Skip to main content

Advertisement

Log in

Cardiac Transcription Factors Driven Lineage-Specification of Adult Stem Cells

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Differentiation of human bone marrow mesenchymal stem cells (hBMSC) into the cardiac lineage has been assayed using different approaches such as coculture with cardiac or embryonic cells, treatment with factors, or by seeding cells in organotypic cultures. In most cases, differentiation was evaluated in terms of expression of cardiac-specific markers at protein or molecular level, electrophysiological properties, and formation of sarcomers in differentiated cells. As observed in embryonic stem cells and cardiac progenitors, differentiation of MSC towards the cardiac lineage was preceded by translocation of NKX2.5 and GATA4 transcription factors to the nucleus. Here, we induce differentiation of hBMSC towards the cardiac lineage using coculture with neonatal rat cardiomyocytes. Although important ultrastructural changes occurred during the course of differentiation, sarcomerogenesis was not fully achieved even after long periods of time. Nevertheless, we show that the main cardiac markers, NKX2.5 and GATA4, translocate to the nucleus in a process characteristic of cardiac specification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. van Laake, L. W., Hassink, R., Doevendans, P. A., & Mummery, C. (2006). Heart repair and stem cells. Journal of Physiology, 577, 467–478.

    Article  PubMed  Google Scholar 

  2. Sanchez, A., Fernandez, M. E., Rodriguez, A., Fernandez, J., Torre-Perez, N., Hurle, J. M., et al. (2006). Experimental models for cardiac regeneration. Nature Clinical Practice Cardiovascular Medicine, 3(Suppl 1), S29–S32.

    Article  CAS  PubMed  Google Scholar 

  3. Badorff, C., Brandes, R. P., Popp, R., Rupp, S., Urbich, C., Aicher, A., et al. (2003). Transdifferentiation of blood-derived human adult endothelial progenitor cells into functionally active cardiomyocytes. Circulation, 107, 1024–1032.

    Article  PubMed  Google Scholar 

  4. Mummery, C., Ward-van Oostwaard, D., Doevendans, P., Spijker, R., van den Brink, S., Hassink, R., et al. (2003). Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation, 107, 2733–2740.

    Article  CAS  PubMed  Google Scholar 

  5. Lee, Y., Shioi, T., Kasahara, H., Jobe, S. M., Wiese, R. J., Markham, B. E., et al. (1998). The cardiac tissue-restricted homeobox protein Csx/Nkx2.5 physically associates with the zinc finger protein GATA4 and cooperatively activates atrial natriuretic factor gene expression. Molecular and Cellular Biology, 18, 3120–3129.

    CAS  PubMed  Google Scholar 

  6. Ueyama, T., Kasahara, H., Ishiwata, T., Nie, Q., & Izumo, S. (2003). Myocardin expression is regulated by Nkx2.5, and its function is required for cardiomyogenesis. Molecular and Cellular Biology, 23, 9222–9232.

    Article  CAS  PubMed  Google Scholar 

  7. Waldo, K. L., Kumiski, D. H., Wallis, K. T., Stadt, H. A., Hutson, M. R., Platt, D. H., et al. (2001). Conotruncal myocardium arises from a secondary heart field. Development, 128, 3179–3188.

    CAS  PubMed  Google Scholar 

  8. Xu, C., Police, S., Rao, N., & Carpenter, M. K. (2002). Characterization and enrichment of cardiomyocytes derived from human embryonic stem cells. Circulation Research, 91, 501–508.

    Article  CAS  PubMed  Google Scholar 

  9. Behfar, A., Zingman, L. V., Hodgson, D. M., Rauzier, J. M., Kane, G. C., Terzic, A., et al. (2002). Stem cell differentiation requires a paracrine pathway in the heart. FASEB Journal, 16, 1558–1566.

    Article  PubMed  Google Scholar 

  10. Perez-Terzic, C., Faustino, R. S., Boorsma, B. J., Arrell, D. K., Niederlander, N. J., Behfar, A., et al. (2007). Stem cells transform into a cardiac phenotype with remodeling of the nuclear transport machinery. Nature Clinical Practice Cardiovascular Medicine, 4(Suppl 1), S68–S76.

    Article  CAS  PubMed  Google Scholar 

  11. Arminan, A., Gandia, C., Bartual, M., Garcia-Verdugo, J. M., Lledo, E., Mirabet, V., et al. (2009). Cardiac differentiation is driven by NKX2.5 and GATA4 nuclear translocation in tissue-specific mesenchymal stem cells. Stem Cells and Development, 18, 907–918.

    Article  CAS  PubMed  Google Scholar 

  12. Wu, S. M., Fujiwara, Y., Cibulsky, S. M., Clapham, D. E., Lien, C. L., Schultheiss, T. M., et al. (2006). Developmental origin of a bipotential myocardial and smooth muscle cell precursor in the mammalian heart. Cell, 127, 1137–1150.

    Article  CAS  PubMed  Google Scholar 

  13. Kucia, M., Dawn, B., Hunt, G., Guo, Y., Wysoczynski, M., Majka, M., et al. (2004). Cells expressing early cardiac markers reside in the bone marrow and are mobilized into the peripheral blood after myocardial infarction. Circulation Research, 95, 1191–1199.

    Article  CAS  PubMed  Google Scholar 

  14. Jamali, M., Karamboulas, C., Rogerson, P. J., & Skerjanc, I. S. (2001). BMP signaling regulates Nkx2-5 activity during cardiomyogenesis. FEBS Letters, 509, 126–130.

    Article  CAS  PubMed  Google Scholar 

  15. Makino, S., Fukuda, K., Miyoshi, S., Konishi, F., Kodama, H., Pan, J., et al. (1999). Cardiomyocytes can be generated from marrow stromal cells in vitro. Journal of Clinical Investigation, 103, 697–705.

    Article  CAS  PubMed  Google Scholar 

  16. Nelson, T. J., Faustino, R. S., Chiriac, A., Crespo-Diaz, R., Behfar, A., & Terzic, A. (2008). CXCR4+/FLK-1+ biomarkers select a cardiopoietic lineage from embryonic stem cells. Stem Cells, 26, 1464–1473.

    Article  CAS  PubMed  Google Scholar 

  17. Linhares, V. L., Almeida, N. A., Menezes, D. C., Elliott, D. A., Lai, D., Beyer, E. C., et al. (2004). Transcriptional regulation of the murine Connexin40 promoter by cardiac factors Nkx2-5, GATA4 and Tbx5. Cardiovascular Research, 64, 402–411.

    Article  CAS  PubMed  Google Scholar 

  18. Morkin, E. (2000). Control of cardiac myosin heavy chain gene expression. Microscopy Research and Technique, 50, 522–531.

    Article  CAS  PubMed  Google Scholar 

  19. Chien, K. R., Domian, I. J., & Parker, K. K. (2008). Cardiogenesis and the complex biology of regenerative cardiovascular medicine. Science, 322, 1494–1497.

    Article  CAS  PubMed  Google Scholar 

  20. Roell, W., Lewalter, T., Sasse, P., Tallini, Y. N., Choi, B. R., Breitbach, M., et al. (2007). Engraftment of connexin 43-expressing cells prevents post-infarct arrhythmia. Nature, 450, 819–824.

    Article  CAS  PubMed  Google Scholar 

  21. Hodgson, D. M., Behfar, A., Zingman, L. V., Kane, G. C., Perez-Terzic, C., Alekseev, A. E., et al. (2004). Stable benefit of embryonic stem cell therapy in myocardial infarction. American Journal of Physiology. Heart and Circulatory Physiology, 287, H471–H479.

    Article  CAS  PubMed  Google Scholar 

  22. Boni, A., Urbanek, K., Nascimbene, A., Hosoda, T., Zheng, H., Delucchi, F., et al. (2008). Notch1 regulates the fate of cardiac progenitor cells. Proceedings of the National Academy of Sciences of the United States of America, 105, 15529–15534.

    Article  CAS  PubMed  Google Scholar 

  23. Faustino, R. S., & Terzic, A. (2008). Bioinformatic networks: molecular reticles for pinpointing pharmacological target selection. Clinical Pharmacology and Therapeutics, 84, 543–545.

    Article  CAS  PubMed  Google Scholar 

  24. Perez-Terzic, C., Behfar, A., Mery, A., van Deursen, J. M., Terzic, A., & Puceat, M. (2003). Structural adaptation of the nuclear pore complex in stem cell-derived cardiomyocytes. Circulation Research, 92, 444–452.

    Article  CAS  PubMed  Google Scholar 

  25. Fukuhara, S., Tomita, S., Yamashiro, S., Morisaki, T., Yutani, C., Kitamura, S., et al. (2003). Direct cell-cell interaction of cardiomyocytes is key for bone marrow stromal cells to go into cardiac lineage in vitro. Journal of Thoracic and Cardiovascular Surgery, 125, 1470–1480.

    Article  PubMed  Google Scholar 

  26. Rangappa, S., Entwistle, J. W., Wechsler, A. S., & Kresh, J. Y. (2003). Cardiomyocyte-mediated contact programs human mesenchymal stem cells to express cardiogenic phenotype. Journal of Thoracic and Cardiovascular Surgery, 126, 124–132.

    Article  CAS  PubMed  Google Scholar 

  27. Xu, M., Wani, M., Dai, Y. S., Wang, J., Yan, M., Ayub, A., et al. (2004). Differentiation of bone marrow stromal cells into the cardiac phenotype requires intercellular communication with myocytes. Circulation, 110, 2658–2665.

    Article  PubMed  Google Scholar 

  28. Pijnappels, D. A., Schalij, M. J., Ramkisoensing, A. A., van Tuyn, J., de Vries, A. A., van der Laarse, A., et al. (2008). Forced alignment of mesenchymal stem cells undergoing cardiomyogenic differentiation affects functional integration with cardiomyocyte cultures. Circulation Research, 103, 167–176.

    Article  CAS  PubMed  Google Scholar 

  29. Behfar, A., & Terzic, A. (2006). Derivation of a cardiopoietic population from human mesenchymal stem cells yields cardiac progeny. Nature Clinical Practice Cardiovascular Medicine, 3(Suppl 1), S78–S82.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Supported by grants from the Instituto de Salud Carlos III for the Regenerative Medicine Program of Valencian Community, the RETICS program and from the FIS (PI07/784, CP08/80). PS is a research Bellow (Miguel Servet Program) at Fundación para la Investigación Hospital la Fe. AA and CG are postdoctoral fellows from the Centro de Investigación Principe Felipe.

We are indebted to Dr. A Chapel for the gift of pSF-G13 cell line. We thank A. Hernández and E. Lafuente from the Service of Confocal microscopy at CIPF for technical assistance, and M. Soriano for acquisition of electron microscopy micrographs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pilar Sepúlveda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Armiñán, A., Gandía, C., García-Verdugo, J.M. et al. Cardiac Transcription Factors Driven Lineage-Specification of Adult Stem Cells. J. of Cardiovasc. Trans. Res. 3, 61–65 (2010). https://doi.org/10.1007/s12265-009-9144-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-009-9144-3

Keywords

Navigation