Skip to main content
Log in

CXCL10/CXCR3 Signaling in the DRG Exacerbates Neuropathic Pain in Mice

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Chemokines and receptors have been implicated in the pathogenesis of chronic pain. Here, we report that spinal nerve ligation (SNL) increased CXCR3 expression in dorsal root ganglion (DRG) neurons, and intra-DRG injection of Cxcr3 shRNA attenuated the SNL-induced mechanical allodynia and heat hyperalgesia. SNL also increased the mRNA levels of CXCL9, CXCL10, and CXCL11, whereas only CXCL10 increased the number of action potentials (APs) in DRG neurons. Furthermore, in Cxcr3−/− mice, CXCL10 did not increase the number of APs, and the SNL-induced increase of the numbers of APs in DRG neurons was reduced. Finally, CXCL10 induced the activation of p38 and ERK in ND7-23 neuronal cells and DRG neurons. Pretreatment of DRG neurons with the P38 inhibitor SB203580 decreased the number of APs induced by CXCL10. Our data indicate that CXCR3, activated by CXCL10, mediates p38 and ERK activation in DRG neurons and enhances neuronal excitability, which contributes to the maintenance of neuropathic pain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gilron I, Baron R, Jensen T. Neuropathic pain: principles of diagnosis and treatment. Mayo Clin Proc 2015, 90: 532–545.

    Article  CAS  PubMed  Google Scholar 

  2. Zhang ZJ, Jiang BC, Gao YJ. Chemokines in neuron-glial cell interaction and pathogenesis of neuropathic pain. Cell Mol Life Sci 2017, 74: 3275–3291.

    Article  CAS  PubMed  Google Scholar 

  3. Xie RG, Gao YJ, Park CK, Lu N, Luo C, Wang WT, et al. Spinal CCL2 promotes central sensitization, long-term potentiation, and inflammatory pain via CCR2: Further insights into molecular, synaptic, and cellular mechanisms. Neurosci Bull 2018, 34: 13–21.

    Article  CAS  PubMed  Google Scholar 

  4. Gao YJ, Ji RR. Chemokines, neuronal-glial interactions, and central processing of neuropathic pain. Pharmacol Ther 2010, 126: 56–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jiang BC, Cao DL, Zhang X, Zhang ZJ, He LN, Li CH, et al. CXCL13 drives spinal astrocyte activation and neuropathic pain via CXCR5. J Clin Invest 2016, 126: 745–761.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Zhang ZJ, Cao DL, Zhang X, Ji RR, Gao YJ. Chemokine contribution to neuropathic pain: respective induction of CXCL1 and CXCR2 in spinal cord astrocytes and neurons. Pain 2013, 154: 2185–2197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jiang BC, He LN, Wu XB, Shi H, Zhang WW, Zhang ZJ, et al. Promoted interaction of C/EBPalpha with demethylated Cxcr3 gene promoter contributes to neuropathic pain in mice. J Neurosci 2017, 37: 685–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gao YJ, Zhang L, Samad OA, Suter MR, Yasuhiko K, Xu ZZ, et al. JNK-induced MCP-1 production in spinal cord astrocytes contributes to central sensitization and neuropathic pain. J Neurosci 2009, 29: 4096–4108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lindia JA, McGowan E, Jochnowitz N, Abbadie C. Induction of CX3CL1 expression in astrocytes and CX3CR1 in microglia in the spinal cord of a rat model of neuropathic pain. J Pain 2005, 6: 434–438.

    Article  CAS  PubMed  Google Scholar 

  10. Koper OM, Kaminska J, Sawicki K, Kemona H. CXCL9, CXCL10, CXCL11, and their receptor (CXCR3) in neuroinflammation and neurodegeneration. Adv Clin Exp Med 2018, 27: 849–856.

    Article  PubMed  Google Scholar 

  11. Tokunaga R, Zhang W, Naseem M, Puccini A, Berger MD, Soni S, et al. CXCL9, CXCL10, CXCL11/CXCR3 axis for immune activation - A target for novel cancer therapy. Cancer Treat Rev 2018, 63: 40–47.

    Article  CAS  PubMed  Google Scholar 

  12. Guan XH, Fu QC, Shi D, Bu HL, Song ZP, Xiong BR, et al. Activation of spinal chemokine receptor CXCR3 mediates bone cancer pain through an Akt-ERK crosstalk pathway in rats. Exp Neurol 2015, 263: 39–49.

    Article  CAS  PubMed  Google Scholar 

  13. Wu XB, He LN, Jiang BC, Shi H, Bai XQ, Zhang WW, et al. Spinal CXCL9 and CXCL11 are not involved in neuropathic pain despite an upregulation in the spinal cord following spinal nerve injury. Mol Pain 2018, 14: 1744806918777401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Groom JR, Luster AD. CXCR3 ligands: redundant, collaborative and antagonistic functions. Immunol Cell Biol 2011, 89: 207–215.

    Article  CAS  PubMed  Google Scholar 

  15. Van Raemdonck K, Van den Steen PE, Liekens S, Van Damme J, Struyf S. CXCR3 ligands in disease and therapy. Cytokine Growth Factor Rev 2015, 26: 311–327.

    Article  PubMed  CAS  Google Scholar 

  16. Miller RJ, Jung H, Bhangoo SK, White FA. Cytokine and chemokine regulation of sensory neuron function. Handb Exp Pharmacol 2009: 417–449.

  17. Kao DJ, Li AH, Chen JC, Luo RS, Chen YL, Lu JC, et al. CC chemokine ligand 2 upregulates the current density and expression of TRPV1 channels and Nav1.8 sodium channels in dorsal root ganglion neurons. J Neuroinflammation 2012, 9: 189.

  18. Wang JG, Strong JA, Xie W, Yang RH, Coyle DE, Wick DM, et al. The chemokine CXCL1/growth related oncogene increases sodium currents and neuronal excitability in small diameter sensory neurons. Mol Pain 2008, 4: 38.

    PubMed  PubMed Central  Google Scholar 

  19. Yang RH, Strong JA, Zhang JM. NF-kappaB mediated enhancement of potassium currents by the chemokine CXCL1/growth related oncogene in small diameter rat sensory neurons. Mol Pain 2009, 5: 26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Wu XB, Cao DL, Zhang X, Jiang BC, Zhao LX, Qian B, et al. CXCL13/CXCR5 enhances sodium channel Nav1.8 current density via p38 MAP kinase in primary sensory neurons following inflammatory pain. Sci Rep 2016, 6: 34836.

  21. Ji RR, Gereau RWt, Malcangio M, Strichartz GR. MAP kinase and pain. Brain Res Rev 2009, 60: 135–148.

  22. Obata K, Noguchi K. MAPK activation in nociceptive neurons and pain hypersensitivity. Life Sci 2004, 74: 2643–2653.

    Article  CAS  PubMed  Google Scholar 

  23. Zhuang ZY, Xu H, Clapham DE, Ji RR. Phosphatidylinositol 3-kinase activates ERK in primary sensory neurons and mediates inflammatory heat hyperalgesia through TRPV1 sensitization. J Neurosci 2004, 24: 8300-8309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Stamboulian S, Choi JS, Ahn HS, Chang YW, Tyrrell L, Black JA, et al. ERK1/2 mitogen-activated protein kinase phosphorylates sodium channel Na(v)1.7 and alters its gating properties. J Neurosci 2010, 30: 1637–1647.

  25. Hudmon A, Choi JS, Tyrrell L, Black JA, Rush AM, Waxman SG, et al. Phosphorylation of sodium channel Na(v)1.8 by p38 mitogen-activated protein kinase increases current density in dorsal root ganglion neurons. J Neurosci 2008, 28: 3190–3201.

  26. Jing PB, Cao DL, Li SS, Zhu M, Bai XQ, Wu XB, et al. Chemokine receptor CXCR3 in the spinal cord contributes to chronic itch in mice. Neurosci Bull 2018, 34: 54-63.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang ZJ, Guo JS, Li SS, Wu XB, Cao DL, Jiang BC, et al. TLR8 and its endogenous ligand miR-21 contribute to neuropathic pain in murine DRG. J Exp Med 2018, 215: 3019–3037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dixon WJ. Efficient analysis of experimental observations. Annu Rev Pharmacol Toxicol 1980, 20: 441-462.

    Article  CAS  PubMed  Google Scholar 

  29. Hargreaves K, Dubner R, Brown F, Flores C, Joris J. A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain 1988, 32: 77–88.

    Article  CAS  PubMed  Google Scholar 

  30. Balashov KE, Rottman JB, Weiner HL, Hancock WW. CCR5(+) and CXCR3(+) T cells are increased in multiple sclerosis and their ligands MIP-1alpha and IP-10 are expressed in demyelinating brain lesions. Proc Natl Acad Sci U S A 1999, 96: 6873–6878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xia MQ, Bacskai BJ, Knowles RB, Qin SX, Hyman BT. Expression of the chemokine receptor CXCR3 on neurons and the elevated expression of its ligand IP-10 in reactive astrocytes: in vitro ERK1/2 activation and role in Alzheimer’s disease. J Neuroimmunol 2000, 108: 227–235.

    Article  CAS  PubMed  Google Scholar 

  32. Israelsson C, Bengtsson H, Lobell A, Nilsson LN, Kylberg A, Isaksson M, et al. Appearance of Cxcl10-expressing cell clusters is common for traumatic brain injury and neurodegenerative disorders. Eur J Neurosci 2010, 31: 852–863.

    Article  PubMed  Google Scholar 

  33. Chen Y, Yin D, Fan B, Zhu X, Chen Q, Li Y, et al. Chemokine CXCL10/CXCR3 signaling contributes to neuropathic pain in spinal cord and dorsal root ganglia after chronic constriction injury in rats. Neurosci Lett 2019, 694: 20–28.

    Article  CAS  PubMed  Google Scholar 

  34. Devor M. Ectopic discharge in Abeta afferents as a source of neuropathic pain. Exp Brain Res 2009, 196: 115–128.

    Article  CAS  PubMed  Google Scholar 

  35. Govrin-Lippmann R, Devor M. Ongoing activity in severed nerves: Source and variation with time. Brain Res 1978, 159: 406–410.

    Article  CAS  PubMed  Google Scholar 

  36. Dib-Hajj SD, Cummins TR, Black JA, Waxman SG. Sodium channels in normal and pathological pain. Annu Rev Neurosci 2010, 33: 325–347.

    Article  CAS  PubMed  Google Scholar 

  37. Yang F, Sun W, Yang Y, Wang Y, Li CL, Fu H, et al. SDF1-CXCR4 signaling contributes to persistent pain and hypersensitivity via regulating excitability of primary nociceptive neurons: involvement of ERK-dependent Nav1.8 up-regulation. J Neuroinflammation 2015, 12: 219.

  38. Luiz AP, Wood JN. Sodium Channels in Pain and Cancer: New Therapeutic Opportunities. Adv Pharmacol 2016, 75: 153–178.

    Article  CAS  PubMed  Google Scholar 

  39. Bang S, Yoo J, Gong X, Liu D, Han Q, Luo X, et al. Differential inhibition of Nav1.7 and neuropathic pain by hybridoma-produced and recombinant monoclonal antibodies that target Nav1.7: Differential activities of Nav1.7-targeting monoclonal antibodies. Neurosci Bull 2018, 34: 22–41.

  40. Cole KE, Strick CA, Paradis TJ, Ogborne KT, Loetscher M, Gladue RP, et al. Interferon-inducible T cell alpha chemoattractant (I-TAC): A novel non-ELR CXC chemokine with potent activity on activated T cells through selective high affinity binding to CXCR3. J Exp Med 1998, 187: 2009–2021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cox MA, Jenh CH, Gonsiorek W, Fine J, Narula SK, Zavodny PJ, et al. Human interferon-inducible 10-kDa protein and human interferon-inducible T cell alpha chemoattractant are allotopic ligands for human CXCR3: Differential binding to receptor states. Mol Pharmacol 2001, 59: 707–715.

    Article  CAS  PubMed  Google Scholar 

  42. Weng Y, Siciliano SJ, Waldburger KE, Sirotina-Meisher A, Staruch MJ, Daugherty BL, et al. Binding and functional properties of recombinant and endogenous CXCR3 chemokine receptors. J Biol Chem 1998, 273: 18288–18291.

    Article  CAS  PubMed  Google Scholar 

  43. Colvin RA, Campanella GS, Sun J, Luster AD. Intracellular domains of CXCR3 that mediate CXCL9, CXCL10, and CXCL11 function. J Biol Chem 2004, 279: 30219–30227.

    Article  CAS  PubMed  Google Scholar 

  44. Sun W, Yang F, Wang Y, Fu H, Yang Y, Li CL, et al. Contribution of large-sized primary sensory neuronal sensitization to mechanical allodynia by upregulation of hyperpolarization-activated cyclic nucleotide gated channels via cyclooxygenase 1 cascade. Neuropharmacology 2017, 113: 217–230.

    Article  CAS  PubMed  Google Scholar 

  45. Wu XB, Jing PB, Zhang ZJ, Cao DL, Gao MH, Jiang BC, et al. Chemokine receptor CCR2 contributes to neuropathic pain and the associated depression via increasing NR2B-mediated currents in both D1 and D2 dopamine receptor-containing medium spiny neurons in the nucleus accumbens shell. Neuropsychopharmacology 2018, 43: 2320–2330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhu X, Cao S, Zhu MD, Liu JQ, Chen JJ, Gao YJ. Contribution of chemokine CCL2/CCR2 signaling in the dorsal root ganglion and spinal cord to the maintenance of neuropathic pain in a rat model of lumbar disc herniation. J Pain 2014, 15: 516–526.

    Article  CAS  PubMed  Google Scholar 

  47. Yang F, Sun W, Luo WJ, Yang Y, Yang F, Wang XL, et al. SDF1-CXCR4 signaling contributes to the transition from acute to chronic pain state. Mol Neurobiol 2017, 54: 2763–2775.

    Article  CAS  PubMed  Google Scholar 

  48. Souza GR, Talbot J, Lotufo CM, Cunha FQ, Cunha TM, Ferreira SH. Fractalkine mediates inflammatory pain through activation of satellite glial cells. Proc Natl Acad Sci U S A 2013, 110: 11193–11198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang C, Li Z, Xu L, Che X, Wen T, Fan Y, et al. CXCL9/10/11, a regulator of PD-L1 expression in gastric cancer. BMC Cancer 2018, 18: 462.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Bonacchi A, Romagnani P, Romanelli RG, Efsen E, Annunziato F, Lasagni L, et al. Signal transduction by the chemokine receptor CXCR3: activation of Ras/ERK, Src, and phosphatidylinositol 3-kinase/Akt controls cell migration and proliferation in human vascular pericytes. J Biol Chem 2001, 276: 9945–9954.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31871064 and 32030048), the Natural Science Research Program of Jiangsu Province, China (BK20171255), and the Postgraduate Research & Practice Innovation Program of Jiangsu Province, China (KYCX19 2088).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Jing Gao.

Ethics declarations

Conflict of interest

All authors claim that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, YF., Sha, WL., Wu, XB. et al. CXCL10/CXCR3 Signaling in the DRG Exacerbates Neuropathic Pain in Mice. Neurosci. Bull. 37, 339–352 (2021). https://doi.org/10.1007/s12264-020-00608-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-020-00608-1

Keywords

Navigation