Skip to main content

Advertisement

Log in

A New Era in Clinical Genetic Testing for Hypertrophic Cardiomyopathy

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Building on seminal studies of the last 20 years, genetic testing for hypertrophic cardiomyopathy (HCM) has become a clinical reality in the form of targeted exonic sequencing of known disease-causing genes. This has been driven primarily by the decreasing cost of sequencing, but the high profile of genome-wide association studies, the launch of direct-to-consumer genetic testing, and new legislative protection have also played important roles. In the clinical management of hypertrophic cardiomyopathy, genetic testing is primarily used for family screening. An increasing role is recognized, however, in diagnostic settings: in the differential diagnosis of HCM; in the differentiation of HCM from hypertensive or athlete’s heart; and more rarely in preimplantation genetic diagnosis. Aside from diagnostic clarification and family screening, use of the genetic test for guiding therapy remains controversial, with data currently too limited to derive a reliable mutation risk prediction from within the phenotypic noise of different modifying genomes. Meanwhile, the power of genetic testing derives from the confidence with which a mutation can be called present or absent in a given individual. This confidence contrasts with our more limited ability to judge the significance of mutations for which co-segregation has not been demonstrated. These variants of “unknown” significance represent the greatest challenge to the wider adoption of genetic testing in HCM. Looking forward, next-generation sequencing technologies promise to revolutionize the current approach as whole genome sequencing will soon be available for the cost of today’s targeted panel. In summary, our future will be characterized not by lack of genetic information but by our ability to effectively parse it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 2
Fig. 1

Similar content being viewed by others

References

  1. Jones, W. H. S. (1923). Hippocratic collection vol 1-8. Cambridge: Harvard University Press.

    Google Scholar 

  2. Bateson, W. (1902). Mendel’s principles of heredity, a defense. London: Cambridge University Press.

    Google Scholar 

  3. Mendel, G. (1901). Experiments in plant hybridizaton (English translation). Journal of the Royal Horticultural Society, 26, 1–32.

    Google Scholar 

  4. Kerem, B., Rommens, J. M., Buchanan, J. A., et al. (1989). Identification of the cystic fibrosis gene: genetic analysis. Science, 245(4922), 1073–1080.

    Article  CAS  PubMed  Google Scholar 

  5. Curran, M. E., Splawski, I., Timothy, K. W., Vincent, G. M., Green, E. D., & Keating, M. T. (1995). A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. Cell, 80(5), 795–803.

    Article  CAS  PubMed  Google Scholar 

  6. Wang, Q., Shen, J., Splawski, I., et al. (1995). SCN5A mutations associated with an inherited cardiac arrhythmia, long QT syndrome. Cell, 80(5), 805–811.

    Article  CAS  PubMed  Google Scholar 

  7. Geisterfer-Lowrance, A. A., Kass, S., Tanigawa, G., et al. (1990). A molecular basis for familial hypertrophic cardiomyopathy: a beta cardiac myosin heavy chain gene missense mutation. Cell, 62(5), 999–1006.

    Article  CAS  PubMed  Google Scholar 

  8. Burton, P. R., Clayton, D. G., Cardon, L. R., Craddock, N., Deloukas, P., Duncanson, A., et al. (2007). Genome-wide association study of 14, 000 cases of seven common diseases and 3, 000 shared controls. Nature, 447(7145), 661–678.

    Article  CAS  Google Scholar 

  9. Hudson, K., Javitt, G., Burke, W., & Byers, P. (2007). ASHG Statement* on direct-to-consumer genetic testing in the United States. Obstetrics and Gynecology, 110(6), 1392–1395.

    PubMed  Google Scholar 

  10. Altman, R. B. (2009). Direct-to-consumer genetic testing: failure is not an option. Clinical Pharmacology and Therapeutics, 86(1), 15–17.

    Article  CAS  PubMed  Google Scholar 

  11. Hershberger, R. E., Lindenfeld, J., Mestroni, L., Seidman, C. E., Taylor, M. R., & Towbin, J. A. (2009). Genetic evaluation of cardiomyopathy–a Heart Failure Society of America practice guideline. Journal of Cardiac Failure, 15(2), 83–97.

    Article  PubMed  Google Scholar 

  12. Marston, S., Copeland, O., Jacques, A., et al. (2009). Evidence from human myectomy samples that MYBPC3 mutations cause hypertrophic cardiomyopathy through haploinsufficiency. Circulation Research, 105(3), 219–222.

    Article  CAS  PubMed  Google Scholar 

  13. Seidman, J. G., & Seidman, C. (2001). The genetic basis for cardiomyopathy: from mutation identification to mechanistic paradigms. Cell, 104(4), 557–567.

    Article  CAS  PubMed  Google Scholar 

  14. Bos, J. M., Towbin, J. A., & Ackerman, M. J. (2009). Diagnostic, prognostic, and therapeutic implications of genetic testing for hypertrophic cardiomyopathy. Journal of the American College of Cardiology, 54(3), 201–211.

    Article  CAS  PubMed  Google Scholar 

  15. Frazer, K. A., Ballinger, D. G., Cox, D. R., et al. (2007). A second generation human haplotype map of over 3.1 million SNPs. Nature, 449(7164), 851–861.

    Article  CAS  PubMed  Google Scholar 

  16. International HapMap Consortium. (2005). A haplotype map of the human genome. Nature, 437(7063), 1299–1320.

    Article  CAS  Google Scholar 

  17. International HapMap Consortium. (2003). The International HapMap Project. Nature, 426(6968), 789–796.

    Article  CAS  Google Scholar 

  18. Lander, E. S., Linton, L. M., Birren, B., et al. (2001). Initial sequencing and analysis of the human genome. Nature, 409(6822), 860–921.

    Article  CAS  PubMed  Google Scholar 

  19. Venter, J. C., Adams, M. D., Myers, E. W., et al. (2001). The sequence of the human genome. Science, 291(5507), 1304–1351.

    Article  CAS  PubMed  Google Scholar 

  20. McCarthy, M. I., Abecasis, G. R., Cardon, L. R., et al. (2008). Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nature Reviews. Genetics, 9(5), 356–369.

    Article  CAS  PubMed  Google Scholar 

  21. Frazer, K. A., Murray, S. S., Schork, N. J., & Topol, E. J. (2009). Human genetic variation and its contribution to complex traits. Nature Reviews. Genetics, 10(4), 241–251.

    Article  CAS  PubMed  Google Scholar 

  22. Storey, J. D., & Tibshirani, R. (2003). Statistical significance for genomewide studies. Proceedings of the National Academy of Sciences of the United States of America, 100(16), 9440–9445.

    Article  CAS  PubMed  Google Scholar 

  23. Maron, B. J., McKenna, W. J., Danielson, G. K., et al. (2003). American College of Cardiology/European Society of Cardiology clinical expert consensus document on hypertrophic cardiomyopathy. A report of the American College of Cardiology Foundation Task Force on Clinical Expert Consensus Documents and the European Society of Cardiology Committee for Practice Guidelines. Journal of the American College of Cardiology, 42(9), 1687–1713.

    Article  PubMed  Google Scholar 

  24. Maron, B. J., Spirito, P., Wesley, Y., & Arce, J. (1986). Development and progression of left ventricular hypertrophy in children with hypertrophic cardiomyopathy. New England Journal of Medicine, 315(10), 610–614.

    CAS  PubMed  Google Scholar 

  25. European Society of Human Genetics. (2009). Genetic testing in asymptomatic minors: Recommendations of the European Society of Human Genetics. European Journal of Human Genetics, 7(6), 720–721.

    Google Scholar 

  26. Maron, B. J., Roberts, W. C., Arad, M., et al. (2009). Clinical outcome and phenotypic expression in LAMP2 cardiomyopathy. Jama, 301(12), 1253–1259.

    Article  CAS  PubMed  Google Scholar 

  27. Arad, M., Maron, B. J., Gorham, J. M., et al. (2005). Glycogen storage diseases presenting as hypertrophic cardiomyopathy. New England Journal of Medicine, 352(4), 362–372.

    Article  CAS  PubMed  Google Scholar 

  28. Hamour, I. M., Lachmann, H. J., Goodman, H. J., et al. (2008). Heart transplantation for homozygous familial transthyretin (TTR) V122I cardiac amyloidosis. American Journal of Transplantation, 8(5), 1056–1059.

    Article  CAS  PubMed  Google Scholar 

  29. Dubrey, S. W., Burke, M. M., Khaghani, A., Hawkins, P. N., Yacoub, M. H., & Banner, N. R. (2001). Long term results of heart transplantation in patients with amyloid heart disease. Heart (British Cardiac Society)., 85(2), 202–207.

    CAS  Google Scholar 

  30. Schiffmann, R., Kopp, J. B., Austin, H. A., 3rd, et al. (2001). Enzyme replacement therapy in Fabry disease: a randomized controlled trial. Jama, 285(21), 2743–2749.

    Article  CAS  PubMed  Google Scholar 

  31. Eng, C. M., Guffon, N., Wilcox, W. R., et al. (2001). Safety and efficacy of recombinant human alpha-galactosidase A–replacement therapy in Fabry's disease. New England Journal of Medicine, 345(1), 9–16.

    Article  CAS  PubMed  Google Scholar 

  32. Buja, L. M. (2009). Evaluation of recombinant alpha-galactosidase A therapy for amelioration of the cardiovascular manifestations of Fabry disease: an important role for endomyocardial biopsy. Circulation, 119(19), 2539–2541.

    Article  PubMed  Google Scholar 

  33. Goldenberg, I., Zareba, W., & Moss, A. J. (2008). Long QT Syndrome. Current Problems in Cardiology, 33(11), 629–694.

    Article  PubMed  Google Scholar 

  34. Roden, D. M. (2008). Clinical practice. Long-QT syndrome. New England Journal of Medicine, 358(2), 169–176.

    Article  CAS  PubMed  Google Scholar 

  35. Lehnart, S. E., Ackerman, M. J., Benson, D. W., Jr., et al. (2007). Inherited arrhythmias: a National Heart, Lung, and Blood Institute and Office of Rare Diseases workshop consensus report about the diagnosis, phenotyping, molecular mechanisms, and therapeutic approaches for primary cardiomyopathies of gene mutations affecting ion channel function. Circulation, 116(20), 2325–2345.

    Article  CAS  PubMed  Google Scholar 

  36. Watkins, H., McKenna, W. J., Thierfelder, L., et al. (1995). Mutations in the genes for cardiac troponin T and alpha-tropomyosin in hypertrophic cardiomyopathy. New England Journal of Medicine, 332(16), 1058–1064.

    Article  CAS  PubMed  Google Scholar 

  37. Watkins, H., Rosenzweig, A., Hwang, D. S., et al. (1992). Characteristics and prognostic implications of myosin missense mutations in familial hypertrophic cardiomyopathy. New England Journal of Medicine, 326(17), 1108–1114.

    Article  CAS  PubMed  Google Scholar 

  38. Marian, A. J., Yu, Q. T., Workman, R., Greve, G., & Roberts, R. (1993). Angiotensin-converting enzyme polymorphism in hypertrophic cardiomyopathy and sudden cardiac death. Lancet, 342(8879), 1085–1086.

    Article  CAS  PubMed  Google Scholar 

  39. van der Merwe, L., Cloete, R., Revera, M., et al. (2008). Genetic variation in angiotensin-converting enzyme 2 gene is associated with extent of left ventricular hypertrophy in hypertrophic cardiomyopathy. Human Genetics, 124(1), 57–61.

    Article  CAS  PubMed  Google Scholar 

  40. Perkins, M. J., Van Driest, S. L., Ellsworth, E. G., et al. (2005). Gene-specific modifying effects of pro-LVH polymorphisms involving the renin-angiotensin-aldosterone system among 389 unrelated patients with hypertrophic cardiomyopathy. European Heart Journal, 26(22), 2457–2462.

    Article  CAS  PubMed  Google Scholar 

  41. Fermin, D., Barac, A., Lee, S., et al. (2008). Sex and age dimorphism of myocardial gene expression in nonischemic human heart failure. Circ Cardiov Genetics., 1, 117–125.

    Article  CAS  Google Scholar 

  42. Lind, J. M., Chiu, C., Ingles, J., et al. (2008). Sex hormone receptor gene variation associated with phenotype in male hypertrophic cardiomyopathy patients. Journal of Molecular and Cellular Cardiology, 45(2), 217–222.

    Article  CAS  PubMed  Google Scholar 

  43. Maron, B. J., & Ho, C. Y. (2009). Hypertrophic cardiomyopathy without hypertrophy: an emerging pre-clinical subgroup composed of genetically affected family members. Jacc, 2(1), 65–68.

    PubMed  Google Scholar 

  44. Semsarian, C., Ahmad, I., Giewat, M., et al. (2002). The L-type calcium channel inhibitor diltiazem prevents cardiomyopathy in a mouse model. Journal of Clinical Investigation, 109(8), 1013–1020.

    CAS  PubMed  Google Scholar 

  45. Handyside, A. H., Kontogianni, E. H., Hardy, K., & Winston, R. M. (1990). Pregnancies from biopsied human preimplantation embryos sexed by Y-specific DNA amplification. Nature, 344(6268), 768–770.

    Article  CAS  PubMed  Google Scholar 

  46. PGDIS. (2008). Guidelines for good practice in PGD: programme requirements and laboratory quality assurance. Reproductive Biomedicine Online, 16(1), 134–147.

    Google Scholar 

  47. Basille, C., Frydman, R., El Aly, A., et al. (2009). Preimplantation genetic diagnosis: state of the art. European Journal of Obstetrics, Gynecology, and Reproductive Biology, 145(1), 9–13.

    Article  CAS  PubMed  Google Scholar 

  48. Krahn, T. (2009). Preimplantation genetic diagnosis: does age of onset matter (anymore)? Medicine, Health Care and Philosophy, 12(2), 187–202.

    Article  Google Scholar 

  49. McArthur, S. J., Leigh, D., Marshall, J. T., Gee, A. J., De Boer, K. A., & Jansen, R. P. (2008). Blastocyst trophectoderm biopsy and preimplantation genetic diagnosis for familial monogenic disorders and chromosomal translocations. Prenatal Diagnosis, 28(5), 434–442.

    Article  CAS  PubMed  Google Scholar 

  50. Richards, C. S., Bale, S., Bellissimo, D. B., et al. (2008). ACMG recommendations for standards for interpretation and reporting of sequence variations: Revisions 2007. Genetics in Medicine, 10(4), 294–300.

    Article  CAS  PubMed  Google Scholar 

  51. Sunyaev, S., Ramensky, V., Koch, I., Lathe, W., 3rd, Kondrashov, A. S., & Bork, P. (2001). Prediction of deleterious human alleles. Human Molecular Genetics, 10(6), 591–597.

    Article  CAS  PubMed  Google Scholar 

  52. Kumar, P., Henikoff, S., & Ng, P. C. (2009). Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nature protocols., 4(8), 1073–1081.

    Article  CAS  PubMed  Google Scholar 

  53. Sanger, F., Air, G. M., Barrell, B. G., et al. (1977). Nucleotide sequence of bacteriophage phi X174 DNA. Nature, 265(5596), 687–695.

    Article  CAS  PubMed  Google Scholar 

  54. Shendure, J., & Ji, H. (2008). Next-generation DNA sequencing. Nature Biotechnology, 26(10), 1135–1145.

    Article  CAS  PubMed  Google Scholar 

  55. Braslavsky, I., Hebert, B., Kartalov, E., & Quake, S. R. (2003). Sequence information can be obtained from single DNA molecules. Proceedings of the National Academy of Sciences of the United States of America, 100(7), 3960–3964.

    Article  CAS  PubMed  Google Scholar 

  56. Pushkarev, D., Neff, N. F., & Quake, S. R. (2009). Single-molecule sequencing of an individual human genome. Nature Biotechnology, 27(9), 847–852.

    Article  CAS  PubMed  Google Scholar 

  57. Eid, J., Fehr, A., Gray, J., et al. (2009). Real-time DNA sequencing from single polymerase molecules. Science, 323(5910), 133–138.

    Article  CAS  PubMed  Google Scholar 

  58. Kim, J. B., Porreca, G. J., Song, L., et al. (2007). Polony multiplex analysis of gene expression (PMAGE) in mouse hypertrophic cardiomyopathy. Science, 316(5830), 1481–1484.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Euan A. Ashley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wheeler, M., Pavlovic, A., DeGoma, E. et al. A New Era in Clinical Genetic Testing for Hypertrophic Cardiomyopathy. J. of Cardiovasc. Trans. Res. 2, 381–391 (2009). https://doi.org/10.1007/s12265-009-9139-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-009-9139-0

Keywords

Navigation