatments. Comparative therapeutics, 27, 108–116.

    Article  Google Scholar 

  57. Kaltman, J. R., Andropoulos, D. B., Checchia, P. A., et al. (2010). Report of the pediatric heart network and National Heart, Lung, and Blood Institute Working Group on the perioperative management of congenital heart disease. Circ, 121, 2766–2772.

    Article  Google Scholar 

  58. Tomasdottir, H., Hjartarson, H., Ricksten, A., et al. (2003). Tumor necrosis factor gene polymorphism is associated with enhanced systemic inflammatory response and increased cardiopulmonary morbidity after cardiac surgery. Anesthesia and Analgesia, 97, 944–949.

    Article  PubMed  CAS  Google Scholar 

  59. Wang, J., Bian, J., Wan, X., Zhu, K., Sun, Z., & Lu, A. (2010). Association between inflammatory genetic polymorphism and acute lung injury after cardiac surgery with cardiopulmonary bypass. Medical Science Monitor, 15, CR260–CR265.

    Google Scholar 

Download references

Acknowledgements

This study was funded by the West Virginia–Ohio Affiliate of the American Heart Association. The authors acknowledge the assistance of Naresh Dalal, Ph.D., Dirac Professor of Chemistry and Biochemistry at Florida State University with ESR spectroscopy performed in this investigation, as well as assistance from the WVU School of Agriculture and Dr. David Rosen from the Department of Anesthesia. The authors acknowledge the key contributions of Thomas P. Green, M.D., Ph.D., and Robin Steinhorn, M.D., to our previous studies of cardiac function during ECMO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lee A. Pyles.

Appendix

Appendix

Prediction expression for ANOVA of mVCFc

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pyles, L.A., Gustafson, R.A., Fortney, J. et al. Extracorporeal Membrane Oxygenation Induced Cardiac Dysfunction in Newborn Lambs. J. of Cardiovasc. Trans. Res. 3, 625–634 (2010). https://doi.org/10.1007/s12265-010-9215-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-010-9215-5

Keywords

Navigation