Skip to main content
Log in

Modulation of Neuronal Activity and Saccades at Theta Rhythm During Visual Search in Non-human Primates

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Active exploratory behaviors have often been associated with theta oscillations in rodents, while theta oscillations during active exploration in non-human primates are still not well understood. We recorded neural activities in the frontal eye field (FEF) and V4 simultaneously when monkeys performed a free-gaze visual search task. Saccades were strongly phase-locked to theta oscillations of V4 and FEF local field potentials, and the phase-locking was dependent on saccade direction. The spiking probability of V4 and FEF units was significantly modulated by the theta phase in addition to the time-locked modulation associated with the evoked response. V4 and FEF units showed significantly stronger responses following saccades initiated at their preferred phases. Granger causality and ridge regression analysis showed modulatory effects of theta oscillations on saccade timing. Together, our study suggests phase-locking of saccades to the theta modulation of neural activity in visual and oculomotor cortical areas, in addition to the theta phase locking caused by saccade-triggered responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Buzsáki G. Theta oscillations in the hippocampus. Neuron 2002, 33: 325–340.

    Article  PubMed  Google Scholar 

  2. Buzsáki G. Theta rhythm of navigation: Link between path integration and landmark navigation, episodic and semantic memory. Hippocampus 2005, 15: 827–840.

    Article  PubMed  Google Scholar 

  3. Grastyan E, Lissak K, Madarasz I, Donhoffer H. Hippocampal electrical activity during the development of conditioned reflexes. Electroencephalogr Clin Neurophysiol 1959, 11: 409–430.

    Article  PubMed  CAS  Google Scholar 

  4. Vanderwolf CH. Hippocampal electrical activity and voluntary movement in the rat. Electroencephalogr Clin Neurophysiol 1969, 26: 407–418. https://doi.org/10.1016/0013-4694(69)90092-3.

    Article  PubMed  CAS  Google Scholar 

  5. Winson J. Patterns of hippocampal Theta rhythm in the freely moving rat. Electroencephalogr Clin Neurophysiol 1974, 36: 291–301. https://doi.org/10.1016/0013-4694(74)90171-0.

    Article  PubMed  CAS  Google Scholar 

  6. Jutras MJ, Fries P, Buffalo EA. Oscillatory activity in the monkey hippocampus during visual exploration and memory formation. Proc Natl Acad Sci U S A 2013, 110: 13144–13149.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hoffman KL, Dragan MC, Leonard TK, Micheli C, Montefusco-Siegmund R, Valiante TA. Saccades during visual exploration align hippocampal 3–8 Hz rhythms in human and non-human Primates. Front Syst Neurosci 2013, 7: 43.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bartlett AM, Ovaysikia S, Logothetis NK, Hoffman KL. Saccades during object viewing modulate oscillatory phase in the superior temporal sulcus. J Neurosci 2011, 31: 18423–18432.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Bichot NP, Rossi AF, Desimone R. Parallel and serial neural mechanisms for visual search in macaque area V4. Science 2005, 308: 529–534.

    Article  PubMed  CAS  Google Scholar 

  10. Chelazzi L, Duncan J, Miller EK, Desimone R. Responses of neurons in inferior temporal cortex during memory-guided visual search. J Neurophysiol 1998, 80: 2918–2940.

    Article  PubMed  CAS  Google Scholar 

  11. Mazer JA, Gallant JL. Goal-related activity in V4 during free viewing visual search: Evidence for a ventral stream visual salience map. Neuron 2003, 40: 1241–1250. https://doi.org/10.1016/S0896-6273(03)00764-5.

    Article  PubMed  CAS  Google Scholar 

  12. Monosov IE, Sheinberg DL, Thompson KG. Paired neuron recordings in the prefrontal and inferotemporal cortices reveal that spatial selection precedes object identification during visual search. Proc Natl Acad Sci U S A 2010, 107: 13105–13110.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Mruczek REB, Sheinberg DL. Activity of inferior temporal cortical neurons predicts recognition choice behavior and recognition time during visual search. J Neurosci 2007, 27: 2825–2836.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Ogawa T, Komatsu H. Target selection in area V4 during a multidimensional visual search task. J Neurosci 2004, 24: 6371–6382.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Schiller PH, Lee K. The role of the primate extrastriate area V4 in vision. Science 1991, 251: 1251–1253.

    Article  PubMed  CAS  Google Scholar 

  16. Hu Q, Hu W, Liu K, Bu X, Hu L, Li L. Modulation of spike count correlations between macaque primary visual cortex neurons by difficulty of attentional task. Neurosci Bull 2021, 2021: 1–16.

    Google Scholar 

  17. Buschman TJ, Miller EK. Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science 2007, 315: 1860–1862.

    Article  PubMed  CAS  Google Scholar 

  18. Hasegawa RP, Matsumoto M, Mikami A. Search target selection in monkey prefrontal cortex. J Neurophysiol 2000, 84: 1692–1696.

    Article  PubMed  CAS  Google Scholar 

  19. Ipata AE, Gee AL, Goldberg ME, Bisley JW. Activity in the lateral intraparietal area predicts the goal and latency of saccades in a free-viewing visual search task. J Neurosci 2006, 26: 3656–3661.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Schall JD, Hanes DP. Neural basis of saccade target selection in frontal eye field during visual search. Nature 1993, 366: 467–469.

    Article  PubMed  CAS  Google Scholar 

  21. Thomas NWD, Paré M. Temporal processing of saccade targets in parietal cortex area LIP during visual search. J Neurophysiol 2007, 97: 942–947.

    Article  PubMed  Google Scholar 

  22. Clayton MS, Yeung N, Cohen Kadosh R. The roles of cortical oscillations in sustained attention. Trends Cogn Sci 2015, 19: 188–195. https://doi.org/10.1016/j.tics.2015.02.004.

    Article  PubMed  Google Scholar 

  23. Sellers KK, Yu CX, Zhou ZC, Stitt I, Li YH, Radtke-Schuller S, et al. Oscillatory dynamics in the frontoparietal attention network during sustained attention in the ferret. Cell Rep 2016, 16: 2864–2874.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Han HB, Lee KE, Choi JH. Functional dissociation of theta oscillations in the frontal and visual cortices and their long-range network during sustained attention. eNeuro 2019, https://doi.org/10.1523/ENEURO.0248-19.2019.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Chen H, Wang YJ, Yang L, Sui JF, Hu ZA, Hu B. Theta synchronization between medial prefrontal cortex and cerebellum is associated with adaptive performance of associative learning behavior. Sci Rep 2016, 6: 20960.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Zold CL, Hussain Shuler MG. Theta oscillations in visual cortex emerge with experience to convey expected reward time and experienced reward rate. J Neurosci 2015, 35: 9603–9614.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Levy JM, Zold CL, Namboodiri VMK, Hussain Shuler MG. The timing of reward-seeking action tracks visually cued Theta oscillations in primary visual cortex. J Neurosci 2017, 37: 10408–10420.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Cavanagh JF, Frank MJ. Frontal theta as a mechanism for cognitive control. Trends Cogn Sci 2014, 18: 414–421.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Chen JZ, Wang Q, Li NX, Huang SJ, Li M, Cai JB, et al. Dyskinesia is closely associated with synchronization of theta oscillatory activity between the substantia nigra pars reticulata and motor cortex in the off L-dopa state in rats. Neurosci Bull 2021, 37: 323–338.

    Article  PubMed  CAS  Google Scholar 

  30. Meindertsma T, Kloosterman NA, Nolte G, Engel AK, Donner TH. Multiple transient signals in human visual cortex associated with an elementary decision. J Neurosci 2017, 37: 5744–5757.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Sauseng P, Griesmayr B, Freunberger R, Klimesch W. Control mechanisms in working memory: A possible function of EEG theta oscillations. Neurosci Biobehav Rev 2010, 34: 1015–1022.

    Article  PubMed  Google Scholar 

  32. Lee H, Simpson GV, Logothetis NK, Rainer G. Phase locking of single neuron activity to theta oscillations during working memory in monkey extrastriate visual cortex. Neuron 2005, 45: 147–156.

    Article  PubMed  CAS  Google Scholar 

  33. Liebe S, Hoerzer GM, Logothetis NK, Rainer G. Theta coupling between V4 and prefrontal cortex predicts visual short-term memory performance. Nat Neurosci 2012, 15: 456–462, S1-2.

    Article  PubMed  CAS  Google Scholar 

  34. Zhou HH, Desimone R. Feature-based attention in the frontal eye field and area V4 during visual search. Neuron 2011, 70: 1205–1217.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Fries P, Womelsdorf T, Oostenveld R, Desimone R. The effects of visual stimulation and selective visual attention on rhythmic neuronal synchronization in macaque area V4. J Neurosci 2008, 28: 4823–4835.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Gregoriou GG, Gotts SJ, Zhou HH, Desimone R. High-frequency, long-range coupling between prefrontal and visual cortex during attention. Science 2009, 324: 1207–1210.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Schomburg EW, Fernández-Ruiz A, Mizuseki K, Berényi A, Anastassiou CA, Koch C, et al. Theta phase segregation of input-specific gamma patterns in entorhinal-hippocampal networks. Neuron 2014, 84: 470–485.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Montgomery SM, Sirota A, Buzsáki G. Theta and gamma coordination of hippocampal networks during waking and rapid eye movement sleep. J Neurosci 2008, 28: 6731–6741.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Csicsvari J, Hirase H, Czurkó A, Mamiya A, Buzsáki G. Oscillatory coupling of hippocampal pyramidal cells and interneurons in the behaving Rat. J Neurosci 1999, 19: 274–287.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Schall JD, Hanes DP, Thompson KG, King DJ. Saccade target selection in frontal eye field of macaque. I. Visual and premovement activation. J Neurosci 1995, 15: 6905–6918.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Berens P. CircStat: AMATLABToolbox for circular statistics. J Stat Soft 2009, 31: 1–21. https://doi.org/10.18637/jss.v031.i10.

    Article  Google Scholar 

  42. Siapas AG, Lubenov EV, Wilson MA. Prefrontal phase locking to hippocampal theta oscillations. Neuron 2005, 46: 141–151.

    Article  PubMed  CAS  Google Scholar 

  43. Tort ABL, Kramer MA, Thorn C, Gibson DJ, Kubota Y, Graybiel AM, et al. Dynamic cross-frequency couplings of local field potential oscillations in rat striatum and hippocampus during performance of a T-maze task. Proc Natl Acad Sci U S A 2008, 105: 20517–20522.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Hurtado JM, Rubchinsky LL, Sigvardt KA. Statistical method for detection of phase-locking episodes in neural oscillations. J Neurophysiol 2004, 91: 1883–1898.

    Article  PubMed  Google Scholar 

  45. Marquardt DW, Snee RD. Ridge regression in practice. Am Stat 1975, 29: 3–20. https://doi.org/10.2307/2683673.

    Article  Google Scholar 

  46. Sheikhattar A, Miran SN, Liu J, Fritz JB, Shamma SA, Kanold PO, et al. Extracting neuronal functional network dynamics via adaptive Granger causality analysis. Proc Natl Acad Sci U S A 2018, 115: E3869–E3878.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Confais J, Malfait N, Brochier T, Riehle A, Kilavik BE. Is there an intrinsic relationship between LFP beta oscillation amplitude and firing rate of individual neurons in macaque motor cortex? Cereb Cortex Commun 2020, 1: tgaa017.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Bellay T, Shew WL, Yu S, Falco-Walter JJ, Plenz D. Selective participation of single cortical neurons in neuronal avalanches. Front Neural Circuits 2021, 14: 620052.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Lubenov EV, Siapas AG. Hippocampal theta oscillations are travelling waves. Nature 2009, 459: 534–539.

    Article  PubMed  CAS  Google Scholar 

  50. Courellis HS, Nummela SU, Metke M, Diehl GW, Bussell R, Cauwenberghs G, et al. Spatial encoding in primate hippocampus during free navigation. PLoS Biol 2019, 17: e3000546.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Meister MLR, Buffalo EA. Getting directions from the hippocampus: The neural connection between looking and memory. Neurobiol Learn Mem 2016, 134: 135–144.

    Article  PubMed  Google Scholar 

  52. Killian NJ, Potter SM, Buffalo EA. Saccade direction encoding in the primate entorhinal cortex during visual exploration. Proc Natl Acad Sci U S A 2015, 112: 15743–15748.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Fiebelkorn IC, Saalmann YB, Kastner S. Rhythmic sampling within and between objects despite sustained attention at a cued location. Curr Biol 2013, 23: 2553–2558.

    Article  PubMed  CAS  Google Scholar 

  54. Fiebelkorn IC, Pinsk MA, Kastner S. A dynamic interplay within the frontoparietal network underlies rhythmic spatial attention. Neuron 2018, 99: 842-853.e8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Helfrich RF, Fiebelkorn IC, Szczepanski SM, Lin JJ, Parvizi J, Knight RT, et al. Neural mechanisms of sustained attention are rhythmic. Neuron 2018, 99: 854-865.e5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Landau AN, Fries P. Attention samples stimuli rhythmically. Curr Biol 2012, 22: 1000–1004.

    Article  PubMed  CAS  Google Scholar 

  57. Busch NA, VanRullen R. Spontaneous EEG oscillations reveal periodic sampling of visual attention. Proc Natl Acad Sci U S A 2010, 107: 16048–16053.

    Article  PubMed  PubMed Central  Google Scholar 

  58. VanRullen R, Carlson T, Cavanagh P. The blinking spotlight of attention. Proc Natl Acad Sci U S A 2007, 104: 19204–19209.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Fiebelkorn IC, Pinsk MA, Kastner S. The mediodorsal pulvinar coordinates the macaque fronto-parietal network during rhythmic spatial attention. Nat Commun 2019, 10: 215.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Landau AN, Schreyer HM, van Pelt S, Fries P. Distributed attention is implemented through theta-rhythmic gamma modulation. Curr Biol 2015, 25: 2332–2337.

    Article  PubMed  CAS  Google Scholar 

  61. Spyropoulos G, Bosman CA, Fries P. A theta rhythm in macaque visual cortex and its attentional modulation. Proc Natl Acad Sci U S A 2018, 115: E5614–E5623.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Yan T, Zhou HH. Synchronization between frontal eye field and area V4 during free-gaze visual search. Zool Res 2019, 40: 394–403.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for the financial support from the National Natural Science Foundation of China (31671108 and 31800900), the National Key R&D Program of China (2017YFC1307500), the Shenzhen Science and Technology Innovation Commission (JCYJ20180508152240368) and the Shenzhen Basic Research Program (JCYJ20200109114805984).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huihui Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 864 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, J., Yan, T., Zhang, J. et al. Modulation of Neuronal Activity and Saccades at Theta Rhythm During Visual Search in Non-human Primates. Neurosci. Bull. 38, 1183–1198 (2022). https://doi.org/10.1007/s12264-022-00884-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-022-00884-z

Keywords

Navigation