Skip to main content

Advertisement

Log in

The Memory Orchestra: Contribution of Astrocytes

  • Review
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

For decades, memory research has centered on the role of neurons, which do not function in isolation. However, astrocytes play important roles in regulating neuronal recruitment and function at the local and network levels, forming the basis for information processing as well as memory formation and storage. In this review, we discuss the role of astrocytes in memory functions and their cellular underpinnings at multiple time points. We summarize important breakthroughs and controversies in the field as well as potential avenues to further illuminate the role of astrocytes in memory processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Conway CM. How does the brain learn environmental structure? Ten core principles for understanding the neurocognitive mechanisms of statistical learning. Neurosci Biobehav Rev 2020, 112: 279–299.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hulme SR, Jones OD, Abraham WC. Emerging roles of metaplasticity in behaviour and disease. Trends Neurosci 2013, 36: 353–362.

    Article  CAS  PubMed  Google Scholar 

  3. Komorowski RW, Garcia CG, Wilson A, Hattori S, Howard MW, Eichenbaum H. Ventral hippocampal neurons are shaped by experience to represent behaviorally relevant contexts. J Neurosci 2013, 33: 8079–8087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Moscovitch M, Cabeza R, Winocur G, Nadel L. Episodic memory and beyond: The Hippocampus and neocortex in transformation. Annu Rev Psychol 2016, 67: 105–134.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Fields RD, Araque A, Johansen-Berg H, Lim SS, Lynch G, Nave KA. Glial biology in learning and cognition. Neuroscientist 2014, 20: 426–431.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Herculano-Houzel S. The glia/neuron ratio: How it varies uniformly across brain structures and species and what that means for brain physiology and evolution. Glia 2014, 62: 1377–1391.

    Article  PubMed  Google Scholar 

  7. Khakh BS, Sofroniew MV. Diversity of astrocyte functions and phenotypes in neural circuits. Nat Neurosci 2015, 18: 942–952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Araque A, Carmignoto G, Haydon PG, Oliet SHR, Robitaille R, Volterra A. Gliotransmitters travel in time and space. Neuron 2014, 81: 728–739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jun N, Yu X, Papouin T, Cheong E, Freeman MR, Monk KR, et al. Behaviorally consequential astrocytic regulation of neural circuits. Neuron 2021, 109: 576–596.

    Article  Google Scholar 

  10. Martín R, Bajo-Grañeras R, Moratalla R, Perea G, Araque A. Circuit-specific signaling in astrocyte-neuron networks in basal Ganglia pathways. Science 2015, 349: 730–734.

    Article  PubMed  Google Scholar 

  11. Martin-Fernandez M, Jamison S, Robin LM, Zhao Z, Martin ED, Aguilar J, et al. Synapse-specific astrocyte gating of amygdala-related behavior. Nat Neurosci 2017, 20: 1540–1548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kol A, Adamsky A, Groysman M, Kreisel T, London M, Goshen I. Astrocytes contribute to remote memory formation by modulating hippocampal-cortical communication during learning. Nat Neurosci 2020, 23: 1229–1239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Adamsky A, Kol A, Kreisel T, Doron A, Ozeri-Engelhard N, Melcer T, et al. Astrocytic activation generates De novo neuronal potentiation and memory enhancement. Cell 2018, 174: 59-71.e14.

    Article  CAS  PubMed  Google Scholar 

  14. Covelo A, Araque A. Neuronal activity determines distinct gliotransmitter release from a single astrocyte. eLife 2018, 7: e32237.

  15. Bazargani N, Attwell D. Astrocyte calcium signaling: The third wave. Nat Neurosci 2016, 19: 182–189.

    Article  CAS  PubMed  Google Scholar 

  16. Di Castro MA, Chuquet J, Liaudet N, Bhaukaurally K, Santello M, Bouvier D, et al. Local Ca2+ detection and modulation of synaptic release by astrocytes. Nat Neurosci 2011, 14: 1276–1284.

    Article  PubMed  Google Scholar 

  17. Jun N, Bellafard A, Qu Z, Yu X, Ollivier M, Gangwani MR, et al. Specific and behaviorally consequential astrocyte Gq GPCR signaling attenuation in vivo with iβARK. Neuron 2021, 109: 2256-2274.e9.

    Article  Google Scholar 

  18. Pinto-Duarte A, Roberts AJ, Ouyang K, Sejnowski TJ. Impairments in remote memory caused by the lack of Type 2 IP3 receptors. Glia 2019, 67: 1976–1989.

    PubMed  Google Scholar 

  19. Mederos S, Sánchez-Puelles C, Esparza J, Valero M, Ponomarenko A, Perea G. GABAergic signaling to astrocytes in the prefrontal cortex sustains goal-directed behaviors. Nat Neurosci 2021, 24: 82–92.

    Article  CAS  PubMed  Google Scholar 

  20. Lee HS, Ghetti A, Pinto-Duarte A, Wang X, Dziewczapolski G, Galimi F, et al. Astrocytes contribute to gamma oscillations and recognition memory. Proc Natl Acad Sci U S A 2014, 111: E3343–E3352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Han J, Kesner P, Metna-Laurent M, Duan T, Xu L, Georges F, et al. Acute cannabinoids impair working memory through astroglial CB1 receptor modulation of hippocampal LTD. Cell 2012, 148: 1039–1050.

    Article  CAS  PubMed  Google Scholar 

  22. Matos M, Shen HY, Augusto E, Wang Y, Wei CJ, Wang YT, et al. Deletion of adenosine A2A receptors from astrocytes disrupts glutamate homeostasis leading to psychomotor and cognitive impairment: Relevance to schizophrenia. Biol Psychiatry 2015, 78: 763–774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Newman LA, Korol DL, Gold PE. Lactate produced by glycogenolysis in astrocytes regulates memory processing. PLoS One 2011, 6: e28427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mederos S, Hernández-Vivanco A, Ramírez-Franco J, Martín-Fernández M, Navarrete M, Yang A, et al. Melanopsin for precise optogenetic activation of astrocyte-neuron networks. Glia 2019, 67: 915–934.

    Article  PubMed  Google Scholar 

  25. Nishiyama H, Knopfel T, Endo S, Itohara S. Glial protein S100B modulates long-term neuronal synaptic plasticity. Proc Natl Acad Sci U S A 2002, 99: 4037–4042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Barca-Mayo O, Pons-Espinal M, Follert P, Armirotti A, Berdondini L, De Pietri Tonelli D. Astrocyte deletion of Bmal1 alters daily locomotor activity and cognitive functions via GABA signalling. Nat Commun 2017, 8: 14336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vicente-Gutierrez C, Bonora N, Bobo-Jimenez V, Jimenez-Blasco D, Lopez-Fabuel I, Fernandez E, et al. Astrocytic mitochondrial ROS modulate brain metabolism and mouse behaviour. Nat Metab 2019, 1: 201–211.

    Article  CAS  PubMed  Google Scholar 

  28. Sardinha VM, Guerra-Gomes S, Caetano I, Tavares G, Martins M, Reis JS, et al. Astrocytic signaling supports hippocampal-prefrontal theta synchronization and cognitive function. Glia 2017, 65: 1944–1960.

    Article  PubMed  Google Scholar 

  29. Zhang K, Förster R, He W, Liao X, Li J, Yang C, et al. Fear learning induces α7-nicotinic acetylcholine receptor-mediated astrocytic responsiveness that is required for memory persistence. Nat Neurosci 2021, 24: 1686–1698.

    Article  CAS  PubMed  Google Scholar 

  30. Li WP, Su XH, Hu NY, Hu J, Li XW, Yang JM, et al. Astrocytes mediate cholinergic regulation of adult hippocampal neurogenesis and memory through M1 muscarinic receptor. Biol Psychiatry 2022, 92: 984–998.

    Article  CAS  PubMed  Google Scholar 

  31. Robin LM, Oliveira da Cruz JF, Langlais VC, Martin-Fernandez M, Metna-Laurent M, Busquets-Garcia A, et al. Astroglial CB1 receptors determine synaptic D-serine availability to enable recognition memory. Neuron 2018, 98: 935–944.e5.

  32. Li Y, Li L, Wu J, Zhu Z, Feng X, Qin L, et al. Activation of astrocytes in hippocampus decreases fear memory through adenosine A1 receptors. eLife 2020, 9: e57155.

  33. Khakh BS, Deneen B. The emerging nature of astrocyte diversity. Annu Rev Neurosci 2019, 42: 187–207.

    Article  CAS  PubMed  Google Scholar 

  34. Durkee CA, Covelo A, Lines J, Kofuji P, Aguilar J, Araque A. Gi/o protein-coupled receptors inhibit neurons but activate astrocytes and stimulate gliotransmission. Glia 2019, 67: 1076–1093.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Jun N, Rajbhandari AK, Gangwani MR, Hachisuka A, Coppola G, Masmanidis SC, et al. Hyperactivity with disrupted attention by activation of an astrocyte synaptogenic cue. Cell 2019, 177: 1280-1292.e20.

    Article  Google Scholar 

  36. Nam MH, Han KS, Lee J, Won W, Koh W, Bae JY, et al. Activation of astrocytic μ-opioid receptor causes conditioned place preference. Cell Rep 2019, 28: 1154-1166.e5.

    Article  CAS  PubMed  Google Scholar 

  37. Liu JH, Zhang M, Wang Q, Wu DY, Jie W, Hu NY, et al. Distinct roles of astroglia and neurons in synaptic plasticity and memory. Mol Psychiatry 2022, 27: 873–885.

    Article  CAS  PubMed  Google Scholar 

  38. Orr AG, Hsiao EC, Wang MM, Ho K, Kim DH, Wang X, et al. Astrocytic adenosine receptor A2A and Gs-coupled signaling regulate memory. Nat Neurosci 2015, 18: 423–434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shen HY, Coelho JE, Ohtsuka N, Canas PM, Day YJ, Huang QY, et al. A critical role of the adenosine A2A receptor in extrastriatal neurons in modulating psychomotor activity as revealed by opposite phenotypes of striatum and forebrain A2A receptor knock-outs. J Neurosci 2008, 28: 2970–2975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yu L, Shen HY, Coelho JE, Araújo IM, Huang QY, Day YJ, et al. Adenosine A2A receptor antagonists exert motor and neuroprotective effects by distinct cellular mechanisms. Ann Neurol 2008, 63: 338–346.

    Article  CAS  PubMed  Google Scholar 

  41. Cunha RA. Adenosine as a neuromodulator and as a homeostatic regulator in the nervous system: Different roles, different sources and different receptors. Neurochem Int 2001, 38: 107–125.

    Article  CAS  PubMed  Google Scholar 

  42. Bergami M, Santi S, Formaggio E, Cagnoli C, Verderio C, Blum R, et al. Uptake and recycling of pro-BDNF for transmitter-induced secretion by cortical astrocytes. J Cell Biol 2008, 183: 213–221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Vignoli B, Battistini G, Melani R, Blum R, Santi S, Berardi N, et al. Peri-synaptic Glia recycles brain-derived neurotrophic factor for LTP stabilization and memory retention. Neuron 2016, 92: 873–887.

    Article  CAS  PubMed  Google Scholar 

  44. Miklič Š, Jurič DM, Čaman-Kržan M. Differences in the regulation of BDNF and NGF synthesis in cultured neonatal rat astrocytes. Int J Dev Neurosci 2004, 22: 119–130.

    Article  PubMed  Google Scholar 

  45. Parpura V, Zorec R. Gliotransmission: Exocytotic release from astrocytes. Brain Res Rev 2010, 63: 83–92.

    Article  CAS  PubMed  Google Scholar 

  46. Jean YY, Lercher LD, Dreyfus CF. Glutamate elicits release of BDNF from basal forebrain astrocytes in a process dependent on metabotropic receptors and the PLC pathway. Neuron Glia Biol 2008, 4: 35–42.

    Article  PubMed  Google Scholar 

  47. Messaoudi E, Ying SW, Kanhema T, Croll SD, Bramham CR. Brain-derived neurotrophic factor triggers transcription-dependent, late phase long-term potentiation in vivo. J Neurosci 2002, 22: 7453–7461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kang H, Schuman EM. Long-lasting neurotrophin-induced enhancement of synaptic transmission in the adult hippocampus. Science 1995, 267: 1658–1662.

    Article  CAS  PubMed  Google Scholar 

  49. Patterson SL, Abel T, Deuel TAS, Martin KC, Rose JC, Kandel ER. Recombinant BDNF rescues deficits in basal synaptic transmission and hippocampal LTP in BDNF knockout mice. Neuron 1996, 16: 1137–1145.

    Article  CAS  PubMed  Google Scholar 

  50. Toni N, Buchs PA, Nikonenko I, Bron CR, Muller D. LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite. Nature 1999, 402: 421–425.

    Article  CAS  PubMed  Google Scholar 

  51. Attardo A, Fitzgerald JE, Schnitzer MJ. Impermanence of dendritic spines in live adult CA1 hippocampus. Nature 2015, 523: 592–596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Xu T, Yu X, Perlik AJ, Tobin WF, Zweig JA, Tennant K, et al. Rapid formation and selective stabilization of synapses for enduring motor memories. Nature 2009, 462: 915–919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Maletic-Savatic M, Malinow R, Svoboda K. Rapid dendritic morphogenesis in CA1 hippocampal dendrites induced by synaptic activity. Science 1999, 283: 1923–1927.

    Article  CAS  PubMed  Google Scholar 

  54. Chung WS, Clarke LE, Wang GX, Stafford BK, Sher A, Chakraborty C, et al. Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways. Nature 2013, 504: 394–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Allen NJ, Eroglu C. Cell biology of astrocyte-synapse interactions. Neuron 2017, 96: 697–708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lee JH, Kim JY, Noh S, Lee H, Lee SY, Mun JY, et al. Astrocytes phagocytose adult hippocampal synapses for circuit homeostasis. Nature 2021, 590: 612–617.

    Article  CAS  PubMed  Google Scholar 

  57. Koeppen J, Nguyen AQ, Nikolakopoulou AM, Garcia M, Hanna S, Woodruff S, et al. Functional consequences of synapse remodeling following astrocyte-specific regulation of ephrin-B1 in the adult Hippocampus. J Neurosci 2018, 38: 5710–5726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Frankland PW, Bontempi B. The organization of recent and remote memories. Nat Rev Neurosci 2005, 6: 119–130.

    Article  CAS  PubMed  Google Scholar 

  59. Goshen I, Brodsky M, Prakash R, Wallace J, Gradinaru V, Ramakrishnan C, et al. Dynamics of retrieval strategies for remote memories. Cell 2011, 147: 678–689.

    Article  CAS  PubMed  Google Scholar 

  60. Vetere G, Kenney JW, Tran LM, Xia F, Steadman PE, Parkinson J, et al. Chemogenetic interrogation of a brain-wide fear memory network in mice. Neuron 2017, 94: 363-374.e4.

    Article  CAS  PubMed  Google Scholar 

  61. Pellerin L, Magistretti PJ. Glutamate uptake into astrocytes stimulates aerobic glycolysis: A mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci U S A 1994, 91: 10625–10629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Suzuki A, Stern SA, Bozdagi O, Huntley GW, Walker RH, Magistretti PJ, et al. Astrocyte-neuron lactate transport is required for long-term memory formation. Cell 2011, 144: 810–823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Descalzi G, Gao V, Steinman MQ, Suzuki A, Alberini CM. Lactate from astrocytes fuels learning-induced mRNA translation in excitatory and inhibitory neurons. Commun Biol 2019, 2: 247.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Vezzoli E, Calì C, De Roo M, Ponzoni L, Sogne E, Gagnon N, et al. Ultrastructural evidence for a role of astrocytes and glycogen-derived lactate in learning-dependent synaptic stabilization. Cereb Cortex 2020, 30: 2114–2127.

    Article  CAS  PubMed  Google Scholar 

  65. Gao V, Suzuki A, Magistretti PJ, Lengacher S, Pollonini G, Steinman MQ, et al. Astrocytic β2-adrenergic receptors mediate hippocampal long-term memory consolidation. Proc Natl Acad Sci U S A 2016, 113: 8526–8531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Jensen CJ, Demol F, Bauwens R, Kooijman R, Massie A, Villers A, et al. Astrocytic β2 adrenergic receptor gene deletion affects memory in aged mice. PLoS One 2016, 11: e0164721.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Licznerski P, Duric V, Banasr M, Alavian KN, Ota KT, Kang HJ, et al. Decreased SGK1 expression and function contributes to behavioral deficits induced by traumatic stress. PLoS Biol 2015, 13: e1002282.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Tertil M, Skupio U, Barut J, Dubovyk V, Wawrzczak-Bargiela A, Soltys Z, et al. Glucocorticoid receptor signaling in astrocytes is required for aversive memory formation. Transl Psychiatry 2018, 8: 255.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Boury-Jamot B, Carrard A, Martin JL, Halfon O, Magistretti PJ, Boutrel B. Disrupting astrocyte-neuron lactate transfer persistently reduces conditioned responses to cocaine. Mol Psychiatry 2016, 21: 1070–1076.

    Article  CAS  PubMed  Google Scholar 

  70. Zhang Y, Xue Y, Meng S, Luo Y, Liang J, Li J, et al. Inhibition of lactate transport erases drug memory and prevents drug relapse. Biol Psychiatry 2016, 79: 928–939.

    Article  CAS  PubMed  Google Scholar 

  71. Gordon GRJ, Choi HB, Rungta RL, Ellis-Davies GCR, MacVicar BA. Brain metabolism dictates the polarity of astrocyte control over arterioles. Nature 2008, 456: 745–749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lauritzen KH, Morland C, Puchades M, Holm-Hansen S, Hagelin EM, Lauritzen F, et al. Lactate receptor sites link neurotransmission, neurovascular coupling, and brain energy metabolism. Cereb Cortex 2014, 24: 2784–2795.

    Article  PubMed  Google Scholar 

  73. Morland C, Lauritzen KH, Puchades M, Holm-Hansen S, Andersson K, Gjedde A, et al. The lactate receptor, G-protein-coupled receptor 81/hydroxycarboxylic acid receptor 1: Expression and action in brain. J Neurosci Res 2015, 93: 1045–1055.

    Article  CAS  PubMed  Google Scholar 

  74. Halassa MM, Florian C, Fellin T, Munoz JR, Lee SY, Abel T, et al. Astrocytic modulation of sleep homeostasis and cognitive consequences of sleep loss. Neuron 2009, 61: 213–219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Florian C, Vecsey CG, Halassa MM, Haydon PG, Abel T. Astrocyte-derived adenosine and A1 receptor activity contribute to sleep loss-induced deficits in hippocampal synaptic plasticity and memory in mice. J Neurosci 2011, 31: 6956–6962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Smarr BL, Jennings KJ, Driscoll JR, Kriegsfeld LJ. A time to remember: The role of circadian clocks in learning and memory. Behav Neurosci 2014, 128: 283–303.

    Article  PubMed  PubMed Central  Google Scholar 

  77. McAfoose J, Baune BT. Evidence for a cytokine model of cognitive function. Neurosci Biobehav Rev 2009, 33: 355–366.

    Article  CAS  PubMed  Google Scholar 

  78. Erta M, Giralt M, Esposito FL, Fernandez-Gayol O, Hidalgo J. Astrocytic IL-6 mediates locomotor activity, exploration, anxiety, learning and social behavior. Horm Behav 2015, 73: 64–74.

    Article  CAS  PubMed  Google Scholar 

  79. Oberheim NA, Takano T, Han X, He W, Lin JHC, Wang F, et al. Uniquely hominid features of adult human astrocytes. J Neurosci 2009, 29: 3276–3287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Han X, Chen M, Wang F, Windrem M, Wang S, Shanz S, et al. Forebrain engraftment by human glial progenitor cells enhances synaptic plasticity and learning in adult mice. Cell Stem Cell 2013, 12: 342–353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zhou B, Zhu Z, Ransom BR, Tong X. Oligodendrocyte lineage cells and depression. Mol Psychiatry 2021, 26: 103–117.

    Article  PubMed  Google Scholar 

  82. Luo F, Zhang J, Burke K, Romito-DiGiacomo RR, Miller RH, Yang Y. Oligodendrocyte-specific loss of Cdk5 disrupts the architecture of nodes of Ranvier as well as learning and memory. Exp Neurol 2018, 306: 92–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kato D, Wake H, Lee PR, Tachibana Y, Ono R, Sugio S, et al. Motor learning requires myelination to reduce asynchrony and spontaneity in neural activity. Glia 2020, 68: 193–210.

    Article  PubMed  Google Scholar 

  84. McKenzie IA, Ohayon D, Li H, de Faria JP, Emery B, Tohyama K, et al. Motor skill learning requires active central myelination. Science 2014, 346: 318–322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Xiao L, Ohayon D, McKenzie IA, Sinclair-Wilson A, Wright JL, Fudge AD, et al. Rapid production of new oligodendrocytes is required in the earliest stages of motor-skill learning. Nat Neurosci 2016, 19: 1210–1217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Steadman PE, Xia F, Ahmed M, Mocle AJ, Penning ARA, Geraghty AC, et al. Disruption of oligodendrogenesis impairs memory consolidation in adult mice. Neuron 2020, 105: 150-164.e6.

    Article  CAS  PubMed  Google Scholar 

  87. Wang F, Ren SY, Chen JF, Liu K, Li RX, Li ZF, et al. Myelin degeneration and diminished myelin renewal contribute to age-related deficits in memory. Nat Neurosci 2020, 23: 481–486.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Pan S, Mayoral SR, Choi HS, Chan JR, Kheirbek MA. Preservation of a remote fear memory requires new myelin formation. Nat Neurosci 2020, 23: 487–499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Xin W, Chan JR. Myelin plasticity: Sculpting circuits in learning and memory. Nat Rev Neurosci 2020, 21: 682–694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Orthmann-Murphy JL, Abrams CK, Scherer SS. Gap junctions couple astrocytes and oligodendrocytes. J Mol Neurosci 2008, 35: 101–116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Masaki K. Early disruption of glial communication via connexin gap junction in multiple sclerosis, Baló’s disease and neuromyelitis optica. Neuropathology 2015, 35: 469–480.

    Article  CAS  PubMed  Google Scholar 

  92. Papaneophytou CP, Georgiou E, Karaiskos C, Sargiannidou I, Markoullis K, Freidin MM, et al. Regulatory role of oligodendrocyte gap junctions in inflammatory demyelination. Glia 2018, 66: 2589–2603.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Ortega MC, Cases O, Merchán P, Kozyraki R, Clemente D, de Castro F. Megalin mediates the influence of sonic hedgehog on oligodendrocyte precursor cell migration and proliferation during development. Glia 2012, 60: 851–866.

    Article  PubMed  Google Scholar 

  94. Clemente D, Ortega MC, Melero-Jerez C, de Castro F. The effect of glia-glia interactions on oligodendrocyte precursor cell biology during development and in demyelinating diseases. Front Cell Neurosci 2013, 7: 268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Durand B, Raff M. A cell-intrinsic timer that operates during oligodendrocyte development. Bioessays 2000, 22: 64–71.

    Article  CAS  PubMed  Google Scholar 

  96. See J, Zhang X, Eraydin N, Mun SB, Mamontov P, Golden JA, et al. Oligodendrocyte maturation is inhibited by bone morphogenetic protein. Mol Cell Neurosci 2004, 26: 481–492.

    Article  CAS  PubMed  Google Scholar 

  97. Nutma E, van Gent D, Amor S, Peferoen LAN. Astrocyte and oligodendrocyte cross-talk in the central nervous system. Cells 2020, 9: 600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Tay TL, Savage JC, Hui CW, Bisht K, Tremblay MÈ. Microglia across the lifespan: From origin to function in brain development, plasticity and cognition. J Physiol 2017, 595: 1929–1945.

    Article  CAS  PubMed  Google Scholar 

  99. Bar E, Barak B. Microglia roles in synaptic plasticity and myelination in homeostatic conditions and neurodevelopmental disorders. Glia 2019, 67: 2125–2141.

    Article  PubMed  Google Scholar 

  100. Akiyoshi R, Wake H, Kato D, Horiuchi H, Ono R, Ikegami A, et al. Microglia enhance synapse activity to promote local network synchronization. eNeuro 2018, 5: ENEURO.0088–ENEURO.0018.2018.

  101. Nguyen PT, Dorman LC, Pan S, Vainchtein ID, Han RT, Nakao-Inoue H, et al. Microglial remodeling of the extracellular matrix promotes synapse plasticity. Cell 2020, 182: 388-403.e15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wang C, Yue H, Hu Z, Shen Y, Ma J, Li J, et al. Microglia mediate forgetting via complement-dependent synaptic elimination. Science 2020, 367: 688–694.

    Article  CAS  PubMed  Google Scholar 

  103. De Luca SN, Soch A, Sominsky L, Nguyen TX, Bosakhar A, Spencer SJ. Glial remodeling enhances short-term memory performance in Wistar rats. J Neuroinflammation 2020, 17: 52.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Golia MT, Poggini S, Alboni S, Garofalo S, Ciano Albanese N, Viglione A, et al. Interplay between inflammation and neural plasticity: Both immune activation and suppression impair LTP and BDNF expression. Brain Behav Immun 2019, 81: 484–494.

    Article  CAS  PubMed  Google Scholar 

  105. Pettigrew LC, Kryscio RJ, Norris CM. The TNFα-transgenic rat: Hippocampal synaptic integrity, cognition, function, and post-ischemic cell loss. PLoS One 2016, 11: e0154721.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Cornell J, Salinas S, Huang HY, Zhou M. Microglia regulation of synaptic plasticity and learning and memory. Neural Regen Res 2022, 17: 705–716.

    Article  CAS  PubMed  Google Scholar 

  107. Vainchtein ID, Chin G, Cho FS, Kelley KW, Miller JG, Chien EC, et al. Astrocyte-derived interleukin-33 promotes microglial synapse engulfment and neural circuit development. Science 2018, 359: 1269–1273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 2017, 541: 481–487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Jha MK, Jeon S, Suk K. Glia as a link between neuroinflammation and neuropathic pain. Immune Netw 2012, 12: 41–47.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Jha MK, Jo M, Kim JH, Suk K. Microglia-astrocyte crosstalk: An intimate molecular conversation. Neuroscientist 2019, 25: 227–240.

    Article  CAS  PubMed  Google Scholar 

  111. Pascual O, Ben Achour S, Rostaing P, Triller A, Bessis A. Microglia activation triggers astrocyte-mediated modulation of excitatory neurotransmission. Proc Natl Acad Sci U S A 2012, 109: E197–E205.

    Article  CAS  PubMed  Google Scholar 

  112. Porto-Pazos AB, Veiguela N, Mesejo P, Navarrete M, Alvarellos A, Ibáñez O, et al. Artificial astrocytes improve neural network performance. PLoS One 2011, 6: e19109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Zhang Y, Rózsa M, Liang Y, Bushey D, Wei Z, Zheng J, et al. Fast and sensitive GCaMP calcium indicators for imaging neural populations. bioRxiv 2021. https://doi.org/10.1101/2021.11.08.467793v2.full

  114. Chen N, Sugihara H, Kim J, Fu Z, Barak B, Sur M, et al. Direct modulation of GFAP-expressing glia in the arcuate nucleus bi-directionally regulates feeding. eLife 2016, 5: e18716.

  115. Hu NY, Chen YT, Wang Q, Jie W, Liu YS, You QL, et al. Expression patterns of inducible cre recombinase driven by differential astrocyte-specific promoters in transgenic mouse lines. Neurosci Bull 2020, 36: 530–544.

    Article  PubMed  Google Scholar 

  116. Ben Haim L, Rowitch DH. Functional diversity of astrocytes in neural circuit regulation. Nat Rev Neurosci 2017, 18: 31–41.

    Article  PubMed  Google Scholar 

  117. Batiuk MY, Martirosyan A, Wahis J, de Vin F, Marneffe C, Kusserow C, et al. Identification of region-specific astrocyte subtypes at single cell resolution. Nat Commun 2020, 11: 1220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Ali Bayraktar O, Bartels T, Holmqvist S, Kleshchevnikov V, Martirosyan A, Polioudakis D, et al. Astrocyte layers in the mammalian cerebral cortex revealed by a single-cell in situ transcriptomic map. Nat Neurosci 2020, 23: 500–509.

    Article  Google Scholar 

  119. Mu Y, Bennett DV, Rubinov M, Narayan S, Yang CT, Tanimoto M, et al. Glia accumulate evidence that actions are futile and suppress unsuccessful behavior. Cell 2019, 178: 27-43.e19.

    Article  CAS  PubMed  Google Scholar 

  120. De Pittà M, Volman V, Levine H, Pioggia G, De Rossi D, Ben-Jacob E. Coexistence of amplitude and frequency modulations in intracellular calcium dynamics. Phys Rev E Stat Nonlin Soft Matter Phys 2008, 77: 030903.

    Article  PubMed  Google Scholar 

  121. Tadi M, Allaman I, Lengacher S, Grenningloh G, Magistretti PJ. Learning-induced gene expression in the hippocampus reveals a role of neuron-astrocyte metabolic coupling in long term memory. PLoS One 2015, 10: e0141568.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Shibuki K, Gomi H, Chen L, Bao S, Kim JJ, Wakatsuki H, et al. Deficient cerebellar long-term depression, impaired eyeblink conditioning, and normal motor coordination in GFAP mutant mice. Neuron 1996, 16: 587–599.

    Article  CAS  PubMed  Google Scholar 

  123. Stehberg J, Moraga-Amaro R, Salazar C, Becerra A, Echeverría C, Orellana JA, et al. Release of gliotransmitters through astroglial connexin 43 hemichannels is necessary for fear memory consolidation in the basolateral amygdala. FASEB J 2012, 26: 3649–3657.

    Article  CAS  PubMed  Google Scholar 

  124. Ferris HA, Perry RJ, Moreira GV, Shulman GI, Horton JD, Kahn CR. Loss of astrocyte cholesterol synthesis disrupts neuronal function and alters whole-body metabolism. Proc Natl Acad Sci U S A 2017, 114: 1189–1194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This review was supported by grants from the STI2030-Major Projects (2022ZD0204702; 2022ZD0214300), the National Natural Science Foundation of China (82090032, 31830033, and 32271014), the Key Area Research and Development Program of Guangdong Province (2018B030334001 and 2018B030340001), and the Science and Technology Program of Guangzhou (202007030013).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi-Hua Chen or Tian-Ming Gao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, YH., Jin, SY., Yang, JM. et al. The Memory Orchestra: Contribution of Astrocytes. Neurosci. Bull. 39, 409–424 (2023). https://doi.org/10.1007/s12264-023-01024-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-023-01024-x

Keywords

Navigation