Skip to main content

Advertisement

Log in

MicroRNAs in Vascular Biology and Vascular Disease

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) have emerged as a novel class of endogenous, small, non-coding RNAs that negatively regulate over 30% of genes in a cell via degradation or translational inhibition of their target mRNAs. Functionally, an individual miRNA is important as a transcription factor because it is able to regulate the expression of its multiple target genes. Recent studies have identified that miRNAs are highly expressed in vasculature and their expression is deregulated in diseased vessels. miRNAs are found to be critical modulators for vascular cell functions such as cell differentiation, migration, proliferation, and apoptosis. Accordingly, miRNAs are involved in the angiogenesis and in the pathogenesis of vascular diseases. miRNAs may serve as novel biomarkers and therapeutic targets for vascular disease. This review article summarizes the research progress regarding the roles of miRNAs in vascular biology and vascular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ambros, V. (2004). The functions of animal microRNAs. Nature, 431, 350–355.

    Article  CAS  PubMed  Google Scholar 

  2. Lee, R. C., Feinbaum, R. L., & Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75(5), 843–854.

    Article  CAS  PubMed  Google Scholar 

  3. Wightman, B., Ha, I., & Ruvkun, G. (1993). Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell, 75(5), 855–862.

    Article  CAS  PubMed  Google Scholar 

  4. Lagos-Quintana, M., Rauhut, R., Lendeckel, W., & Tuschl, T. (2001). Identification of novel genes coding for small expressed RNAs. Science, 294(5543), 853–858.

    Article  CAS  PubMed  Google Scholar 

  5. Friedman, J. M., & Jones, P. A. (2008). MicroRNAs: Critical mediators of differentiation, development and disease. Swiss Medical Weekly, 139(33–34), 466–472.

    Google Scholar 

  6. Bentwich, I., Avniel, A., Karov, Y., Aharonov, R., Gilad, S., Barad, O., et al. (2005). Identification of hundreds of conserved and nonconserved human microRNAs. Nature Genetics, 37(7), 766–770.

    Article  CAS  PubMed  Google Scholar 

  7. Chen, K., & Rajewsky, N. (2007). The evolution of gene regulation by transcription factors and microRNAs. Nature Reviews Genetics, 8, 93–103.

    Article  CAS  PubMed  Google Scholar 

  8. Lewis, B. P., Burge, C. B., & Bartel, D. P. (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 120, 15–20.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang, C. (2008). MicroRNomics: A newly emerging approach for disease biology. Physiological Genomics, 33(2), 139–147.

    Article  PubMed  CAS  Google Scholar 

  10. De Paepe, B. (2009). Anti-angiogenic agents and cancer: Current insights and future perspectives. Recent Patents on Anti-cancer Drug Discovery, 4(2), 180–185.

    Article  PubMed  Google Scholar 

  11. Di Stefano, R., Felice, F., & Balbarini, A. (2009). Angiogenesis as risk factor for plaque vulnerability. Current Pharmaceutical Design, 15(10), 1095–1106.

    Article  PubMed  Google Scholar 

  12. Smart, N., Dubé, K. N., & Riley, P. R. (2009). Coronary vessel development and insight towards neovascular therapy. International Journal of Experimental Pathology, 90(3), 262–283.

    CAS  PubMed  Google Scholar 

  13. Ji, R., Cheng, Y., Yue, J., Yang, J., Liu, X., Chen, H., et al. (2007). MicroRNA expression signature and antisense-mediated depletion reveal an essential role of MicroRNA in vascular neointimal lesion formation. Circulation Research, 100(11), 1579–1588.

    Article  CAS  PubMed  Google Scholar 

  14. Liu, X., Cheng, Y., Zhang, S., Lin, Y., Yang, J., & Zhang, C. (2009). A necessary role of miR-222 and miR-221 in vascular smooth muscle cell proliferation and neointimal hyperplasia. Circulation Research, 104(4), 476–487.

    Article  CAS  PubMed  Google Scholar 

  15. Cheng, Y., Liu, X., Yang, J., Lin, Y., Xu, D., Lu, Q., et al. (2009). MicroRNA-145, a novel smooth muscle cell phenotypic marker and modulator, controls vascular neointimal lesion formation. Circulation Research, 105, 158–166.

    Article  CAS  PubMed  Google Scholar 

  16. Poliseno, L., Tuccoli, A., Mariani, L., Evangelista, M., Citti, L., Woods, K., et al. (2006). MicroRNAs modulate the angiogenic properties of HUVECs. Blood, 108, 3068–3071.

    Article  CAS  PubMed  Google Scholar 

  17. Kuehbacher, A., Urbich, C., Zeiher, A. M., & Dimmeler, S. (2007). Role of Dicer and Drosha for endothelial microRNA expression and angiogenesis. Circulation Research, 101(1), 59–68.

    Article  CAS  PubMed  Google Scholar 

  18. Suárez, Y., Fernández-Hernando, C., Pober, J. S., & Sessa, W. C. (2007). Dicer dependent microRNAs regulate gene expression and functions in human endothelial cells. Circulation Research, 100(8), 1164–1173.

    Article  PubMed  CAS  Google Scholar 

  19. Fish, J. E., Santoro, M. M., Morton, S. U., Yu, S., Yeh, R. F., Wythe, J. D., et al. (2008). miR-126 regulates angiogenic signaling and vascular integrity. Developmental Cell, 15(2), 272–284.

    Article  CAS  PubMed  Google Scholar 

  20. van Solingen, C., Seghers, L., Bijkerk, R., Duijs, J. M., Roeten, M. K., van Oeveren-Rietdijk, A. M., et al. (2009). Antagomir-mediated silencing of endothelial cell specific microRNA-126 impairs ischemia-induced angiogenesis. Journal of Cellular and Molecular Medicine, 13(8A), 1577–1585.

    Article  PubMed  CAS  Google Scholar 

  21. Dews, M., Homayouni, A., Yu, D., Murphy, D., Sevignani, C., Wentzel, E., et al. (2006). Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nature Genetics, 38(9), 1060–1065.

    Article  CAS  PubMed  Google Scholar 

  22. Chen, Y., & Gorski, D. H. (2008). Regulation of angiogenesis through a microRNA (miR-130a) that down-regulates antiangiogenic homeobox genes GAX and HOXA5. Blood, 111(3), 1217–1226.

    Article  CAS  PubMed  Google Scholar 

  23. Fasanaro, P., D'Alessandra, Y., Di Stefano, V., Melchionna, R., Romani, S., Pompilio, G., et al. (2008). MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand Ephrin-A3. Journal of Biological Chemistry, 283(23), 15878–15883.

    Article  CAS  PubMed  Google Scholar 

  24. Lee, D. Y., Deng, Z., Wang, C. H., & Yang, B. B. (2007). MicroRNA-378 promotes cell survival, tumor growth, and angiogenesis by targeting SuFu and Fus-1 expression. Proceedings of the National Academy of Sciences of the United States of America, 104(51), 20350–20355.

    Article  CAS  PubMed  Google Scholar 

  25. Würdinger, T., Tannous, B. A., Saydam, O., Skog, J., Grau, S., Soutschek, J., et al. (2008). miR-296 regulates growth factor receptor overexpression in angiogenic endothelial cells. Cancer Cell, 14(5), 382–393.

    Article  PubMed  CAS  Google Scholar 

  26. Li, Y., Song, Y. H., Li, F., Yang, T., Lu, Y. W., & Geng, Y. J. (2009). MicroRNA-221 regulates high glucose-induced endothelial dysfunction. Biochemical and Biophysical Research Communications, 381(1), 81–83.

    Article  CAS  PubMed  Google Scholar 

  27. Minami, Y., Satoh, M., Maesawa, C., Takahashi, Y., Tabuchi, T., Itoh, T., et al. (2009). Effect of atorvastatin on microRNA 221 / 222 expression in endothelial progenitor cells obtained from patients with coronary artery disease. European Journal of Clinical Investigation, 39(5), 359–367.

    Article  CAS  PubMed  Google Scholar 

  28. Wang, C. H., Lee, D. Y., Deng, Z., Jeyapalan, Z., Lee, S. C., Kahai, S., et al. (2008). MicroRNA miR-328 regulates zonation morphogenesis by targeting CD44 expression. PLoS ONE, 3(6), e2420.

    Article  PubMed  CAS  Google Scholar 

  29. Bonauer, A., Carmona, G., Iwasaki, M., Mione, M., Koyanagi, M., Fischer, A., et al. (2009). MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science, 324(5935), 1710–1713.

    Article  CAS  PubMed  Google Scholar 

  30. Chan, L. S., Yue, P. Y., Mak, N. K., & Wong, R. N. (2009). Role of MicroRNA-214 in ginsenoside-Rg1-induced angiogenesis. European Journal of Pharmaceutical Sciences, 38(4), 370–377.

    Article  CAS  PubMed  Google Scholar 

  31. Cordes, K. R., Sheehy, N. T., White, M. P., Berry, E. C., Morton, S. U., Muth, A. N., et al. (2009). miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature, 460(7256), 705–710.

    CAS  PubMed  Google Scholar 

  32. Zhang, C. (2009). MicroRNA-145 in vascular smooth muscle cell biology: A new therapeutic target for vascular disease. Cell Cycle, 8(21), 3469–3473.

    PubMed  CAS  Google Scholar 

  33. Elia, L., Quintavalle, M., Zhang, J., Contu, R., Cossu, L., Latronico, M. V., et al. (2009). The knockout of miR-143 and -145 alters smooth muscle cell maintenance and vascular homeostasis in mice: Correlates with human disease. Cell Death and Differentiation, 16(12), 1590–1598.

    Article  CAS  PubMed  Google Scholar 

  34. Lin, Y., Liu, X., Cheng, Y., Yang, J., Huo, Y., & Zhang, C. (2009). Involvement of microRNAs in hydrogen peroxide-mediated gene regulation and cellular injury response in vascular smooth muscle cells. Journal of Biological Chemistry, 284(12), 7903–7913.

    Article  CAS  PubMed  Google Scholar 

  35. Davis, B. N., Hilyard, A. C., Nguyen, P. H., Lagna, G., & Hata, A. (2009). Induction of microRNA-221 by platelet-derived growth factor signaling is critical for modulation of vascular smooth muscle phenotype. Journal of Biological Chemistry, 284(6), 3728–3738.

    Article  CAS  PubMed  Google Scholar 

  36. Boettger, T., Beetz, N., Kostin, S., Schneider, J., Krüger, M., Hein, L., et al. (2009). Acquisition of the contractile phenotype by murine arterial smooth muscle cells depends on the Mir143/145 gene cluster. Journal of Clinical Investigation, 119(9), 2634–2647.

    Article  CAS  PubMed  Google Scholar 

  37. Xin, M., Small, E. M., Sutherland, L. B., Qi, X., McAnally, J., Plato, C. F., et al. (2009). MicroRNAs miR-143 and miR-145 modulate cytoskeletal dynamics and responsiveness of smooth muscle cells to injury. Genes & Development, 23(18), 2166–2178.

    Article  CAS  Google Scholar 

  38. Pushparaj, P. N., Aarthi, J. J., Kumar, S. D., & Manikandan, J. (2008). RNAi and RNAa—The yin and yang of RNAome. Bioinformation, 2(6), 235–237.

    PubMed  Google Scholar 

  39. Wang, S., Aurora, A. B., Johnson, B. A., Qi, X., McAnally, J., Hill, J. A., et al. (2008). The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Developmental Cell, 15(2), 261–271.

    Article  PubMed  CAS  Google Scholar 

  40. Kuhnert, F., Mancuso, M. R., Hampton, J., Stankunas, K., Asano, T., Chen, C. Z., et al. (2008). Attribution of vascular phenotypes of the murine Egfl7 locus to the microRNA miR-126. Development, 135(24), 3989–3993.

    Article  CAS  PubMed  Google Scholar 

  41. Harris, T. A., Yamakuchi, M., Ferlito, M., Mendell, J. T., & Lowenstein, C. J. (2008). MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1. The Proceedings of the National Academy of Sciences, 105(5), 1516–1521.

    Article  CAS  Google Scholar 

  42. Zernecke, A., Bidzhekov, K., Noels, H., Shagdarsuren, E., Gan, L., Denecke, B., et al. (2009). Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Science Signaling, 2(100), ra81.

    Article  PubMed  Google Scholar 

  43. Mishra, P. J., Mishra, P. J., Banerjee, D., & Bertino, J. R. (2008). MiRSNPs or MiR-polymorphisms, new players in microRNA mediated regulation of the cell: Introducing microRNA pharmacogenomics. Cell Cycle, 7(7), 853–858.

    CAS  PubMed  Google Scholar 

  44. Wang, M., Ye, Y., Qian, H., Song, Z., Jia, X., Zhang, Z., et al. (2010). Common genetic variants in pre-microRNAs are associated with risk of coal workers’ pneumoconiosis. Journal of Human Genetics, 55(1), 13–17.

    Google Scholar 

  45. Sethupathy, P., & Collins, F. S. (2008). MicroRNA target site polymorphisms and human disease. Trends in Genetics, 24(10), 489–497.

    Article  CAS  PubMed  Google Scholar 

  46. Yang, Z., & Kaye, D. M. (2009). Mechanistic insights into the link between a polymorphism of the 3′UTR of the SLC7A1 gene and hypertension. Human Mutation, 30(3), 328–333.

    Article  PubMed  CAS  Google Scholar 

  47. Fluiter, K., Mook, O. R., & Baas, F. (2009). The therapeutic potential of LNA-modified siRNAs: Reduction of off-target effects by chemical modification of the siRNA sequence. Methods in Molecular Biology, 487, 189–203.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author’s research was supported by a National Institutes of Health Grant (HL080133) and a grant from the American Heart Association (09GRNT2250567).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunxiang Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, C. MicroRNAs in Vascular Biology and Vascular Disease. J. of Cardiovasc. Trans. Res. 3, 235–240 (2010). https://doi.org/10.1007/s12265-010-9164-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-010-9164-z

Keywords

Navigation