Skip to main content

Advertisement

Log in

Digoxin Ameliorates Glymphatic Transport and Cognitive Impairment in a Mouse Model of Chronic Cerebral Hypoperfusion

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

The glymphatic system plays a pivotal role in maintaining cerebral homeostasis. Chronic cerebral hypoperfusion, arising from small vessel disease or carotid stenosis, results in cerebrometabolic disturbances ultimately manifesting in white matter injury and cognitive dysfunction. However, whether the glymphatic system serves as a potential therapeutic target for white matter injury and cognitive decline during hypoperfusion remains unknown. Here, we established a mouse model of chronic cerebral hypoperfusion via bilateral common carotid artery stenosis. We found that the hypoperfusion model was associated with significant white matter injury and initial cognitive impairment in conjunction with impaired glymphatic system function. The glymphatic dysfunction was associated with altered cerebral perfusion and loss of aquaporin 4 polarization. Treatment of digoxin rescued changes in glymphatic transport, white matter structure, and cognitive function. Suppression of glymphatic functions by treatment with the AQP4 inhibitor TGN-020 abolished this protective effect of digoxin from hypoperfusion injury. Our research yields new insight into the relationship between hemodynamics, glymphatic transport, white matter injury, and cognitive changes after chronic cerebral hypoperfusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gorelick PB, Scuteri A, Black SE, Decarli C, Greenberg SM, Iadecola C. Vascular contributions to cognitive impairment and dementia: A statement for healthcare professionals from the American heart association/American stroke association. Stroke 2011, 42: 2672–2713.

    PubMed  PubMed Central  Google Scholar 

  2. O’Brien JT, Thomas A. Vascular dementia. Lancet 2015, 386: 1698–1706.

    PubMed  Google Scholar 

  3. Dichgans M, Leys D. Vascular cognitive impairment. Circ Res 2017, 120: 573–591.

    CAS  PubMed  Google Scholar 

  4. Barker R, Ashby EL, Wellington D, Barrow VM, Palmer JC, Kehoe PG, et al. Pathophysiology of white matter perfusion in Alzheimer’s disease and vascular dementia. Brain 2014, 137: 1524–1532.

    PubMed  PubMed Central  Google Scholar 

  5. Chen YX, Tian YY, Tian H, Huang QB, Fang YK, Wang W, et al. Tamoxifen promotes white matter recovery and cognitive functions in male mice after chronic hypoperfusion. Neurochem Int 2019, 131: 104566.

  6. Duncombe J, Kitamura A, Hase Y, Ihara M, Kalaria RN, Horsburgh K. Chronic cerebral hypoperfusion: A key mechanism leading to vascular cognitive impairment and dementia. Closing the translational gap between rodent models and human vascular cognitive impairment and dementia. Clin Sci (Lond) 2017, 131: 2451–2468.

  7. Marnane M, Al-Jawadi OO, Mortazavi S, Pogorzelec KJ, Wang BW, Feldman HH, et al. Periventricular hyperintensities are associated with elevated cerebral amyloid. Neurology 2016, 86: 535–543.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Ben-Ari H, Lifschytz T, Wolf G, Rigbi A, Blumenfeld-Katzir T, Merzel TK, et al. White matter lesions, cerebral inflammation and cognitive function in a mouse model of cerebral hypoperfusion. Brain Res 2019, 1711: 193–201.

    CAS  PubMed  Google Scholar 

  9. Iliff JJ, Nedergaard M. Is there a cerebral lymphatic system? Stroke 2013, 44: S93–S95.

    PubMed  PubMed Central  Google Scholar 

  10. Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid Β. Sci Transl Med 2012, 4: 147ra111.

  11. Iliff JJ, Wang MH, Zeppenfeld DM, Venkataraman A, Plog BA, Liao YH, et al. Cerebral arterial pulsation drives paravascular CSF-interstitial fluid exchange in the murine brain. J Neurosci 2013, 33: 18190–18199.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Peng WG, Achariyar TM, Li BM, Liao YH, Mestre H, Hitomi E, et al. Suppression of glymphatic fluid transport in a mouse model of Alzheimer’s disease. Neurobiol Dis 2016, 93: 215–225.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Iliff JJ, Chen MJ, Plog BA, Zeppenfeld DM, Soltero M, Yang LJ, et al. Impairment of glymphatic pathway function promotes tau pathology after traumatic brain injury. J Neurosci 2014, 34: 16180–16193.

    PubMed  PubMed Central  Google Scholar 

  14. Gaberel T, Gakuba C, Goulay R, Martinez De Lizarrondo S, Hanouz JL, Emery E, et al. Impaired glymphatic perfusion after strokes revealed by contrast-enhanced MRI: A new target for fibrinolysis? Stroke 2014, 45: 3092–3096.

  15. Wang M, Ding F, Deng S, Guo X, Wang W, Iliff JJ, et al. Focal solute trapping and global glymphatic pathway impairment in a murine model of multiple microinfarcts. J Neurosci 2017, 37: 2870–2877.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Jiang Q, Zhang L, Ding G, Davoodi-Bojd E, Li Q, Li L, et al. Impairment of the glymphatic system after diabetes. J Cereb Blood Flow Metab 2017, 37: 1326–1337.

    PubMed  Google Scholar 

  17. Mortensen KN, Sanggaard S, Mestre H, Lee H, Kostrikov S, Xavier ALR, et al. Impaired glymphatic transport in spontaneously hypertensive rats. J Neurosci 2019, 39: 6365–6377.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu X, Hao J, Yao E, Cao J, Zheng X, Yao D, et al. Polyunsaturated fatty acid supplement alleviates depression-incident cognitive dysfunction by protecting the cerebrovascular and glymphatic systems. Brain Behav Immun. 2020, 89: 357–370.

    CAS  PubMed  Google Scholar 

  19. Liang S, Lu Y, Li Z, Li S, Chen B, Zhang M, et al. Iron Aggravates the Depressive Phenotype of Stressed Mice by Compromising the Glymphatic System. Neurosci Bull. 2020, 36: 1542–1546.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Mestre H, Tithof J, Du T, Song W, Peng WG, Sweeney AM, et al. Flow of cerebrospinal fluid is driven by arterial pulsations and is reduced in hypertension. Nat Commun 2018, 9: 4878.

    PubMed  PubMed Central  Google Scholar 

  21. Ogoh S. Relationship between cognitive function and regulation of cerebral blood flow. J Physiol Sci 2017, 67: 345–351.

    PubMed  Google Scholar 

  22. Ainslie PN, Brassard P. Why is the neural control of cerebral autoregulation so controversial? F1000Prime Rep 2014, 6: 14.

  23. Meng LZ, Hou WG, Chui J, Han RQ, Gelb AW. Cardiac output and cerebral blood flow: The integrated regulation of brain perfusion in adult humans. Anesthesiology 2015, 123: 1198–1208.

    PubMed  Google Scholar 

  24. Ziff OJ, Kotecha D. Digoxin: The good and the bad. Trends in Cardiovascular Medicine 2016, 26: 585–595.

    CAS  PubMed  Google Scholar 

  25. Ehle M, Patel C, Giugliano RP. Digoxin: clinical highlights: A review of digoxin and its use in contemporary medicine. Crit Pathw Cardiol 2011, 10: 93–98.

    PubMed  Google Scholar 

  26. Shibata M, Ohtani R, Ihara M, Tomimoto H. White matter lesions and glial activation in a novel mouse model of chronic cerebral hypoperfusion. Stroke 2004, 35: 2598–2603.

    PubMed  Google Scholar 

  27. Zhang C, Feng W, Zhao YJ, Yu TT, Li PC, Xu TH, et al. A large, switchable optical clearing skull window for cerebrovascular imaging. Theranostics 2018, 8: 2696–2708.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhu S, Li Y, Lu H, Li H, Tong S. Imaging the early cerebral blood flow changes in rat middle cerebral artery occlusion stroke model. Annu Int Conf IEEE Eng Med Biol Soc. 2012, 2012: 2655–2658.

    PubMed  Google Scholar 

  29. Xavier ALR, Hauglund NL, von Holstein-Rathlou S, Li QL, Sanggaard S, Lou NH, et al. Cannula implantation into the cisterna Magna of rodents. J Vis Exp 2018, 23: 57378.

    Google Scholar 

  30. Zhang Y, Song J, He XZ, Xiong J, Xue R, Ge JH, et al. Quantitative Determination of Glymphatic Flow Using Spectrophotofluorometry. Neurosci Bull. 2020, 36: 1524–1537.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Huang L, Garrett Injac S, Cui KM, Braun F, Lin Q, Du YC, et al. Systems biology-based drug repositioning identifies digoxin as a potential therapy for groups 3 and 4 medulloblastoma. Sci Transl Med 2018, 10(464).

  32. Harrison IF, Ismail O, Machhada A, Colgan N, Ohene Y, Nahavandi P, et al. Impaired glymphatic function and clearance of tau in an Alzheimer’s disease model. Brain. 2020, 143: 2576–2593.

    PubMed  PubMed Central  Google Scholar 

  33. Zeppenfeld DM, Simon M, Haswell JD, D’Abreo D, Murchison C, Quinn JF, et al. Association of perivascular localization of aquaporin-4 with cognition and alzheimer disease in aging brains. JAMA Neurol 2017, 74: 91–99.

    PubMed  Google Scholar 

  34. Toischer K, Hartmann N, Wagner S, Fischer TH, Herting J, Danner BC, et al. Role of late sodium current as a potential arrhythmogenic mechanism in the progression of pressure-induced heart disease. J Mol Cell Cardiol 2013, 61: 111–122.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang MH, Qin C, Luo X, Wang J, Wang XX, Xie MJ, et al. Astrocytic connexin 43 potentiates myelin injury in ischemic white matter disease. Theranostics 2019, 9: 4474–4493.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M, et al. Sleep drives metabolite clearance from the adult brain. Science. 2013, 342: 373–377.

    CAS  PubMed  Google Scholar 

  37. Bromley-Brits K, Deng Y, Song WH. Morris water maze test for learning and memory deficits in Alzheimer's disease model mice. J Vis Exp 2011: 2920.

  38. Leger M, Quiedeville A, Bouet V, Haelewyn B, Boulouard M, Schumann-Bard P, et al. Object recognition test in mice. Nat Protoc 2013, 8: 2531–2537.

    CAS  PubMed  Google Scholar 

  39. Munk AS, Wang W, Bechet NB, Eltanahy AM, Cheng AX, Sigurdsson B, et al. PDGF-B Is Required for Development of the Glymphatic System. Cell Rep. 2019; 26: 2955-69 e3.

  40. Vandebroek A, Yasui M. Regulation of AQP4 in the Central Nervous System. Int J Mol Sci. 2020; 21.

  41. Igarashi H, Tsujita M, Suzuki Y, Kwee IL, Nakada T. Inhibition of aquaporin-4 significantly increases regional cerebral blood flow. Neuroreport. 2013, 24: 324–328.

    CAS  PubMed  Google Scholar 

  42. Shi Y, Thrippleton MJ, Makin SD, Marshall I, Geerlings MI, de Craen AJM, et al. Cerebral blood flow in small vessel disease: A systematic review and meta-analysis. J Cereb Blood Flow Metab 2016, 36: 1653–1667.

    PubMed  PubMed Central  Google Scholar 

  43. Wong SM, Jansen JFA, Zhang CE, Hoff EI, Staals J, van Oostenbrugge RJ, et al. Blood-brain barrier impairment and hypoperfusion are linked in cerebral small vessel disease. Neurology 2019, 92: e1669–e1677.

    CAS  PubMed  Google Scholar 

  44. Blair GW, Thrippleton MJ, Shi YL, Hamilton I, Stringer M, Chappell F, et al. Intracranial hemodynamic relationships in patients with cerebral small vessel disease. Neurology 2020, 94: e2258–e2269.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Shi Y, Thrippleton MJ, Blair GW, Dickie DA, Marshall I, Hamilton I, et al. Small vessel disease is associated with altered cerebrovascular pulsatility but not resting cerebral blood flow. J Cereb Blood Flow Metab 2020, 40: 85–99.

    PubMed  Google Scholar 

  46. Zlokovic BV. Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat Rev Neurosci 2011, 12: 723–738.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Goodman JR, Iliff JJ. Vasomotor influences on glymphatic-lymphatic coupling and solute trafficking in the central nervous system. J Cereb Blood Flow Metab 2020, 40: 1724–1734.

    CAS  PubMed  Google Scholar 

  48. Petty MA WJ. White matter ischaemia. Brain Res Brain Res Rev. 1999, 31: 58–64.

  49. Insel PS, Hansson O, Mackin RS, Weiner M, Mattsson N, Alzheimer's Disease Neuroimaging Initiative. Amyloid pathology in the progression to mild cognitive impairment. Neurobiol Aging 2018, 64: 76–84.

  50. Marelli A, Miller SP, Marino BS, Jefferson AL, Newburger JW. Brain in congenital heart disease across the lifespan: The cumulative burden of injury. Circulation 2016, 133: 1951–1962.

    PubMed  PubMed Central  Google Scholar 

  51. Lauren M. Hablitz HSV, Qian Sun, Frederik Filip Stæger, Björn Sigurdsson, Kristian N. Mortensen TOL, Maiken Nedergaard. Increased glymphatic influx is correlated with high EEG delta power and low heart rate. Sci. Adv. 2019, 5: eaav5447.

  52. Hase Y, Horsburgh K, Ihara M, Kalaria RN. White matter degeneration in vascular and other ageing-related dementias. J Neurochem 2018, 144: 617–633.

    CAS  PubMed  Google Scholar 

  53. McGuire SA, Ryan MC, Sherman PM, Sladky JH, Rowland LM, Wijtenburg SA, et al. White matter and hypoxic hypobaria in humans. Hum Brain Mapp 2019, 40: 3165–3173.

    PubMed  PubMed Central  Google Scholar 

  54. Patel A, Moalem A, Cheng H, Babadjouni RM, Patel K, Hodis DM, et al. Chronic cerebral hypoperfusion induced by bilateral carotid artery stenosis causes selective recognition impairment in adult mice. Neurol Res 2017, 39: 910–917.

    PubMed  PubMed Central  Google Scholar 

  55. Huffman JC, Stern TA. Neuropsychiatric consequences of cardiovascular medications. Dialogues Clin Neurosci 2007, 9: 29–45.

    PubMed  PubMed Central  Google Scholar 

  56. Eisenman DP, McKegney FP. Delirium at therapeutic serum concentrations of digoxin and quinidine. Psychosomatics. 1994, 35: 91–93.

    CAS  PubMed  Google Scholar 

  57. Laudisio A, Marzetti E, Pagano F, Cocchi A, Bernabei R, Zuccala G. Digoxin and cognitive performance in patients with heart failure: a cohort, pharmacoepidemiological survey. Drugs Aging. 2009, 26: 103–112.

    CAS  PubMed  Google Scholar 

  58. Bannai T, Mano T, Chen X, Ohtomo G, Ohtomo R, Tsuchida T, et al. Chronic cerebral hypoperfusion shifts the equilibrium of amyloid beta oligomers to aggregation-prone species with higher molecular weight. Sci Rep. 2019, 9: 2827.

    PubMed  PubMed Central  Google Scholar 

  59. Mazza M, Marano G, Traversi G, Bria P, Mazza S. Primary cerebral blood flow deficiency and Alzheimer’s disease: Shadows and lights. J Alzheimers Dis 2011, 23: 375–389.

    PubMed  Google Scholar 

  60. Egan B, Zierath JR. Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab 2013, 17: 162–184.

    CAS  PubMed  Google Scholar 

  61. He XF, Liu DX, Zhang Q, Liang FY, Dai GY, Zeng JS, et al. Voluntary exercise promotes glymphatic clearance of amyloid beta and reduces the activation of astrocytes and microglia in aged mice. Front Mol Neurosci 2017, 10: 144.

    PubMed  PubMed Central  Google Scholar 

  62. von Holstein-Rathlou S, Petersen NC, Nedergaard M. Voluntary running enhances glymphatic influx in awake behaving, young mice. Neurosci Lett 2018, 662: 253–258.

    Google Scholar 

  63. Liang YJ, Ngandu T, Laatikainen T, Soininen H, Tuomilehto J, Kivipelto M, et al. Cardiovascular health metrics from mid- to late-life and risk of dementia: A population-based cohort study in Finland. PLoS Med 2020, 17: e1003474. https://doi.org/10.1371/journal.pmed.1003474.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants from the National Natural Science Foundation of China (81873749 and 81801072). We sincerely thank the Optical Bioimaging Core Facility of Wuhan Laboratory for Optoelectronics–Hong Kong University of Science and Technology for support in data acquisition, Dr. P. Liu for helpful discussions during data acquisition, and Prof. Paul Cumming for manuscript review.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Minghuan Wang or Wei Wang.

Ethics declarations

Conflict of interests

All authors claim that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, J., Yao, D., Li, R. et al. Digoxin Ameliorates Glymphatic Transport and Cognitive Impairment in a Mouse Model of Chronic Cerebral Hypoperfusion. Neurosci. Bull. 38, 181–199 (2022). https://doi.org/10.1007/s12264-021-00772-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-021-00772-y

Keywords

Navigation