Skip to main content
Log in

Histone deacetylase 6 delays motor neuron degeneration by ameliorating the autophagic flux defect in a transgenic mouse model of amyotrophic lateral sclerosis

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by the selective loss of motor neurons. Abnormal protein aggregation and impaired protein degradation are believed to contribute to the pathogenesis of this disease. Our previous studies showed that an autophagic flux defect is involved in motor neuron degeneration in the SOD1G93A mouse model of ALS. Histone deacetylase 6 (HDAC6) is a class II deacetylase that promotes autophagy by inducing the fusion of autophagosomes to lysosomes. In the present study, we showed that HDAC6 expression was decreased at the onset of disease and became extremely low at the late stage in ALS mice. Using lentivirus-HDAC6 gene injection, we found that HDAC6 overexpression prolonged the lifespan and delayed the motor neuron degeneration in ALS mice. Moreover, HDAC6 induced the formation of autolysosomes and accelerated the degradation of SOD1 protein aggregates in the motor neurons of ALS mice. Collectively, our results indicate that HDAC6 has neuroprotective effects in an animal model of ALS by improving the autophagic flux in motor neurons, and autophagosome-lysosome fusion might be a therapeutic target for ALS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andersen PM. Amyotrophic lateral sclerosis associated with mutations in the CuZn superoxide dismutase gene. Curr Neurol Neurosci Rep 2006, 6: 37–46.

    Article  CAS  PubMed  Google Scholar 

  2. Chen S, Sayana P, Zhang X, Le W. Genetics of amyotrophic lateral sclerosis: an update. Mol Neurodegener 2013, 8: 28.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Pasinelli P, Brown RH. Molecular biology of amyotrophic lateral sclerosis: insights from genetics. Nat Rev Neurosci 2006, 7: 10–23.

    Article  Google Scholar 

  4. Kirby J, Halligan E, Baptista MJ, Allen S, Heath PR, et al. Mutant SOD1 alters the motor neuronal transcriptome: implications for familial ALS. Brain 2005, 128: 1686–1706.

    Article  PubMed  Google Scholar 

  5. Li L, Zhang X, Le W. Altered macroautophagy in the spinal cord of SOD1 mutant mice. Autophagy 2008, 4: 290–293.

    Article  CAS  PubMed  Google Scholar 

  6. Banerjee R, Beal MF, Thomas B. Autophagy in neurodegenerative disorders: pathogenic roles and therapeutic implications. Trends Neurosci 2010, 33: 541–549.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Goldberg AL. Protein degradation and protection against misfolded or damaged proteins. Nature 2003, 426: 895–899.

    Article  CAS  PubMed  Google Scholar 

  8. Cheung ZH, Ip NY. Autophagy deregulation in neurodegenerative diseases - recent advances and future perspectives. J Neurochem 2011, 118: 317–325.

    Article  CAS  PubMed  Google Scholar 

  9. Wong E, Cuervo AM. Autophagy gone awry i n neurodegenerative diseases. Nat Neurosci 2010, 13: 805–811.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Sasaki S. Autophagy in spinal cord motor neurons in sporadic amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 2011, 70: 349–359.

    Article  PubMed  Google Scholar 

  11. Zhang X, Li L, Chen S, Yang D, Wang Y, Zhang X, et al. Rapamycin treatment augments motor neuron degeneration in SOD1(G93A) mouse model of amyotrophic lateral sclerosis. Autophagy 2011, 7: 412–425.

    Article  CAS  PubMed  Google Scholar 

  12. Zhang X, Chen S, Song L, Tang Y, Shen Y, Jia L, et al. MTOR-independent, autophagic enhancer trehalose prolongs motor neuron survival and ameliorates the autophagic flux defect in a mouse model of amyotrophic lateral sclerosis. Autophagy 2014, 10: 588–602.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Boyault C, Sadoul K, Pabion M, Khochbin S. HDAC6, at the crossroads between cytoskeleton and cell signaling by acetylation and ubiquitination. Oncogene 2007, 26: 5468–5476.

    Article  CAS  PubMed  Google Scholar 

  14. Kawaguchi Y, Kovacs JJ, Mc Laurin A, Vance JM, Ito A, Yao TP. The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress. Cell 2003, 115: 727–738.

    Article  CAS  PubMed  Google Scholar 

  15. Lee JY, Koga H, Kawaguchi Y, Tang W, Wong E, Gao YS, et al. HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality control autophagy. EMBO J 2010, 29: 969–980.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Boyault C, Zhang Y, Fritah S, Caron C, Gilquin B, et al. HDAC6 controls major cell response pathways to cytotoxic accumulation of protein aggregates. Gene Dev 2007, 21: 2172–2181.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Pandey UB, Nie Z, Batlevi Y, McCray BA, Ritson GP, Nedelsky NB, et al. HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature 2007, 447: 859–863.

    Article  CAS  PubMed  Google Scholar 

  18. Simoes-Pires C, Zwick V, Nurisso A, Schenker E, Carrupt PA, Cuendet M. HDAC6 as a target for neurodegenerative diseases: what make it different from other HDACs? Mol Neurodegener 2013, 29: 7.

    Article  Google Scholar 

  19. Tang Y, Li T, Li J, Yang J, Liu H, Zhang XJ, et al. Jmjd3 is essential for the epigenetic modulation of microglia phenotypes in the immune pathogenesis of Parkinson's disease. Cell Death Differ 2014, 21:369–380.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Song L, Chen L, Zhang X, Li J, Le W. Resveratrol ameliorates motor neuron degeneration and improves survival in SOD1(G93A) mouse model of amyotrophic lateral sclerosis. Biomed Res Int 2014, 2014: 483501.

    PubMed Central  PubMed  Google Scholar 

  21. Zhang X, Chen S, Li L, Wang Q, Le W. Folic acid protects motor neurons against the increased homocysteine inflammation and apoptosis in SOD1G93A transgenic mice. Neuropharmacology 2008, 54: 1112–1119.

    Article  CAS  PubMed  Google Scholar 

  22. Manabe Y, Nagano I, Gazi MS, Murakami T, Shiote M, Shoji M, et al. Glial cell line-derived neurotrophic factor protein prevents motor neuron loss of transgenic model mice for amyotrophic lateral sclerosis. Neurol Res 2003, 25: 195–200.

    Article  CAS  PubMed  Google Scholar 

  23. Nixon RA, Wegiel J, Kumar A, Yu WH, Peterhoff C, Cataldo A, Cuervo AM. Extensive involvement of autophagy in Alzheimer disease: an immunoelectron microscopy study. J Neuropathol Exp Neurol 2005, 64: 113–122.

    PubMed  Google Scholar 

  24. Klionsky DJ, Abdalla FC, Abeliovich H, Abraham RT, Acevedo- Arozena A, Adeli K, et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 2012, 8: 445–544.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Grozinger CM, Hassig CA, Schreiber SL. Three proteins define a class of human histone deacetylases related to yeast Hda1p. Proc Natl Acad Sci U S A 1999, 96: 4868–4873.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Verdel A, Khochbin S. Identification of a new family of higher eukaryotic histone deacetylases. Coordinate expression of differentiation-dependent chromatin modifiers. J Biol Chem 1999, 274: 2440–2445.

    CAS  PubMed  Google Scholar 

  27. Boyault C, Sadoul K, Pabion M, Khochibin S. HDAC6, at the crossroads between cytoskeleton and cell signaling by acetylation and ubiquitination. Oncogene 2007, 26: 5468–5476

    Article  CAS  PubMed  Google Scholar 

  28. Chen S, Zhang X, Song L, Le W. Autophagy dysregulation in amyotrophic lateral sclerosis. Brain Pathol 2012, 22: 110–116.

    Article  CAS  PubMed  Google Scholar 

  29. Nassif M, Hetz C. Targeting autophagy in ALS: a complex mission. Autophagy 2011, 7: 450–453.

    Article  PubMed  Google Scholar 

  30. Laird FM, Farah MH, Ackerley S, Hoke A, Maragakis N, Rothstein JD, et al. Motor neuron disease occurring in a mutant dynactin mouse model is characterized by defects in vesicular trafficking. J Neurosci 2008, 28: 1997–2005.

    Article  CAS  PubMed  Google Scholar 

  31. Webb JL, Ravikumar B, Rubinsztein DC. Microtubule disruption inhibits autophagosome-lysosome fusion: implications for studying the roles of aggresomes in polyglutamine diseases. Int J Biochem Cell Biol 2004, 36: 2541–2550.

    Article  CAS  PubMed  Google Scholar 

  32. Zhang F, Ström AL, Fukada K, Lee S, Hayward LJ, Zhu H. Interaction between familial amyotrophic lateral sclerosis (ALS)-linked SOD1 mutants and the dynein complex. J Biol Chem 2007, 282: 16691–16699.

    Article  CAS  PubMed  Google Scholar 

  33. Du G, Jiao R. To prevent neurodegeneration: HDAC6 uses different strategies for different challenge. Autophagy 2011, 4: 139–142.

    CAS  Google Scholar 

  34. Zilberman Y, Ballestrem C, Carramusa L, Mazitschek R, Khochbin S, Bershadsky A. Regulation of microtubule dynamics by inhibition of the tubulin deacetylase HDAC6. J Cell Sci 2009, 122: 3531–3541.

    Article  CAS  PubMed  Google Scholar 

  35. Lazo-Gomez R, Ramirez-Jarquin UN, Tovar-Y-Romo LB, Tapia R. Histone deacetylases and their role in motor neuron degeneration. Front Cell Neurosci 2013, 7: 243.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Taes I, Timmers M, Hersmus N, Bento- Abreu A, Van Den B, Van Damme P, et al. Hdac6 deletion delays disease progression in the SOD1G93A mouse model of ALS. Hum Mol Genet 2013, 22: 1783–1790.

    Article  CAS  PubMed  Google Scholar 

  37. Marinkovic P, Reuter MS, Brill MS, Godinho L, Kerschensteiner M, Misgeld T. Axonal transport deficits and degeneration can evolve independently in mouse models of amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A 2012, 109: 4296–4301.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Bilsland LG, Sahai E, Kelly G, Golding M, Greensmith L, Schiavo G. Deficits in axonal transport precede ALS symptoms in vivo. Proc Natl Acad Sci U S A 2010, 107: 20523–20528.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weidong Le.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Zhang, XJ., Li, LX. et al. Histone deacetylase 6 delays motor neuron degeneration by ameliorating the autophagic flux defect in a transgenic mouse model of amyotrophic lateral sclerosis. Neurosci. Bull. 31, 459–468 (2015). https://doi.org/10.1007/s12264-015-1539-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-015-1539-3

Keywords

Navigation