Skip to main content

Advertisement

Log in

Induced neural stem/precursor cells for fundamental studies and potential application in neurodegenerative diseases

  • Review
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Recent research has shown that defined sets of exogenous factors are sufficient to convert rodent and human somatic cells directly into induced neural stem cells or neural precursor cells (iNSCs/iNPCs). The process of transdifferentiation bypasses the step of a pluripotent state and reduces the risk of tumorigenesis and genetic instability while retaining the self-renewing capacity. This iNSC/iNPC technology has fueled much excitement in regenerative medicine, as these cells can be differentiated into target cells for re placement therapy for neurodegenerative diseases. Patients’ somatic cell-derived iNSCs/iNPCs have also been proposed to serve as disease models with potential value in both fundamental studies and clinical applications. This review focuses on the mechanisms, techniques, and app lications of iNSCs/iNPCs from a series of related studies, as well as further efforts in designing novel strategies using iNSC/iNPC technology and its potential applications in neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kim J, Efe JA, Zhu S, Talantova M, Yuan X, Wang S, et al. Direct reprogramming of mouse fibroblasts to neural progenitors. Proc Natl Acad Sci U S A 2011, 108: 7838–7843.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Lujan E, Chanda S, Ahlenius H, Sudhof TC, Wernig M. Direct conversion of mouse fibroblasts to self-renewing, tripotent neural precursor cells. Proc Natl Acad Sci U S A 2012, 109: 2527–2532.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Sheng C, Zheng QY, Wu JY, Xu Z, Wang LB, Li W, et al. Direct reprogramming of Sertoli cells into multipotent neural stem cells by defined factors. Cell Res 2012, 22: 208–218.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Thier M, Worsdorfer P, Lakes YB, Gorris R, Herms S, Opitz T, et al. Direct Conversion of Fibroblasts into Stably Expandable Neural Stem Cells. Cell Stem Cell 2012, 10: 473–479.

    Article  CAS  PubMed  Google Scholar 

  5. Han DW, Tapia N, Hermann A, Hemmer K, Hoing S, Arauzo-Bravo MJ, et al. Direct Reprogramming of Fibroblasts into Neural Stem Cells by Defined Factors. Cell Stem Cell 2012, 10: 465–472.

    Article  CAS  PubMed  Google Scholar 

  6. Ring KL, Tong LM, Balestra ME, Javier R, Andrews-Zwilling Y, Li G, et al. Direct reprogramming of mouse and human fibroblasts into multipotent neural stem cells with a single factor. Cell Stem Cell 2012, 11: 100–109.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Corti S, Nizzardo M, Simone C, Falcone M, Donadoni C, Salani S, et al. Direct reprogramming of human astrocytes into neural stem cells and neurons. Exp Cell Res 2012, 318: 1528–1541.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Mitchell RR, Szabo E, Benoit YD, Case DT, Mechael R, Alamilla J, et al. Activation of Neural Cell Fate Programs Toward Direct Conversion of Adult Human Fibroblasts into Tri-Potent Neural Progenitors Using OCT-4. Stem Cell Dev 2014, 23: 1937–1946.

    Article  CAS  Google Scholar 

  9. Zou QJ, Yan QM, Zhong J, Wang KP, Sun HT, Yi XL, et al. Direct conversion of human fibroblasts into neuronal restricted progenitors. J Biol Chem 2014, 289: 5250–5260.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Kim HS, Kim J, Jo Y, Jeon D, Cho YS. Direct lineage reprogramming of mouse fibroblasts to functional midbrain dopaminergic neuronal progenitors. Stem Cell Res 2014, 12: 60–68.

    Article  CAS  PubMed  Google Scholar 

  11. Yu KR, Shin JH, Kim JJ, Koog MG, Lee JY, Choi SW, et al. Rapid and efficient direct conversion of human adult somatic cells into neural stem cells by HMGA2/let-7b. Cell Rep 2015.

    Google Scholar 

  12. Azmitia L, Capetian P, Klett M, Dobrossy M, Nikkhah G. Directly reprogrammed neural precursors from patientspecific fibroblasts. Neuroreport 2014, 25: 139–139.

    Article  Google Scholar 

  13. Zuryn S, Ahier A, Portoso M, White ER, Morin MC, Margueron R, et al. Transdifferentiation. Sequential histone-modifying activities determine the robustness of transdifferentiation. Science 2014, 345: 826–829.

    Article  CAS  PubMed  Google Scholar 

  14. Wapinski OL, Vierbuchen T, Qu K, Lee QY, Chanda S, Fuentes DR, et al. Hierarchical mechanisms for direct reprogramming of fibroblasts to neurons. Cell 2013, 155: 621–635.

    Article  CAS  PubMed  Google Scholar 

  15. Shimozaki K. Sox2 transcription network acts as a molecular switch to regulate properties of neural stem cells. World J Stem Cells 2014, 6: 485–490.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Graham V, Khudyakov J, Ellis P, Pevny L. SOX2 functions to maintain neural progenitor identity. Neuron 2003, 39: 749–765.

    Article  CAS  PubMed  Google Scholar 

  17. Jerabek S, Merino F, Scholer HR, Cojocaru V. OCT4: dynamic DNA binding pioneers stem cell pluripotency. Biochim Biophys Acta 2014, 1839: 138–154.

    Article  CAS  PubMed  Google Scholar 

  18. Miyoshi G, Fishell G. Dynamic FoxG1 Expression Coordinates the Integration of Multipolar Pyramidal Neuron Precursors into the Cortical Plate. Neuron 2012, 74: 1045–1058.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Regad T, Roth M, Bredenkamp N, Illing N, Papalopulu N. The neural progenitor-specifying activity of FoxG1 is antagonistically regulated by CKI and FGF. Nat Cell Biol 2007, 9: 531–540.

    Article  CAS  PubMed  Google Scholar 

  20. Brancaccio M, Pivetta C, Granzotto M, Filippis C, Mallamaci A. Emx2 and Foxg1 inhibit gliogenesis and promote neuronogenesis. Stem Cells 2010, 28: 1206–1218.

    CAS  PubMed  Google Scholar 

  21. Fasano CA, Phoenix TN, Kokovay E, Lowry N, Elkabetz Y, Dimos JT, et al. Bmi-1 cooperates with Foxg1 to maintain neural stem cell self-renewal in the forebrain. Genes Dev 2009, 23: 561–574.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Kerosuo L, Piltti K, Hayry V, Fox H, Sariola H, Wartiovaara K. C-myc increases stemness of neural progenitor cells. International J Dev Neurosci 2006, 24: 521–521.

    Article  Google Scholar 

  23. MuhChyi C, Juliandi B, Matsuda T, Nakashima K. Epigenetic regulation of neural stem cell fate during corticogenesis. Int J Dev Neurosci 2013, 31: 424–433.

    Article  PubMed  Google Scholar 

  24. Cortese R, Lewin J, Backdahl L, Krispin M, Wasserkort R, Eckhardt F, et al. Genome-wide screen for differential DNA methylation associated with neural cell differentiation in mouse. PLoS One 2011, 6: e26002.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Faigle R, Song H. Signaling mechanisms regulating adult neural stem cells and neurogenesis. Biochim Biophys Acta 2013, 1830: 2435–2448.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Jaenisch R, Young R. Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell 2008, 132: 567–582.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Zhang XM, Li QM, Su DJ, Wang N, Shan ZY, Jin LH, et al. RA induces the neural-like cells generated from epigenetic modified NIH/3T3 cells. Mol Biol Rep 2010, 37: 1197–1202.

    Article  CAS  PubMed  Google Scholar 

  28. Dai JP, Lu JY, Zhang Y, Shen YF. Jmjd3 activates Mash1 gene in RA-induced neuronal differentiation of P19 cells. J Cell Biochem 2010, 110: 1457–1463.

    Article  CAS  PubMed  Google Scholar 

  29. Burgold T, Spreafico F, De Santa F, Totaro MG, Prosperini E, Natoli G, et al. The histone H3 lysine 27-specific demethylase Jmjd3 is required for neural commitment. PLoS One 2008, 3: e3034.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Zhu S, Ambasudhan R, Sun W, Kim HJ, Talantova M, Wang X, et al. Small molecules enable OCT4-mediated direct reprogramming into expandable human neural stem cells. Cell Res 2013, 24: 126–129.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Stappert L, Roese-Koerner B, Brustle O. The role of microRNAs in human neural stem cells, neuronal differentiation and subtype specification. Cell Tissue Res 2015, 359: 47–64.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Xue YC, Ouyang KF, Huang J, Zhou Y, Ouyang H, Li HR, et al. Direct Conversion of fibroblasts to neurons by reprogramming PTB-regulated microRNA circuits. Cell 2013, 152: 82–96.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Sun AX, Crabtree GR, Yoo AS. MicroRNAs: regulators of neuronal fate. Curr Opin Cell Biol 2013, 25: 215–221.

    Article  CAS  PubMed  Google Scholar 

  34. Shibata M, Nakao H, Kiyonari H, Abe T, Aizawa S. MicroRNA-9 regulates neural progenitor proliferation and differentiation in both pallium and subpallium by targeting Foxg1, Nr2e1, Gsh2 and Meis2. Dev Biol 2010, 344: 493–494.

    Article  Google Scholar 

  35. Sun G, Yu RT, Evans RM, Shi Y. Orphan nuclear receptor TLX recruits histone deacetylases to repress transcription and regulate neural stem cell proliferation. Proc Natl Acad Sci U S A 2007, 104: 15282–15287.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Shi Y, Sun G, Zhao C, Stewart R. Neural stem cell self-renewal. Crit Rev Oncol Hematol 2008, 65: 43–53.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Collu GM, Hidalgo-Sastre A, Acar A, Bayston L, Gildea C, Leverentz MK, et al. Dishevelled limits Notch signalling through inhibition of CSL. Development 2012, 139: 4405–4415.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Xu XL, Yang JP, Fu LN, Ren RT, Yi F, Suzuki K, et al. Direct reprogramming of porcine fibroblasts to neural progenitor cells. Protein Cell 2014, 5: 4–7.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Maucksch C, Firmin E, Butler-Munro C, Montgomery J, Dottori M, Connor B. Non-viral generation of neural precursor-like cells from adult human fibroblasts. J Stem Cells Regen Med 2012, 8: 162–170.

    PubMed Central  CAS  PubMed  Google Scholar 

  40. Yakubov E, Rechavi G, Rozenblatt S, Givol D. Reprogramming of human fibroblasts to pluripotent stem cells using mRNA of four transcription factors. Biochem Biophys Res Commun 2010, 394: 189–193.

    Article  CAS  PubMed  Google Scholar 

  41. Lu J, Liu H, Huang CT, Chen H, Du Z, Liu Y, et al. Generation of integration-free and region-specific neural progenitors from primate fibroblasts. Cell Rep 2013, 3: 1580–1591.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Cheng L, Hu W, Qiu B, Zhao J, Yu Y, Guan W, et al. Generation of neural progenitor cells by chemical cocktails and hypoxia. Cell Res 2014, 24: 665–679.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Cai YN, Yuan XD, Ou Y, Lu YH. Apopt osis during beta-mercaptoethanol-induced differentiation of adult adipose-derived stromal cells into neurons. Neural Regen Res 2011, 6: 750–755.

    CAS  Google Scholar 

  44. Liu X, Shan W, Zeng RX, Fang Y, Li DH, Qin SJ. Differentiation of rat bone marrow mesenchymal stem cells into neuron-like cells induced by lycium barbarum polysaccharide. J Clin Rehabil Tissue Eng Res 2009, 13: 2667–2672.

    CAS  Google Scholar 

  45. Wang Y, Lu CQ, Wang F. Differentiatio n of rat bone marrow stromai stem cells into neuron-like cells induced by salvia mitiorrhiza. Chin J Anatomy 2007, 30: 207–210.

    CAS  Google Scholar 

  46. Du HY, Fu HY, Bao CF, Liu YZ, Qin SJ. Study on differentiation of rat bone marrow mesenchymal stem cells into neuron-like cells induced by rehmannia glutinosa polysaccharide in vitro. Chin J Exp Tradit Med Formulae 2012, 18: 133–137.

    CAS  Google Scholar 

  47. Yang J, Wang D. Study on the mediating role of PNS in bone marrow mesenchymal stem cells differentiating into neuronlike cells. Chinese Archives Tradit Chin Med 2012, 30: 891–893.

    Google Scholar 

  48. Chen B, Yin YQ, Ke JL, Zou XH, Peng H, Tan SF, et al. Ligustrazine induces rat bone morrow mesenchymal stem cells to differentiate into neuron-like cells: Screening of the optimal inductive concentration. J Clin Rehabil Tissue Eng Res 2010, 14: 1072–1077.

    CAS  Google Scholar 

  49. Pei JJ, Wu R, Zhao HB, Liu X, Hu J, Bai M H. Ca2+signaling mediated salidrosides promotes directional differentiation of mouse bone marrow mesenchymal stem cells into nerve cells. J Clin Rehabil Tissue Eng Res 2010, 14: 1809–1812.

    Google Scholar 

  50. Peruzzotti-Jametti L, Mallucci G, Tannahill G, Huang B, Lakes YB, Giusto E, et al. Injection of next-generation directly-induced neural stem cells (iNSCs) induces recovery in a mouse model of multiple sclerosis. J Neuroimmun 2014, 275: 193–193.

    Article  Google Scholar 

  51. Glavaski-Joksimovic A, Virag T, Chang QA, West NC, Mangatu TA, McGrogan MP, et al. Reversal of dopaminergic degeneration in a parkinsonian rat following micrografting of human bone marrow-derived neural progenitors. Cell Transplant 2009, 18: 801–814.

    Article  PubMed  Google Scholar 

  52. Meyer K, Ferraiuolo L, Miranda CJ, Likhite S, McElroy S, Renusch S, et al. Direct conversion of patient fibroblasts demonstrates non-cell autonomous toxicity of astrocytes to motor neurons in familial and sporadic ALS. Proc Natl Acad Sci U S A 2014, 111: 829–832.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Mirakhori F, Zeynali B, Salekdeh GH, Baharvand H. Induced neural lineage cells as repair kits: so close, yet so far away. J Cell Physiol 2014, 229: 728–742.

    Article  CAS  PubMed  Google Scholar 

  54. Hong E, Choi Y, Yang H, Kang HY, Ahn C, Jeung E. Establishment of a rapid drug screening system based on embryonic stem cells. Environ Toxicol Pharmacol 2014, 39: 327–338.

    Article  PubMed  Google Scholar 

  55. Shi Y. Induced pluripotent stem cells, new tool s for drug discovery and new hope for stem cell therapies. Curr Mol Pharmacol 2009, 2: 15–18.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Lachmann N, Brennig S, Pfaff N, Schermeier H, Dahlmann J, Phaltane R, et al. Efficient in vivo regulation of cytidine deaminase expression in the haematopoietic system using a doxycycline-inducible lentiviral vector system. Gene Therapy 2013, 20: 298–307.

    Article  CAS  PubMed  Google Scholar 

  57. Ruggieri M, Riboldi G, Brajkovic S, Bucchia M, Bresolin N, Comi GP, et al. Induced neural stem cells: Methods of reprogramming and potential therapeutic applications. Prog Neurobiol 2014, 114: 15–24.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baorong Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, T., Pu, J., Zheng, T. et al. Induced neural stem/precursor cells for fundamental studies and potential application in neurodegenerative diseases. Neurosci. Bull. 31, 589–600 (2015). https://doi.org/10.1007/s12264-015-1527-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-015-1527-z

Keywords

Navigation