Skip to main content

Advertisement

Log in

Coordinated Regulation of Myelination by Growth Factor and Amino-acid Signaling Pathways

  • Review
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Myelin-forming oligodendrocytes in the central nervous system (CNS) and Schwann cells in the peripheral nervous system (PNS) are essential for structural and functional homeostasis of nervous tissue. Albeit with certain similarities, the regulation of CNS and PNS myelination is executed differently. Recent advances highlight the coordinated regulation of oligodendrocyte myelination by amino-acid sensing and growth factor signaling pathways. In this review, we discuss novel insights into the understanding of differential regulation of oligodendrocyte and Schwann cell biology in CNS and PNS myelination, with particular focus on the roles of growth factor-stimulated RHEB-mTORC1 and GATOR2-mediated amino-acid sensing/signaling pathways. We also discuss recent progress on the metabolic regulation of oligodendrocytes and Schwann cells and the impact of their dysfunction on neuronal function and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zalc B, Goujet D, Colman D. The origin of the myelination program in vertebrates. Curr Biol 2008, 18: R511–R512.

    Article  CAS  PubMed  Google Scholar 

  2. Li H, Richardson WD. Evolution of the CNS myelin gene regulatory program. Brain Res 2016, 1641: 111–121.

    Article  CAS  PubMed  Google Scholar 

  3. Harris JJ, Attwell D. The energetics of CNS white matter. J Neurosci 2012, 32: 356–371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. McKenzie IA, Ohayon D, Li H, de Faria JP, Emery B, Tohyama K. Motor skill learning requires active central myelination. Science 2014, 346: 318–322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Olmos-Serrano JL, Kang HJ, Tyler WA, Silbereis JC, Cheng F, Zhu Y, et al. Down syndrome developmental brain transcriptome reveals defective oligodendrocyte differentiation and myelination. Neuron 2016, 89: 1208–1222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ercan E, Han JM, Di Nardo A, Winden K, Han MJ, Hoyo L, et al. Neuronal CTGF/CCN2 negatively regulates myelination in a mouse model of tuberous sclerosis complex. J Exp Med 2017, 214: 681–697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nave KA, Ehrenreich H. Myelination and oligodendrocyte functions in psychiatric diseases. JAMA Psychiatry 2014, 71: 582–584.

    Article  PubMed  Google Scholar 

  8. Bartzokis G. Age-related myelin breakdown: A developmental model of cognitive decline and Alzheimer’s disease. Neurobiol Aging 2004, 25: 5–18.

    Article  CAS  PubMed  Google Scholar 

  9. Butt AM, Ransom BR. Morphology of astrocytes and oligodendrocytes during development in the intact rat optic nerve. J Comp Neurol 1993, 338: 141–158.

    Article  CAS  PubMed  Google Scholar 

  10. Taylor CM, Marta CB, Claycomb RJ, Han DK, Rasband MN, Coetzee T, et al. Proteomic mapping provides powerful insights into functional myelin biology. Proc Natl Acad Sci U S A 2004, 101: 4643–4648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jahn O, Siems SB, Kusch K, Hesse D, Jung RB, Liepold T, et al. The CNS myelin proteome: Deep profile and persistence after post-mortem delay. Front Cell Neurosci 2020, 14: 239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Patzig J, Jahn O, Tenzer S, Wichert SP, de Monasterio-Schrader P, Rosfa S, et al. Quantitative and integrative proteome analysis of peripheral nerve myelin identifies novel myelin proteins and candidate neuropathy loci. J Neurosci 2011, 31: 16369–16386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jessen KR, Mirsky R, Lloyd AC. Schwann cells: Development and role in nerve repair. Cold Spring Harb Perspect Biol 2015, 7: a020487.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bergles DE, Richardson WD. Oligodendrocyte development and plasticity. Cold Spring Harb Perspect Biol 2015, 8: a020453.

    Article  PubMed  Google Scholar 

  15. Pringle NP, Richardson WD. A singularity of PDGF alpha-receptor expression in the dorsoventral axis of the neural tube may define the origin of the oligodendrocyte lineage. Development 1993, 117: 525–533.

    Article  CAS  PubMed  Google Scholar 

  16. Cai J, Qi Y, Hu X, Tan M, Liu Z, Zhang J, et al. Generation of oligodendrocyte precursor cells from mouse dorsal spinal cord independent of Nkx6 regulation and Shh signaling. Neuron 2005, 45: 41–53.

    Article  CAS  PubMed  Google Scholar 

  17. Rivers LE, Young KM, Rizzi M, Jamen F, Psachoulia K, Wade A, et al. PDGFRA/NG2 glia generate myelinating oligodendrocytes and piriform projection neurons in adult mice. Nat Neurosci 2008, 11: 1392–1401.

    Article  CAS  PubMed  Google Scholar 

  18. Li X, Liu G, Yang L, Li Z, Zhang Z, Xu Z, et al. Decoding cortical glial cell development. Neurosci Bull 2021, 37: 440–460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Winkler CC, Yabut OR, Fregoso SP, Gomez HG, Dwyer BE, Pleasure SJ, et al. The dorsal wave of neocortical oligodendrogenesis begins embryonically and requires multiple sources of sonic hedgehog. J Neurosci 2018, 38: 5237–5250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kessaris N, Fogarty M, Iannarelli P, Grist M, Wegner M, Richardson WD. Competing waves of oligodendrocytes in the forebrain and postnatal elimination of an embryonic lineage. Nat Neurosci 2006, 9: 173–179.

    Article  CAS  PubMed  Google Scholar 

  21. Marques S, van Bruggen D, Vanichkina DP, Floriddia EM, Munguba H, Väremo L, et al. Transcriptional convergence of oligodendrocyte lineage progenitors during development. Dev Cell 2018, 46: 504-517.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Spitzer SO, Sitnikov S, Kamen Y, Evans KA, Kronenberg-Versteeg D, Dietmann S, et al. Oligodendrocyte progenitor cells become regionally diverse and heterogeneous with age. Neuron 2019, 101: 459-471.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu R, Jia Y, Guo P, Jiang W, Bai R, Liu C. In vivo clonal analysis reveals development heterogeneity of oligodendrocyte precursor cells derived from distinct germinal zones. Adv Sci (Weinh) 2021, 8: e2102274.

    Article  PubMed  Google Scholar 

  24. Reiprich S, Kriesch J, Schreiner S, Wegner M. Activation of Krox20 gene expression by Sox10 in myelinating Schwann cells. J Neurochem 2010, 112: 744–754.

    Article  CAS  PubMed  Google Scholar 

  25. Hornig J, Fröb F, Vogl MR, Hermans-Borgmeyer I, Tamm ER, Wegner M. The transcription factors Sox10 and Myrf define an essential regulatory network module in differentiating oligodendrocytes. PLoS Genet 2013, 9: e1003907.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bockaert J, Marin P. mTOR in brain physiology and pathologies. Physiol Rev 2015, 95: 1157–1187.

    Article  CAS  PubMed  Google Scholar 

  27. Long X, Lin Y, Ortiz-Vega S, Yonezawa K, Avruch J. Rheb binds and regulates the mTOR kinase. Curr Biol 2005, 15: 702–713.

    Article  CAS  PubMed  Google Scholar 

  28. Long X, Ortiz-Vega S, Lin Y, Avruch J. Rheb binding to mammalian target of rapamycin (mTOR) is regulated by amino acid sufficiency*. J Biol Chem 2005, 280: 23433–23436.

    Article  CAS  PubMed  Google Scholar 

  29. Yang H, Jiang X, Li B, Yang HJ, Miller M, Yang A, et al. Mechanisms of mTORC1 activation by RHEB and inhibition by PRAS40. Nature 2017, 552: 368–373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Findlay GM, Harrington LS, Lamb RF. TSC1-2 tumour suppressor and regulation of mTOR signalling: Linking cell growth and proliferation? Curr Opin Genet Dev 2005, 15: 69–76.

    Article  CAS  PubMed  Google Scholar 

  31. Manning BD, Cantley LC. Rheb fills a GAP between TSC and TOR. Trends Biochem Sci 2003, 28: 573–576.

    Article  CAS  PubMed  Google Scholar 

  32. Zou J, Zhou L, Du XX, Ji Y, Xu J, Tian J, et al. Rheb1 is required for mTORC1 and myelination in postnatal brain development. Dev Cell 2011, 20: 97–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zou Y, Jiang W, Wang J, Li Z, Zhang J, Bu J, et al. Oligodendrocyte precursor cell-intrinsic effect of Rheb1 controls differentiation and mediates mTORC1-dependent myelination in brain. J Neurosci 2014, 34: 15764–15778.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lebrun-Julien F, Bachmann L, Norrmén C, Trötzmüller M, Köfeler H, Rüegg MA, et al. Balanced mTORC1 activity in oligodendrocytes is required for accurate CNS myelination. J Neurosci 2014, 34: 8432–8448.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Bercury KK, Dai J, Sachs HH, Ahrendsen JT, Wood TL, Macklin WB. Conditional ablation of raptor or rictor has differential impact on oligodendrocyte differentiation and CNS myelination. J Neurosci 2014, 34: 4466–4480.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Marques S, Zeisel A, Codeluppi S, van Bruggen D, Falcão AM, Xiao L, et al. Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system. Science 2016, 352: 1326–1329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ornelas IM, Khandker L, Wahl SE, Hashimoto H, Macklin WB, Wood TL. The mechanistic target of rapamycin pathway downregulates bone morphogenetic protein signaling to promote oligodendrocyte differentiation. Glia 2020, 68: 1274–1290.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Barres BA, Lazar MA, Raff MC. A novel role for thyroid hormone, glucocorticoids and retinoic acid in timing oligodendrocyte development. Development 1994, 120: 1097–1108.

    Article  CAS  PubMed  Google Scholar 

  39. Gao FB, Durand B, Raff M. Oligodendrocyte precursor cells count time but not cell divisions before differentiation. Curr Biol 1997, 7: 152–155.

    Article  CAS  PubMed  Google Scholar 

  40. Samanta J, Kessler JA. Interactions between ID and OLIG proteins mediate the inhibitory effects of BMP4 on oligodendroglial differentiation. Development 2004, 131: 4131–4142.

    Article  CAS  PubMed  Google Scholar 

  41. Marin-Husstege M, He Y, Li J, Kondo T, Sablitzky F, Casaccia-Bonnefil P. Multiple roles of Id4 in developmental myelination: Predicted outcomes and unexpected findings. Glia 2006, 54: 285–296.

    Article  PubMed  Google Scholar 

  42. Genoud S, Lappe-Siefke C, Goebbels S, Radtke F, Aguet M, Scherer SS, et al. Notch1 control of oligodendrocyte differentiation in the spinal cord. J Cell Biol 2002, 158: 709–718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kondo T, Raff M. The Id4 HLH protein and the timing of oligodendrocyte differentiation. EMBO J 2000, 19: 1998–2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ge X, Xiao G, Huang H, Du J, Tao Y, Yang A, et al. Stage-dependent regulation of oligodendrocyte development and enhancement of myelin repair by dominant negative Master-mind 1 protein. Glia 2019, 67: 1654–1666.

    PubMed  Google Scholar 

  45. Marin-Husstege M, Muggironi M, Liu A, Casaccia-Bonnefil P. Histone deacetylase activity is necessary for oligodendrocyte lineage progression. J Neurosci 2002, 22: 10333–10345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shen S, Li J, Casaccia-Bonnefil P. Histone modifications affect timing of oligodendrocyte progenitor differentiation in the developing rat brain. J Cell Biol 2005, 169: 577–589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ye F, Chen Y, Hoang T, Montgomery RL, Zhao XH, Bu H, et al. HDAC1 and HDAC2 regulate oligodendrocyte differentiation by disrupting the β-catenin–TCF interaction. Nat Neurosci 2009, 12: 829–838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Egawa N, Shindo A, Hikawa R, Kinoshita H, Liang AC, Itoh K, et al. Differential roles of epigenetic regulators in the survival and differentiation of oligodendrocyte precursor cells. Glia 2019, 67: 718–728.

    Article  PubMed  Google Scholar 

  49. Conway GD, O’Bara MA, Vedia BH, Pol SU, Sim FJ. Histone deacetylase activity is required for human oligodendrocyte progenitor differentiation. Glia 2012, 60: 1944–1953.

    Article  PubMed  Google Scholar 

  50. Tyler WA, Gangoli N, Gokina P, Kim HA, Covey M, Levison SW, et al. Activation of the mammalian target of rapamycin (mTOR) is essential for oligodendrocyte differentiation. J Neurosci 2009, 29: 6367–6378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Matilainen O, Quirós PM, Auwerx J. Mitochondria and epigenetics - crosstalk in homeostasis and stress. Trends Cell Biol 2017, 27: 453–463.

    Article  CAS  PubMed  Google Scholar 

  52. Yang W, Pang D, Chen M, Du C, Jia L, Wang L, et al. Rheb mediates neuronal-activity-induced mitochondrial energetics through mTORC1-independent PDH activation. Dev Cell 2021, 56: 811-825.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Liu J, Magri L, Zhang F, Marsh NO, Albrecht S, Huynh JL, et al. Chromatin landscape defined by repressive histone methylation during oligodendrocyte differentiation. J Neurosci 2015, 35: 352–365.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Scaglione A, Patzig J, Liang J, Frawley R, Bok J, Mela A, et al. PRMT5-mediated regulation of developmental myelination. Nat Commun 2018, 9: 2840.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Saher G, Brügger B, Lappe-Siefke C, Möbius W, Tozawa RI, Wehr MC, et al. High cholesterol level is essential for myelin membrane growth. Nat Neurosci 2005, 8: 468–475.

    Article  CAS  PubMed  Google Scholar 

  56. Mathews ES, Appel B. Cholesterol biosynthesis supports myelin gene expression and axon ensheathment through modulation of P13K/Akt/mTor signaling. J Neurosci 2016, 36: 7628–7639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wake H, Lee PR, Fields RD. Control of local protein synthesis and initial events in myelination by action potentials. Science 2011, 333: 1647–1651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lim CY, Davis OB, Shin HR, Zhang J, Berdan CA, Jiang X, et al. ER-lysosome contacts enable cholesterol sensing by mTORC1 and drive aberrant growth signalling in Niemann-Pick type C. Nat Cell Biol 2019, 21: 1206–1218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Thoreen CC, Chantranupong L, Keys HR, Wang T, Gray NS, Sabatini DM. A unifying model for mTORC1-mediated regulation of mRNA translation. Nature 2012, 485: 109–113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Laursen LS, Chan CW, Ffrench-Constant C. Translation of myelin basic protein mRNA in oligodendrocytes is regulated by integrin activation and hnRNP-K. J Cell Biol 2011, 192: 797–811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gould RM, Freund CM, Palmer F, Feinstein DL. Messenger RNAs located in myelin sheath assembly sites. J Neurochem 2000, 75: 1834–1844.

    Article  CAS  PubMed  Google Scholar 

  62. Thangaraj MP, Furber KL, Gan JK, Ji S, Sobchishin L, Doucette JR, et al. RNA-binding protein quaking stabilizes Sirt2 mRNA during oligodendroglial differentiation*. J Biol Chem 2017, 292: 5166–5182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Doll CA, Yergert KM, Appel BH. The RNA binding protein fragile X mental retardation protein promotes myelin sheath growth. Glia 2020, 68: 495–508.

    Article  PubMed  Google Scholar 

  64. Fedder-Semmes KN, Appel B. The Akt-mTOR pathway drives myelin sheath growth by regulating cap-dependent translation. J Neurosci 2021, 41: 8532–8544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Koenning M, Jackson S, Hay CM, Faux C, Kilpatrick TJ, Willingham M, et al. Myelin gene regulatory factor is required for maintenance of myelin and mature oligodendrocyte identity in the adult CNS. J Neurosci 2012, 32: 12528–12542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ishii A, Furusho M, Macklin W, Bansal R. Independent and cooperative roles of the Mek/ERK1/2-MAPK and PI3K/Akt/mTOR pathways during developmental myelination and in adulthood. Glia 2019, 67: 1277–1295.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Sherman DL, Krols M, Wu LMN, Grove M, Nave KA, Gangloff YG, et al. Arrest of myelination and reduced axon growth when Schwann cells lack mTOR. J Neurosci 2012, 32: 1817–1825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Beirowski B, Wong KM, Babetto E, Milbrandt J. mTORC1 promotes proliferation of immature Schwann cells and myelin growth of differentiated Schwann cells. Proc Natl Acad Sci U S A 2017, 114: E4261–E4270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Heller BA, Ghidinelli M, Voelkl J, Einheber S, Smith R, Grund E, et al. Functionally distinct PI 3-kinase pathways regulate myelination in the peripheral nervous system. J Cell Biol 2014, 204: 1219–1236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Jiang M, Rao R, Wang J, Wang J, Xu L, Wu LM, et al. The TSC1-mTOR-PLK axis regulates the homeostatic switch from Schwann cell proliferation to myelination in a stage-specific manner. Glia 2018, 66: 1947–1959.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Figlia G, Norrmén C, Pereira JA, Gerber D, Suter U. Dual function of the PI3K-Akt-mTORC1 axis in myelination of the peripheral nervous system. eLife 2017, 6: e29241.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Norrmén C, Figlia G, Lebrun-Julien F, Pereira JA, Trötzmüller M, Köfeler HC, et al. mTORC1 controls PNS myelination along the mTORC1-RXRγ-SREBP-lipid biosynthesis axis in Schwann cells. Cell Rep 2014, 9: 646–660.

    Article  PubMed  Google Scholar 

  73. Jia L, Liao M, Mou A, Zheng Q, Yang W, Yu Z, et al. Rheb-regulated mitochondrial pyruvate metabolism of Schwann cells linked to axon stability. Dev Cell 2021, 56: 2980-2994.e6.

    Article  CAS  PubMed  Google Scholar 

  74. Norrmén C, Figlia G, Pfistner P, Pereira JA, Bachofner S, Suter U. mTORC1 is transiently reactivated in injured nerves to promote c-Jun elevation and schwann cell dedifferentiation. J Neurosci 2018, 38: 4811–4828.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Della-Flora Nunes G, Wilson ER, Hurley E, He B, O’Malley BW, Poitelon Y, et al. Activation of mTORC1 and c-Jun by Prohibitin1 loss in Schwann cells may link mitochondrial dysfunction to demyelination. eLife 2021, 10: e66278.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Hosios AM, Hecht VC, Danai LV, Johnson MO, Rathmell JC, Steinhauser ML, et al. Amino acids rather than glucose account for the majority of cell mass in proliferating mammalian cells. Dev Cell 2016, 36: 540–549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Demetriades C, Doumpas N, Teleman AA. Regulation of TORC1 in response to amino acid starvation via lysosomal recruitment of TSC2. Cell 2014, 156: 786–799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Yao Y, Hong S, Ikeda T, Mori H, MacDougald OA, Nada S, et al. Amino acids enhance polyubiquitination of rheb and its binding to mTORC1 by blocking lysosomal ATXN3 deubiquitinase activity. Mol Cell 2020, 80: 437-451.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Fawal MA, Brandt M, Djouder N. MCRS1 binds and couples Rheb to amino acid-dependent mTORC1 activation. Dev Cell 2015, 33: 67–81.

    Article  CAS  PubMed  Google Scholar 

  80. Kim SH, Choi JH, Wang P, Go CD, Hesketh GG, Gingras AC, et al. Mitochondrial threonyl-tRNA synthetase TARS2 is required for threonine-sensitive mTORC1 activation. Mol Cell 2021, 81: 398-407.e4.

    Article  CAS  PubMed  Google Scholar 

  81. Son SM, Park SJ, Lee H, Siddiqi F, Lee JE, Menzies FM, et al. Leucine signals to mTORC1 via its metabolite acetyl-coenzyme A. Cell Metab 2019, 29: 192-201.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Chantranupong L, Scaria SM, Saxton RA, Gygi MP, Shen K, Wyant GA, et al. The CASTOR proteins are arginine sensors for the mTORC1 pathway. Cell 2016, 165: 153–164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wolfson RL, Chantranupong L, Saxton RA, Shen K, Scaria SM, Cantor JR, et al. Sestrin2 is a leucine sensor for the mTORC1 pathway. Science 2016, 351: 43–48.

    Article  CAS  PubMed  Google Scholar 

  84. Rebsamen M, Pochini L, Stasyk T, de Araújo MEG, Galluccio M, Kandasamy RK, et al. SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1. Nature 2015, 519: 477–481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Bar-Peled L, Chantranupong L, Cherniack AD, Chen WW, Ottina KA, Grabiner BC, et al. A Tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. Science 2013, 340: 1100–1106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Yu Z, Yang Z, Ren G, Wang Y, Luo X, Zhu F, et al. GATOR2 complex-mediated amino acid signaling regulates brain myelination. Proc Natl Acad Sci U S A 2022, 119: e2110917119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Settembre C, Di Malta C, Polito VA, Garcia Arencibia M, Vetrini F, Erdin S, et al. TFEB links autophagy to lysosomal biogenesis. Science 2011, 332: 1429–1433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Sun LO, Mulinyawe SB, Collins HY, Ibrahim A, Li Q, Simon DJ, et al. Spatiotemporal control of CNS myelination by oligodendrocyte programmed cell death through the TFEB-PUMA axis. Cell 2018, 175: 1811-1826.e21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Martina JA, Puertollano R. Rag GTPases mediate amino acid-dependent recruitment of TFEB and MITF to lysosomes. J Cell Biol 2013, 200: 475–491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Meireles AM, Shen K, Zoupi L, Iyer H, Bouchard EL, Williams A, et al. The lysosomal transcription factor TFEB represses myelination downstream of the rag-ragulator complex. Dev Cell 2018, 47: 319-330.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Viader A, Golden JP, Baloh RH, Schmidt RE, Hunter DA, Milbrandt J. Schwann cell mitochondrial metabolism supports long-term axonal survival and peripheral nerve function. J Neurosci 2011, 31: 10128–10140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Fünfschilling U, Supplie LM, Mahad D, Boretius S, Saab AS, Edgar J, et al. Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature 2012, 485: 517–521.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Viader A, Sasaki Y, Kim S, Strickland A, Workman CS, Yang K, et al. Aberrant schwann cell lipid metabolism linked to mitochondrial deficits leads to axon degeneration and neuropathy. Neuron 2013, 77: 886–898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Li F, Sami A, Noristani HN, Slattery K, Qiu J, Groves T, et al. Glial metabolic rewiring promotes axon regeneration and functional recovery in the central nervous system. Cell Metab 2020, 32: 767-785.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Babetto E, Wong KM, Beirowski B. A glycolytic shift in Schwann cells supports injured axons. Nat Neurosci 2020, 23: 1215–1228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Beirowski B, Babetto E, Golden JP, Chen YJ, Yang K, Gross RW, et al. Metabolic regulator LKB1 is crucial for Schwann cell–mediated axon maintenance. Nat Neurosci 2014, 17: 1351–1361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Amaral AI, Tavares JM, Sonnewald U, Kotter MRN. Oligodendrocytes: Development, physiology and glucose metabolism. Adv Neurobiol 2016, 13: 275–294.

    Article  PubMed  Google Scholar 

  98. Pantoni L, Garcia JH, Gutierrez JA. Cerebral white matter is highly vulnerable to ischemia. Stroke 1996, 27: 1641–1646 (discussion1647).

    Article  CAS  PubMed  Google Scholar 

  99. Amaral AI, Hadera MG, Tavares JM, Kotter MRN, Sonnewald U. Characterization of glucose-related metabolic pathways in differentiated rat oligodendrocyte lineage cells. Glia 2016, 64: 21–34.

    Article  PubMed  Google Scholar 

  100. Edmond J, Robbins RA, Bergstrom JD, Cole RA, de Vellis J. Capacity for substrate utilization in oxidative metabolism by neurons, astrocytes, and oligodendrocytes from developing brain in primary culture. J Neurosci Res 1987, 18: 551–561.

    Article  CAS  PubMed  Google Scholar 

  101. Della-Flora Nunes G, Mueller L, Silvestri N, Patel MS, Wrabetz L, Feltri ML, et al. Acetyl-CoA production from pyruvate is not necessary for preservation of myelin. Glia 2017, 65: 1626–1639.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Barros LF. Metabolic signaling by lactate in the brain. Trends Neurosci 2013, 36: 396–404.

    Article  CAS  PubMed  Google Scholar 

  103. Saab AS, Tzvetavona ID, Trevisiol A, Baltan S, Dibaj P, Kusch K, et al. Oligodendroglial NMDA receptors regulate glucose import and axonal energy metabolism. Neuron 2016, 91: 119–132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Meyer N, Richter N, Fan Z, Siemonsmeier G, Pivneva T, Jordan P, et al. Oligodendrocytes in the mouse corpus callosum maintain axonal function by delivery of glucose. Cell Rep 2018, 22: 2383–2394.

    Article  CAS  PubMed  Google Scholar 

  105. Chamberlain KA, Huang N, Xie Y, LiCausi F, Li S, Li Y, et al. Oligodendrocytes enhance axonal energy metabolism by deacetylation of mitochondrial proteins through transcellular delivery of SIRT2. Neuron 2021, 109: 3456-3472.e8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Frühbeis C, Kuo-Elsner WP, Müller C, Barth K, Peris L, Tenzer S, et al. Oligodendrocytes support axonal transport and maintenance via exosome secretion. PLoS Biol 2020, 18: e3000621.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Lee Y, Morrison BM, Li Y, Lengacher S, Farah MH, Hoffman PN, et al. Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature 2012, 487: 443–448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Trevisiol A, Saab AS, Winkler U, Marx G, Imamura H, Möbius W, et al. Monitoring ATP dynamics in electrically active white matter tracts. eLife 2017, 6: e24241.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Yang J, Ruchti E, Petit JM, Jourdain P, Grenningloh G, Allaman I, et al. Lactate promotes plasticity gene expression by potentiating NMDA signaling in neurons. Proc Natl Acad Sci U S A 2014, 111: 12228–12233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ou Z, Ma Y, Sun Y, Zheng G, Wang S, Xing R, et al. A GPR17-cAMP-lactate signaling axis in oligodendrocytes regulates whole-body metabolism. Cell Rep 2019, 26: 2984-2997.e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Amorini AM, Nociti V, Petzold A, Gasperini C, Quartuccio E, Lazzarino G, et al. Serum lactate as a novel potential biomarker in multiple sclerosis. Biochim Biophys Acta BBA Mol Basis Dis 2014, 1842: 1137–1143.

    Article  CAS  Google Scholar 

  112. Ross JM, Öberg J, Brené S, Coppotelli G, Terzioglu M, Pernold K, et al. High brain lactate is a hallmark of aging and caused by a shift in the lactate dehydrogenase A/B ratio. Proc Natl Acad Sci U S A 2010, 107: 20087–20092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Ott S, Vishnivetskaya A, Malmendal A, Crowther DC. Metabolic changes may precede proteostatic dysfunction in a Drosophila model of amyloid beta peptide toxicity. Neurobiol Aging 2016, 41: 39–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Mullins R, Reiter D, Kapogiannis D. Magnetic resonance spectroscopy reveals abnormalities of glucose metabolism in the Alzheimer’s brain. Ann Clin Transl Neurol 2018, 5: 262–272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Long DM, Frame AK, Reardon PN, Cumming RC, Hendrix DA, Kretzschmar D, et al. Lactate dehydrogenase expression modulates longevity and neurodegeneration in Drosophila melanogaster. Aging 2020, 12: 10041–10058.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This review was supported by Grants from the Shenzhen Innovation Committee of Science and Technology (ZDSYS20200811144002008 to Shenzhen Key Laboratory of Gene Regulation and Systems Biology, 2019193984), the National Natural Science Foundation of China (31970773 and 31530042), and the Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions (2021SHIBS0002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zongyan Yu or Bo Xiao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Yu, Z. & Xiao, B. Coordinated Regulation of Myelination by Growth Factor and Amino-acid Signaling Pathways. Neurosci. Bull. 39, 453–465 (2023). https://doi.org/10.1007/s12264-022-00967-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-022-00967-x

Keywords

Navigation