Skip to main content

Advertisement

Log in

Gender Dimorphisms in Progenitor and Stem Cell Function in Cardiovascular Disease

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Differences in cardiovascular disease outcomes between men and women have long been recognized and attributed, in part, to gender and sex steroids. Gender dimorphisms also exist with respect to the roles of progenitor and stem cells in post-ischemic myocardial and endothelial repair and regeneration. Understanding how these cells are influenced by donor gender and the recipient hormonal milieu may enable researchers to further account for the gender-related disparities in clinical outcomes as well as utilize the beneficial effects of these hormones to optimize transplanted cell function and survival. This review discusses (1) the cardiovascular effects of sex steroids (specifically estradiol and testosterone); (2) the therapeutic potentials of endothelial progenitor cells, mesenchymal stem cells, and embryonic stem cells; and (3) the direct effect of sex steroids on these cell types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AR:

Androgen receptor

BMP-2:

Bone morphogenetic protein-2

CAD:

Coronary artery disease

E2:

17β-estradiol

eNOS:

Endothelial nitric oxide synthase

ER:

Estrogen receptor

EPC:

Endothelial progenitor cell

ESC:

Embryonic stem cell

FGF:

Fibroblast growth factor

HIF:

Hypoxia-inducible factor

IGF-1:

Insulin-like growth factor-1

IL:

Interleukin

I/R:

Ischemia/reperfusion

MI:

Myocardial infarction

MSC:

Mesenchymal stem cell

OVX:

Ovariectomized

SDF-1:

Stromal cell-derived factor-1

SOCS/3:

Suppressor of cytokine signaling

STAT3:

Signal transducer and activator of transcription

T:

Testosterone

TNF:

Tumor necrosis factor

TNFR:

Tumor necrosis factor receptor

VEGF:

Vascular endothelial growth factor

VEGR:

Vascular endothelial growth factor receptor

References

  1. Kher, A., Meldrum, K. K., Wang, M., Tsai, B. M., Pitcher, J. M., & Meldrum, D. R. (2005). Cellular and molecular mechanisms of sex differences in renal ischemia–reperfusion injury. Cardiovascular Research, 67, 594–603.

    Article  CAS  PubMed  Google Scholar 

  2. Choudhry, M. A., Schwacha, M. G., Hubbard, W. J., Kerby, J. D., Rue, L. W., Bland, K. I., et al. (2005). Gender differences in acute response to trauma–hemorrhage. Shock, 24(Suppl 1), 101–106.

    Article  PubMed  Google Scholar 

  3. Choudhry, M. A., Bland, K. I., & Chaudry, I. H. (2006). Gender and susceptibility to sepsis following trauma. Endocr Metab Immune Disord Drug Targets, 6, 127–135.

    CAS  PubMed  Google Scholar 

  4. Stampfer, M. J., Colditz, G. A., Willett, W. C., Manson, J. E., Rosner, B., Speizer, F. E., et al. (1991). Postmenopausal estrogen therapy and cardiovascular disease. Ten-year follow-up from the nurses’ health study. New England Journal of Medicine, 325, 756–762.

    CAS  PubMed  Google Scholar 

  5. Kher, A., Wang, M., Tsai, B. M., Pitcher, J. M., Greenbaum, E. S., Nagy, R. D., et al. (2005). Sex differences in the myocardial inflammatory response to acute injury. Shock, 23, 1–10.

    Article  PubMed  Google Scholar 

  6. Grady, D., Rubin, S. M., Petitti, D. B., Fox, C. S., Black, D., Ettinger, B., et al. (1992). Hormone therapy to prevent disease and prolong life in postmenopausal women. Annals of Internal Medicine, 117, 1016–1037.

    CAS  PubMed  Google Scholar 

  7. Urbich, C. & Dimmeler, S. (2004). Endothelial progenitor cells: Characterization and role in vascular biology. Circulation Research, 95, 343–353.

    Article  CAS  PubMed  Google Scholar 

  8. Crisostomo, P. R., Wang, M., Markel, T. A., Lahm, T., Abarbanell, A. M., Herrmann, J. L., et al. (2007). Stem cell mechanisms and paracrine effects: Potential in cardiac surgery. Shock, 28, 375–383.

    Article  CAS  PubMed  Google Scholar 

  9. Crisostomo, P. R., Abarbanell, A. M., Wang, M., Lahm, T., Wang, Y., & Meldrum, D. R. (2008). Embryonic stem cells attenuate myocardial dysfunction and inflammation after surgical global ischemia via paracrine actions. American Journal of Physiology. Heart and Circulatory Physiology, 295, H1726–H1735.

    Article  CAS  PubMed  Google Scholar 

  10. Farhat, M. Y., Lavigne, M. C., & Ramwell, P. W. (1996). The vascular protective effects of estrogen. FASEB Journal, 10, 615–624.

    CAS  PubMed  Google Scholar 

  11. Mosselman, S., Polman, J., & Dijkema, R. (1996). ER beta: Identification and characterization of a novel human estrogen receptor. FEBS Letters, 392, 49–53.

    Article  CAS  PubMed  Google Scholar 

  12. Villablanca, A. C., Tenwolde, A., Lee, M., Huck, M., Mumenthaler, S., & Rutledge, J. C. (2009). 17beta-estradiol prevents early-stage atherosclerosis in estrogen receptor-alpha deficient female mice. J Cardiovasc Transl Res, 2, 289–299.

    Article  PubMed  Google Scholar 

  13. Nilsson, S., Makela, S., Treuter, E., Tujague, M., Thomsen, J., Andersson, G., et al. (2001). Mechanisms of estrogen action. Physiological Reviews, 81, 1535–1565.

    CAS  PubMed  Google Scholar 

  14. Liu, H., Liu, K., & Bodenner, D. L. (2005). Estrogen receptor inhibits interleukin-6 gene expression by disruption of nuclear factor kappaB transactivation. Cytokine, 31, 251–257.

    Article  CAS  PubMed  Google Scholar 

  15. Hamada, H., Kim, M. K., Iwakura, A., Ii, M., Thorne, T., Qin, G., et al. (2006). Estrogen receptors alpha and beta mediate contribution of bone marrow-derived endothelial progenitor cells to functional recovery after myocardial infarction. Circulation, 114, 2261–2270.

    Article  CAS  PubMed  Google Scholar 

  16. Shao, R., Egecioglu, E., Weijdegard, B., Kopchick, J. J., Fernandez-Rodriguez, J., Andersson, N., et al. (2007). Dynamic regulation of estrogen receptor-alpha isoform expression in the mouse fallopian tube: Mechanistic insight into estrogen-dependent production and secretion of insulin-like growth factors. Am J Physiol Endocrinol Metab, 293, E1430–E1442.

    Article  CAS  PubMed  Google Scholar 

  17. Matthews, J., Almlof, T., Kietz, S., Leers, J., & Gustafsson, J. A. (2005). Estrogen receptor-alpha regulates SOCS-3 expression in human breast cancer cells. Biochemical and Biophysical Research Communications, 335, 168–174.

    Article  CAS  PubMed  Google Scholar 

  18. Roggia, C., Gao, Y., Cenci, S., Weitzmann, M. N., Toraldo, G., Isaia, G., et al. (2001). Up-regulation of TNF-producing T cells in the bone marrow: A key mechanism by which estrogen deficiency induces bone loss in vivo. Proceedings of the National Academy of Sciences of the United States of America, 98, 13960–13965.

    Article  CAS  PubMed  Google Scholar 

  19. Leung, S. W., Teoh, H., Keung, W., & Man, R. Y. (2007). Non-genomic vascular actions of female sex hormones: Physiological implications and signalling pathways. Clinical and Experimental Pharmacology and Physiology, 34, 822–826.

    Article  CAS  PubMed  Google Scholar 

  20. Kim, K. H., Moriarty, K., & Bender, J. R. (2008). Vascular cell signaling by membrane estrogen receptors. Steroids, 73, 864–869.

    Article  CAS  PubMed  Google Scholar 

  21. Krasinski, K., Spyridopoulos, I., Asahara, T., van der Zee, R., Isner, J. M., & Losordo, D. W. (1997). Estradiol accelerates functional endothelial recovery after arterial injury. Circulation, 95, 1768–1772.

    CAS  PubMed  Google Scholar 

  22. Brouchet, L., Krust, A., Dupont, S., Chambon, P., Bayard, F., & Arnal, J. F. (2001). Estradiol accelerates reendothelialization in mouse carotid artery through estrogen receptor-alpha but not estrogen receptor-beta. Circulation, 103, 423–428.

    CAS  PubMed  Google Scholar 

  23. Toutain, C. E., Filipe, C., Billon, A., Fontaine, C., Brouchet, L., Guery, J. C., et al. (2009). Estrogen receptor alpha expression in both endothelium and hematopoietic cells is required for the accelerative effect of estradiol on reendothelialization. Arteriosclerosis, Thrombosis and Vascular Biology, 29, 1543–1550.

    Article  CAS  Google Scholar 

  24. Makela, S., Savolainen, H., Aavik, E., Myllarniemi, M., Strauss, L., Taskinen, E., et al. (1999). Differentiation between vasculoprotective and uterotrophic effects of ligands with different binding affinities to estrogen receptors alpha and beta. Proceedings of the National Academy of Sciences of the United States of America, 96, 7077–7082.

    Article  CAS  PubMed  Google Scholar 

  25. Wang, M., Wang, Y., Weil, B., Abarbanell, A., Herrmann, J., Tan, J., et al. (2009). Estrogen receptor beta mediates increased activation of PI3K/Akt signaling and improved myocardial function in female hearts following acute ischemia. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 296, R972–R978.

    CAS  PubMed  Google Scholar 

  26. Iafrati, M. D., Karas, R. H., Aronovitz, M., Kim, S., Sullivan, T. R., Jr., Lubahn, D. B., et al. (1997). Estrogen inhibits the vascular injury response in estrogen receptor alpha-deficient mice. Nature Medicine, 3, 545–548.

    Article  CAS  PubMed  Google Scholar 

  27. Karas, R. H., Hodgin, J. B., Kwoun, M., Krege, J. H., Aronovitz, M., Mackey, W., et al. (1999). Estrogen inhibits the vascular injury response in estrogen receptor beta-deficient female mice. Proceedings of the National Academy of Sciences of the United States of America, 96, 15133–15136.

    Article  CAS  PubMed  Google Scholar 

  28. Hulley, S., Grady, D., Bush, T., Furberg, C., Herrington, D., Riggs, B., et al. (1998). Randomized trial of estrogen plus progestin for secondary prevention of coronary heart disease in postmenopausal women. Heart and Estrogen/Progestin Replacement Study (HERS) Research Group. JAMA, 280, 605–613.

    Article  CAS  PubMed  Google Scholar 

  29. Grady, D., Herrington, D., Bittner, V., Blumenthal, R., Davidson, M., Hlatky, M., et al. (2002). Cardiovascular disease outcomes during 6.8 years of hormone therapy: Heart and Estrogen/Progestin Replacement Study follow-up (HERS II). JAMA, 288, 49–57.

    Article  PubMed  Google Scholar 

  30. Rossouw, J. E., Anderson, G. L., Prentice, R. L., LaCroix, A. Z., Kooperberg, C., Stefanick, M. L., et al. (2002). Risks and benefits of estrogen plus progestin in healthy postmenopausal women: Principal results From the Women’s Health Initiative randomized controlled trial. JAMA, 288, 321–333.

    Article  CAS  PubMed  Google Scholar 

  31. Anderson, G. L., Limacher, M., Assaf, A. R., Bassford, T., Beresford, S. A., Black, H., et al. (2004). Effects of conjugated equine estrogen in postmenopausal women with hysterectomy: The Women’s Health Initiative randomized controlled trial. JAMA, 291, 1701–1712.

    Article  CAS  PubMed  Google Scholar 

  32. Wang, M., Wang, Y., Abarbanell, A., Tan, J., Weil, B., Herrmann, J., et al. (2009). Both endogenous and exogenous testosterone decrease myocardial STAT3 activation and SOCS3 expression after acute ischemia and reperfusion. Surgery, 146, 138–144.

    Article  PubMed  Google Scholar 

  33. Alexandersen, P., Haarbo, J., Byrjalsen, I., Lawaetz, H., & Christiansen, C. (1999). Natural androgens inhibit male atherosclerosis: A study in castrated, cholesterol-fed rabbits. Circulation Research, 84, 813–819.

    CAS  PubMed  Google Scholar 

  34. Dockery, F., Bulpitt, C. J., Donaldson, M., Fernandez, S., & Rajkumar, C. (2003). The relationship between androgens and arterial stiffness in older men. Journal of the American Geriatrics Society, 51, 1627–1632.

    Article  PubMed  Google Scholar 

  35. Hougaku, H., Fleg, J. L., Najjar, S. S., Lakatta, E. G., Harman, S. M., Blackman, M. R., et al. (2006). Relationship between androgenic hormones and arterial stiffness, based on longitudinal hormone measurements. Am J Physiol Endocrinol Metab, 290, E234–E242.

    Article  CAS  PubMed  Google Scholar 

  36. Kang, S. M., Jang, Y., Kim, J. Y., Chung, N., Cho, S. Y., Chae, J. S., et al. (2002). Effect of oral administration of testosterone on brachial arterial vasoreactivity in men with coronary artery disease. American Journal of Cardiology, 89, 862–864.

    Article  CAS  PubMed  Google Scholar 

  37. Rosano, G. M., Leonardo, F., Pagnotta, P., Pelliccia, F., Panina, G., Cerquetani, E., et al. (1999). Acute anti-ischemic effect of testosterone in men with coronary artery disease. Circulation, 99, 1666–1670.

    CAS  PubMed  Google Scholar 

  38. Asahara, T., Murohara, T., Sullivan, A., Silver, M., van der Zee, R., Li, T., et al. (1997). Isolation of putative progenitor endothelial cells for angiogenesis. Science, 275, 964–967.

    Article  CAS  PubMed  Google Scholar 

  39. Kocher, A. A., Schuster, M. D., Szabolcs, M. J., Takuma, S., Burkhoff, D., Wang, J., et al. (2001). Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nature Medicine, 7, 430–436.

    Article  CAS  PubMed  Google Scholar 

  40. Takahashi, T., Kalka, C., Masuda, H., Chen, D., Silver, M., Kearney, M., et al. (1999). Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nature Medicine, 5, 434–438.

    Article  CAS  PubMed  Google Scholar 

  41. Ceradini, D. J., Kulkarni, A. R., Callaghan, M. J., Tepper, O. M., Bastidas, N., Kleinman, M. E., et al. (2004). Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nature Medicine, 10, 858–864.

    Article  CAS  PubMed  Google Scholar 

  42. Elmadbouh, I., Haider, H., Jiang, S., Idris, N. M., Lu, G., & Ashraf, M. (2007). Ex vivo delivered stromal cell-derived factor-1alpha promotes stem cell homing and induces angiomyogenesis in the infarcted myocardium. Journal of Molecular and Cellular Cardiology, 42, 792–803.

    Article  CAS  PubMed  Google Scholar 

  43. Li, B., Sharpe, E. E., Maupin, A. B., Teleron, A. A., Pyle, A. L., Carmeliet, P., et al. (2006). VEGF and PlGF promote adult vasculogenesis by enhancing EPC recruitment and vessel formation at the site of tumor neovascularization. FASEB Journal, 20, 1495–1497.

    Article  CAS  PubMed  Google Scholar 

  44. Aicher, A., Heeschen, C., Mildner-Rihm, C., Urbich, C., Ihling, C., Technau-Ihling, K., et al. (2003). Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells. Nature Medicine, 9, 1370–1376.

    Article  CAS  PubMed  Google Scholar 

  45. Shintani, S., Murohara, T., Ikeda, H., Ueno, T., Honma, T., Katoh, A., et al. (2001). Mobilization of endothelial progenitor cells in patients with acute myocardial infarction. Circulation, 103, 2776–2779.

    Article  CAS  PubMed  Google Scholar 

  46. Gill, M., Dias, S., Hattori, K., Rivera, M. L., Hicklin, D., Witte, L., et al. (2001). Vascular trauma induces rapid but transient mobilization of VEGFR2(+)AC133(+) endothelial precursor cells. Circulation Research, 88, 167–174.

    CAS  PubMed  Google Scholar 

  47. Asahara, T., Takahashi, T., Masuda, H., Kalka, C., Chen, D., Iwaguro, H., et al. (1999). VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO Journal, 18, 3964–3972.

    Article  CAS  PubMed  Google Scholar 

  48. Kalka, C., Masuda, H., Takahashi, T., Kalka-Moll, W. M., Silver, M., Kearney, M., et al. (2000). Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proceedings of the National Academy of Sciences of the United States of America, 97, 3422–3427.

    Article  CAS  PubMed  Google Scholar 

  49. Kawamoto, A., Gwon, H. C., Iwaguro, H., Yamaguchi, J. I., Uchida, S., Masuda, H., et al. (2001). Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation, 103, 634–637.

    CAS  PubMed  Google Scholar 

  50. Jujo, K., Ii, M., & Losordo, D. W. (2008). Endothelial progenitor cells in neovascularization of infarcted myocardium. Journal of Molecular and Cellular Cardiology, 45, 530–544.

    Article  CAS  PubMed  Google Scholar 

  51. Kang, H. J., Kim, H. S., Zhang, S. Y., Park, K. W., Cho, H. J., Koo, B. K., et al. (2004). Effects of intracoronary infusion of peripheral blood stem-cells mobilised with granulocyte-colony stimulating factor on left ventricular systolic function and restenosis after coronary stenting in myocardial infarction: The MAGIC cell randomised clinical trial. Lancet, 363, 751–756.

    Article  CAS  PubMed  Google Scholar 

  52. Hill, J. M., Zalos, G., Halcox, J. P., Schenke, W. H., Waclawiw, M. A., Quyyumi, A. A., et al. (2003). Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. New England Journal of Medicine, 348, 593–600.

    Article  PubMed  Google Scholar 

  53. Werner, N., Kosiol, S., Schiegl, T., Ahlers, P., Walenta, K., Link, A., et al. (2005). Circulating endothelial progenitor cells and cardiovascular outcomes. New England Journal of Medicine, 353, 999–1007.

    Article  CAS  PubMed  Google Scholar 

  54. Scheubel, R. J., Zorn, H., Silber, R. E., Kuss, O., Morawietz, H., Holtz, J., et al. (2003). Age-dependent depression in circulating endothelial progenitor cells in patients undergoing coronary artery bypass grafting. Journal of the American College of Cardiology, 42, 2073–2080.

    Article  PubMed  Google Scholar 

  55. Tepper, O. M., Galiano, R. D., Capla, J. M., Kalka, C., Gagne, P. J., Jacobowitz, G. R., et al. (2002). Human endothelial progenitor cells from type II diabetics exhibit impaired proliferation, adhesion, and incorporation into vascular structures. Circulation, 106, 2781–2786.

    Article  PubMed  Google Scholar 

  56. Loomans, C. J., de Koning, E. J., Staal, F. J., Rookmaaker, M. B., Verseyden, C., de Boer, H. C., et al. (2004). Endothelial progenitor cell dysfunction: A novel concept in the pathogenesis of vascular complications of type 1 diabetes. Diabetes, 53, 195–199.

    Article  CAS  PubMed  Google Scholar 

  57. Simper, D., Wang, S., Deb, A., Holmes, D., McGregor, C., Frantz, R., et al. (2003). Endothelial progenitor cells are decreased in blood of cardiac allograft patients with vasculopathy and endothelial cells of noncardiac origin are enriched in transplant atherosclerosis. Circulation, 108, 143–149.

    Article  PubMed  Google Scholar 

  58. George, J., Goldstein, E., Abashidze, S., Deutsch, V., Shmilovich, H., Finkelstein, A., et al. (2004). Circulating endothelial progenitor cells in patients with unstable angina: Association with systemic inflammation. European Heart Journal, 25, 1003–1008.

    Article  CAS  PubMed  Google Scholar 

  59. Choi, J. H., Kim, K. L., Huh, W., Kim, B., Byun, J., Suh, W., et al. (2004). Decreased number and impaired angiogenic function of endothelial progenitor cells in patients with chronic renal failure. Arteriosclerosis, Thrombosis, and Vascular Biology, 24, 1246–1252.

    Article  CAS  PubMed  Google Scholar 

  60. Imanishi, T., Moriwaki, C., Hano, T., & Nishio, I. (2005). Endothelial progenitor cell senescence is accelerated in both experimental hypertensive rats and patients with essential hypertension. Journal of Hypertension, 23, 1831–1837.

    Article  CAS  PubMed  Google Scholar 

  61. Ghani, U., Shuaib, A., Salam, A., Nasir, A., Shuaib, U., Jeerakathil, T., et al. (2005). Endothelial progenitor cells during cerebrovascular disease. Stroke, 36, 151–153.

    Article  PubMed  Google Scholar 

  62. Iwakura, A., Luedemann, C., Shastry, S., Hanley, A., Kearney, M., Aikawa, R., et al. (2003). Estrogen-mediated, endothelial nitric oxide synthase-dependent mobilization of bone marrow-derived endothelial progenitor cells contributes to reendothelialization after arterial injury. Circulation, 108, 3115–3121.

    Article  CAS  PubMed  Google Scholar 

  63. Strehlow, K., Werner, N., Berweiler, J., Link, A., Dirnagl, U., Priller, J., et al. (2003). Estrogen increases bone marrow-derived endothelial progenitor cell production and diminishes neointima formation. Circulation, 107, 3059–3065.

    Article  CAS  PubMed  Google Scholar 

  64. Zhao, X., Huang, L., Yin, Y., Fang, Y., Zhao, J., & Chen, J. (2008). Estrogen induces endothelial progenitor cells proliferation and migration by estrogen receptors and PI3K-dependent pathways. Microvascular Research, 75, 45–52.

    Article  CAS  PubMed  Google Scholar 

  65. Iwakura, A., Shastry, S., Luedemann, C., Hamada, H., Kawamoto, A., Kishore, R., et al. (2006). Estradiol enhances recovery after myocardial infarction by augmenting incorporation of bone marrow-derived endothelial progenitor cells into sites of ischemia-induced neovascularization via endothelial nitric oxide synthase-mediated activation of matrix metalloproteinase-9. Circulation, 113, 1605–1614.

    Article  CAS  PubMed  Google Scholar 

  66. Fontaine, V., Filipe, C., Werner, N., Gourdy, P., Billon, A., Garmy-Susini, B., et al. (2006). Essential role of bone marrow fibroblast growth factor-2 in the effect of estradiol on reendothelialization and endothelial progenitor cell mobilization. American Journal of Pathology, 169, 1855–1862.

    Article  CAS  PubMed  Google Scholar 

  67. Rousseau, A., Ayoubi, F., Deveaux, C., Charbit, B., Delmau, C., Christin-Maitre, S., et al. (2009). Impact of age and gender interaction on circulating endothelial progenitor cells in healthy subjects. Fertility and Sterility (in press).

  68. Lemieux, C., Cloutier, I., & Tanguay, J. F. (2009). Menstrual cycle influences endothelial progenitor cell regulation: A link to gender differences in vascular protection? International Journal of Cardiology, 136, 200–210.

    Article  PubMed  Google Scholar 

  69. Fadini, G. P., de Kreutzenberg, S., Albiero, M., Coracina, A., Pagnin, E., Baesso, I., et al. (2008). Gender differences in endothelial progenitor cells and cardiovascular risk profile: The role of female estrogens. Arteriosclerosis, Thrombosis, and Vascular Biology, 28, 997–1004.

    Article  CAS  PubMed  Google Scholar 

  70. Hoetzer, G. L., MacEneaney, O. J., Irmiger, H. M., Keith, R., Van Guilder, G. P., Stauffer, B. L., et al. (2007). Gender differences in circulating endothelial progenitor cell colony-forming capacity and migratory activity in middle-aged adults. American Journal of Cardiology, 99, 46–48.

    Article  PubMed  Google Scholar 

  71. Foresta, C., Caretta, N., Lana, A., De Toni, L., Biagioli, A., Ferlin, A., et al. (2006). Reduced number of circulating endothelial progenitor cells in hypogonadal men. Journal of Clinical Endocrinology and Metabolism, 91, 4599–4602.

    Article  CAS  PubMed  Google Scholar 

  72. Foresta, C., Zuccarello, D., De Toni, L., Garolla, A., Caretta, N., & Ferlin, A. (2008). Androgens stimulate endothelial progenitor cells through an androgen receptor-mediated pathway. Clinical Endocrinology (Oxford), 68, 284–289.

    CAS  Google Scholar 

  73. Fadini, G. P., Albiero, M., Cignarella, A., Bolego, C., Pinna, C., Boscaro, E., et al. (2009). Effects of androgens on endothelial progenitor cells in vitro and in vivo. Clinical Science (London), 117, 355–364.

    Article  CAS  Google Scholar 

  74. Kim, S. W., Hwang, J. H., Cheon, J. M., Park, N. S., Park, S. E., Park, S. J., et al. (2005). Direct and indirect effects of androgens on survival of hematopoietic progenitor cells in vitro. Journal of Korean Medical Science, 20, 409–416.

    Article  PubMed  Google Scholar 

  75. Garolla, A., D’Inca, R., Checchin, D., Biagioli, A., De Toni, L., Nicoletti, V., et al. (2009). Reduced endothelial progenitor cell number and function in inflammatory bowel disease: A possible link to the pathogenesis. American Journal of Gastroenterology, 104, 2500–2507.

    Article  CAS  PubMed  Google Scholar 

  76. Conget, P. A., & Minguell, J. J. (1999). Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells. Journal of Cellular Physiology, 181, 67–73.

    Article  CAS  PubMed  Google Scholar 

  77. Toma, C., Pittenger, M. F., Cahill, K. S., Byrne, B. J., & Kessler, P. D. (2002). Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation, 105, 93–98.

    Article  PubMed  Google Scholar 

  78. Crisostomo, P. R., Markel, T. A., Wang, Y., & Meldrum, D. R. (2008). Surgically relevant aspects of stem cell paracrine effects. Surgery, 143, 577–581.

    Article  PubMed  Google Scholar 

  79. Di Nicola, M., Carlo-Stella, C., Magni, M., Milanesi, M., Longoni, P. D., Matteucci, P., et al. (2002). Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood, 99, 3838–3843.

    Article  PubMed  Google Scholar 

  80. Abdel-Latif, A., Bolli, R., Tleyjeh, I. M., Montori, V. M., Perin, E. C., Hornung, C. A., et al. (2007). Adult bone marrow-derived cells for cardiac repair: A systematic review and meta-analysis. Archives of Internal Medicine, 167, 989–997.

    Article  PubMed  Google Scholar 

  81. Lipinski, M. J., Biondi-Zoccai, G. G., Abbate, A., Khianey, R., Sheiban, I., Bartunek, J., et al. (2007). Impact of intracoronary cell therapy on left ventricular function in the setting of acute myocardial infarction: A collaborative systematic review and meta-analysis of controlled clinical trials. Journal of the American College of Cardiology, 50, 1761–1767.

    Article  PubMed  Google Scholar 

  82. Crisostomo, P. R., Wang, M., Herring, C. M., Morrell, E. D., Seshadri, P., Meldrum, K. K., et al. (2006). Sex dimorphisms in activated mesenchymal stem cell function. Shock, 26, 571–574.

    Article  CAS  PubMed  Google Scholar 

  83. Hiasa, K., Egashira, K., Kitamoto, S., Ishibashi, M., Inoue, S., Ni, W., et al. (2004). Bone marrow mononuclear cell therapy limits myocardial infarct size through vascular endothelial growth factor. Basic Research in Cardiology, 99, 165–172.

    Article  CAS  PubMed  Google Scholar 

  84. Meldrum, D. R. (1998). Tumor necrosis factor in the heart. American Journal of Physiology, 274, R577–R595.

    CAS  PubMed  Google Scholar 

  85. Crisostomo, P. R., Markel, T. A., Wang, M., Lahm, T., Lillemoe, K. D., & Meldrum, D. R. (2007). In the adult mesenchymal stem cell population, source gender is a biologically relevant aspect of protective power. Surgery, 142, 215–221.

    Article  PubMed  Google Scholar 

  86. Erwin, G. S., Crisostomo, P. R., Wang, Y., Wang, M., Markel, T. A., Guzman, M., et al. (2009). Estradiol-treated mesenchymal stem cells improve myocardial recovery after ischemia. Journal of Surgical Research, 152, 319–324.

    Article  CAS  PubMed  Google Scholar 

  87. Wang, M., Tan, J., Coffey, A., Fehrenbacher, J., Weil, B. R., & Meldrum, D. R. (2009). Signal transducer and activator of transcription 3-stimulated hypoxia inducible factor-1alpha mediates estrogen receptor-alpha-induced mesenchymal stem cell vascular endothelial growth factor production. Journal of Thoracic and Cardiovascular Surgery, 138, 163–171, 171 e161.

    Article  CAS  PubMed  Google Scholar 

  88. Forsythe, J. A., Jiang, B. H., Iyer, N. V., Agani, F., Leung, S. W., Koos, R. D., et al. (1996). Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Molecular and Cellular Biology, 16, 4604–4613.

    CAS  PubMed  Google Scholar 

  89. Wang, M., Zhang, W., Crisostomo, P., Markel, T., Meldrum, K. K., Fu, X. Y., et al. (2007). STAT3 mediates bone marrow mesenchymal stem cell VEGF production. Journal of Molecular and Cellular Cardiology, 42, 1009–1015.

    Article  CAS  PubMed  Google Scholar 

  90. Niu, G., Wright, K. L., Huang, M., Song, L., Haura, E., Turkson, J., et al. (2002). Constitutive Stat3 activity up-regulates VEGF expression and tumor angiogenesis. Oncogene, 21, 2000–2008.

    Article  CAS  PubMed  Google Scholar 

  91. Platt, D. H., Bartoli, M., El-Remessy, A. B., Al-Shabrawey, M., Lemtalsi, T., Fulton, D., et al. (2005). Peroxynitrite increases VEGF expression in vascular endothelial cells via STAT3. Free Radical Biology and Medicine, 39, 1353–1361.

    Article  CAS  PubMed  Google Scholar 

  92. Xu, Q., Briggs, J., Park, S., Niu, G., Kortylewski, M., Zhang, S., et al. (2005). Targeting Stat3 blocks both HIF-1 and VEGF expression induced by multiple oncogenic growth signaling pathways. Oncogene, 24, 5552–5560.

    Article  CAS  PubMed  Google Scholar 

  93. Gao, H., Bryzgalova, G., Hedman, E., Khan, A., Efendic, S., Gustafsson, J. A., et al. (2006). Long-term administration of estradiol decreases expression of hepatic lipogenic genes and improves insulin sensitivity in ob/ob mice: A possible mechanism is through direct regulation of signal transducer and activator of transcription 3. Molecular Endocrinology, 20, 1287–1299.

    Article  CAS  PubMed  Google Scholar 

  94. Yun, S. P., Lee, M. Y., Ryu, J. M., Song, C. H., & Han, H. J. (2009). Role of HIF-1alpha and VEGF in human mesenchymal stem cell proliferation by 17beta-estradiol: Involvement of PKC, PI3K/Akt, and MAPKs. American Journal of Physiology. Cell Physiology, 296, C317–C326.

    Article  CAS  PubMed  Google Scholar 

  95. Zhou, S., Turgeman, G., Harris, S. E., Leitman, D. C., Komm, B. S., Bodine, P. V., et al. (2003). Estrogens activate bone morphogenetic protein-2 gene transcription in mouse mesenchymal stem cells. Molecular Endocrinology, 17, 56–66.

    Article  CAS  PubMed  Google Scholar 

  96. Wang, M., Tsai, B. M., Crisostomo, P. R., & Meldrum, D. R. (2006). Tumor necrosis factor receptor 1 signaling resistance in the female myocardium during ischemia. Circulation, 114, I282–I289.

    Article  PubMed  Google Scholar 

  97. Crisostomo, P. R., Wang, M., Herring, C. M., Markel, T. A., Meldrum, K. K., Lillemoe, K. D., et al. (2007). Gender differences in injury induced mesenchymal stem cell apoptosis and VEGF, TNF, IL-6 expression: Role of the 55 kDa TNF receptor (TNFR1). Journal of Molecular and Cellular Cardiology, 42, 142–149.

    Article  CAS  PubMed  Google Scholar 

  98. Markel, T. A., Crisostomo, P. R., Wang, M., Wang, Y., Lahm, T., Novotny, N. M., et al. (2008). TNFR1 signaling resistance associated with female stem cell cytokine production is independent of TNFR2-mediated pathways. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 295, R1124–R1130.

    CAS  PubMed  Google Scholar 

  99. DiSilvio, L., Jameson, J., Gamie, Z., Giannoudis, P. V., & Tsiridis, E. (2006). In vitro evaluation of the direct effect of estradiol on human osteoblasts (HOB) and human mesenchymal stem cells (h-MSCs). Injury, 37(Suppl 3), S33–S42.

    Article  PubMed  Google Scholar 

  100. Hong, L., Colpan, A., & Peptan, I. A. (2006). Modulations of 17-beta estradiol on osteogenic and adipogenic differentiations of human mesenchymal stem cells. Tissue Engineering, 12, 2747–2753.

    Article  CAS  PubMed  Google Scholar 

  101. Zhou, S., Zilberman, Y., Wassermann, K., Bain, S. D., Sadovsky, Y., & Gazit, D. (2001). Estrogen modulates estrogen receptor alpha and beta expression, osteogenic activity, and apoptosis in mesenchymal stem cells (MSCs) of osteoporotic mice. Journal of Cellular Biochemistry. Supplement, Suppl 36, 144–155.

    Article  CAS  PubMed  Google Scholar 

  102. Cha, Y., Kwon, S. J., Seol, W., & Park, K. S. (2008). Estrogen receptor-alpha mediates the effects of estradiol on telomerase activity in human mesenchymal stem cells. Molecules and Cells, 26, 454–458.

    CAS  PubMed  Google Scholar 

  103. Ray, R., Herring, C. M., Markel, T. A., Crisostomo, P. R., Wang, M., Weil, B., et al. (2008). Deleterious effects of endogenous and exogenous testosterone on mesenchymal stem cell VEGF production. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 294, R1498–R1503.

    CAS  PubMed  Google Scholar 

  104. Min, J. Y., Yang, Y., Sullivan, M. F., Ke, Q., Converso, K. L., Chen, Y., et al. (2003). Long-term improvement of cardiac function in rats after infarction by transplantation of embryonic stem cells. Journal of Thoracic and Cardiovascular Surgery, 125, 361–369.

    Article  PubMed  Google Scholar 

  105. Leor, J., Gerecht, S., Cohen, S., Miller, L., Holbova, R., Ziskind, A., et al. (2007). Human embryonic stem cell transplantation to repair the infarcted myocardium. Heart, 93, 1278–1284.

    Article  PubMed  Google Scholar 

  106. Nussbaum, J., Minami, E., Laflamme, M. A., Virag, J. A., Ware, C. B., Masino, A., et al. (2007). Transplantation of undifferentiated murine embryonic stem cells in the heart: Teratoma formation and immune response. FASEB Journal, 21, 1345–1357.

    Article  CAS  PubMed  Google Scholar 

  107. Behfar, A., Zingman, L. V., Hodgson, D. M., Rauzier, J. M., Kane, G. C., Terzic, A., et al. (2002). Stem cell differentiation requires a paracrine pathway in the heart. FASEB Journal, 16, 1558–1566.

    Article  PubMed  Google Scholar 

  108. Behfar, A., Perez-Terzic, C., Faustino, R. S., Arrell, D. K., Hodgson, D. M., Yamada, S., et al. (2007). Cardiopoietic programming of embryonic stem cells for tumor-free heart repair. Journal of Experimental Medicine, 204, 405–420.

    Article  CAS  PubMed  Google Scholar 

  109. Laflamme, M. A., Chen, K. Y., Naumova, A. V., Muskheli, V., Fugate, J. A., Dupras, S. K., et al. (2007). Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nature Biotechnology, 25, 1015–1024.

    Article  CAS  PubMed  Google Scholar 

  110. Caspi, O., Huber, I., Kehat, I., Habib, M., Arbel, G., Gepstein, A., et al. (2007). Transplantation of human embryonic stem cell-derived cardiomyocytes improves myocardial performance in infarcted rat hearts. Journal of the American College of Cardiology, 50, 1884–1893.

    Article  PubMed  Google Scholar 

  111. Nelson, T. J., Martinez-Fernandez, A., Yamada, S., Perez-Terzic, C., Ikeda, Y., & Terzic, A. (2009). Repair of acute myocardial infarction by human stemness factors induced pluripotent stem cells. Circulation, 120, 408–416.

    Article  PubMed  Google Scholar 

  112. Hong, S. H., Nah, H. Y., Lee, Y. J., Lee, J. W., Park, J. H., Kim, S. J., et al. (2004). Expression of estrogen receptor-alpha and -beta, glucocorticoid receptor, and progesterone receptor genes in human embryonic stem cells and embryoid bodies. Molecules and Cells, 18, 320–325.

    CAS  PubMed  Google Scholar 

  113. Han, H. J., Heo, J. S., & Lee, Y. J. (2006). Estradiol-17beta stimulates proliferation of mouse embryonic stem cells: Involvement of MAPKs and CDKs as well as protooncogenes. American Journal of Physiology. Cell Physiology, 290, C1067–C1075.

    Article  CAS  PubMed  Google Scholar 

  114. Chang, C. Y., Hsuuw, Y. D., Huang, F. J., Shyr, C. R., Chang, S. Y., Huang, C. K., et al. (2006). Androgenic and antiandrogenic effects and expression of androgen receptor in mouse embryonic stem cells. Fertility and Sterility, 85(Suppl 1), 1195–1203.

    Article  CAS  PubMed  Google Scholar 

  115. Goldman-Johnson, D. R., de Kretser, D. M., & Morrison, J. R. (2008). Evidence that androgens regulate early developmental events, prior to sexual differentiation. Endocrinology, 149, 5–14.

    Article  CAS  PubMed  Google Scholar 

  116. Arrell, D. K., Niederlander, N. J., Faustino, R. S., Behfar, A., & Terzic, A. (2008). Cardioinductive network guiding stem cell differentiation revealed by proteomic cartography of tumor necrosis factor alpha-primed endodermal secretome. Stem Cells, 26, 387–400.

    Article  CAS  PubMed  Google Scholar 

  117. Nelson, T. J., Faustino, R. S., Chiriac, A., Crespo-Diaz, R., Behfar, A., & Terzic, A. (2008). CXCR4+/FLK-1+ biomarkers select a cardiopoietic lineage from embryonic stem cells. Stem Cells, 26, 1464–1473.

    Article  CAS  PubMed  Google Scholar 

  118. Keaney, J. F., Jr., Shwaery, G. T., Xu, A., Nicolosi, R. J., Loscalzo, J., Foxall, T. L., et al. (1994). 17beta-estradiol preserves endothelial vasodilator function and limits low-density lipoprotein oxidation in hypercholesterolemic swine. Circulation, 89, 2251–2259.

    CAS  PubMed  Google Scholar 

  119. Moskowitz, M. S., Moskowitz, A. A., Bradford, W. L., Jr., & Wissler, R. W. (1956). Changes in serum lipids and coronary arteries of the rat in response to estrogens. AMA Archives of Pathology, 61, 245–263.

    CAS  Google Scholar 

  120. Adams, M. R., Kaplan, J. R., Manuck, S. B., Koritnik, D. R., Parks, J. S., Wolfe, M. S., et al. (1990). Inhibition of coronary artery atherosclerosis by 17-beta estradiol in ovariectomized monkeys: Lack of an effect of added progesterone. Arteriosclerosis, 10, 1051–1057.

    CAS  PubMed  Google Scholar 

  121. Palmer, R. M., Ferrige, A. G., & Moncada, S. (1987). Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature, 327, 524–526.

    Article  CAS  PubMed  Google Scholar 

  122. Bath, P. M., Hassall, D. G., Gladwin, A. M., Palmer, R. M., & Martin, J. F. (1991). Nitric oxide and prostacyclin. Divergence of inhibitory effects on monocyte chemotaxis and adhesion to endothelium in vitro. Arteriosclerosis and Thrombosis, 11, 254–260.

    CAS  PubMed  Google Scholar 

  123. Radomski, M. W., Palmer, R. M., & Moncada, S. (1987). Endogenous nitric oxide inhibits human platelet adhesion to vascular endothelium. Lancet, 2, 1057–1058.

    Article  CAS  PubMed  Google Scholar 

  124. Lahm, T., Patel, K. M., Crisostomo, P. R., Markel, T. A., Wang, M., Herring, C., et al. (2007). Endogenous estrogen attenuates pulmonary artery vasoreactivity and acute hypoxic pulmonary vasoconstriction: The effects of sex and menstrual cycle. Am J Physiol Endocrinol Metab, 293, E865–E871.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the following NIH grants: R01 GM070628, R01 HL085595, F32 HL092718, F32 HL092719, and F32 HL093987.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel R. Meldrum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herrmann, J.L., Abarbanell, A.M., Weil, B.R. et al. Gender Dimorphisms in Progenitor and Stem Cell Function in Cardiovascular Disease. J. of Cardiovasc. Trans. Res. 3, 103–113 (2010). https://doi.org/10.1007/s12265-009-9149-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-009-9149-y

Keywords

Navigation