Skip to main content
Log in

A Temporal Precision Approach for Deep Transcranial Optogenetics with Non-invasive Surgery

  • RESEARCH HIGHLIGHT
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. All AH, Zeng X, Teh DBL, Yi ZG, Prasad A, Ishizuka T. Expanding the toolbox of upconversion nanoparticles for in vivo optogenetics and neuromodulation. Adv Mater 2019, 31: e1803474. https://doi.org/10.1002/adma.201803474.

    Article  CAS  PubMed  Google Scholar 

  2. Zemelman BV, Miesenböck G. Genetic schemes and schemata in neurophysiology. Curr Opin Neurobiol 2001, 11: 409–414.

    Article  CAS  Google Scholar 

  3. Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 2005, 8: 1263–1268.

    Article  CAS  Google Scholar 

  4. Nagel G, Szellas T, Huhn W, Kateriya S, Adeishvili N, Berthold P, et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci USA 2003, 100: 13940–13945.

    Article  CAS  Google Scholar 

  5. Wang HX, Sugiyama Y, Hikima T, Sugano E, Tomita H, Takahashi T, et al. Molecular determinants differentiating photocurrent properties of two channelrhodopsins from Chlamydomonas. J Biol Chem 2009, 284: 5685–5696.

    Article  CAS  Google Scholar 

  6. Tyler WJ. Noninvasive neuromodulation with ultrasound? A continuum mechanics hypothesis. Neuroscientist 2011, 17: 25–36.

    Article  Google Scholar 

  7. Wu HC, Yan X, Tang DL, Gu WX, Luan YW, Cai HJ, et al. Internal states influence the representation and modulation of food intake by subthalamic neurons. Neurosci Bull 2020, 36: 1355–1368.

    Article  Google Scholar 

  8. Wagner T, Gangitano M, Romero R, Théoret H, Kobayashi M, Anschel D, et al. Intracranial measurement of current densities induced by transcranial magnetic stimulation in the human brain. Neurosci Lett 2004, 354: 91–94.

    Article  CAS  Google Scholar 

  9. Chen R, Gore F, Nguyen QA, Ramakrishnan C, Patel S, Kim SH, et al. Deep brain optogenetics without intracranial surgery. Nat Biotechnol 2021, 39: 161–164.

    Article  CAS  Google Scholar 

  10. Li X, Li YD, Zhang JH, Zhang XH. Selective targeting of perirhinal cortex projection to hippocampal CA1 interneurons. Neurosci Bull 2019, 35: 763–765.

    Article  Google Scholar 

  11. Deisseroth K. Optogenetics. Nat Methods 2011, 8: 26–29.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This Research Highlight was supported by the Natural Science Foundation of Zhejiang Province (LR18C090001), the National Natural Science Foundation of China (92049104, 81801102, and 82071230), and a Research Start-up Project by Hangzhou Normal University (4125C5021920453 and 4125C50220204109).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Cheng or Zhihui Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, S., Shi, J., Wang, Y. et al. A Temporal Precision Approach for Deep Transcranial Optogenetics with Non-invasive Surgery. Neurosci. Bull. 37, 1260–1263 (2021). https://doi.org/10.1007/s12264-021-00721-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-021-00721-9

Navigation