Skip to main content
Log in

Single-nucleotide polymorphisms and haplotypes of non-coding area in the CP gene are correlated with Parkinson’s disease

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Our previous studies have demonstrated that ceruloplasmin (CP) dysmetabolism is correlated with Parkinson’s disease (PD). However, the causes of decreased serum CP levels in PD patients remain to be clarified. This study aimed to explore the potential association between genetic variants of the CP gene and PD. Clinical features, serum CP levels, and the CP gene (both promoter and coding regions) were analyzed in 60 PD patients and 50 controls. A luciferase reporter system was used to investigate the function of promoter single-nucleotide polymorphisms (SNPs). High-density comparative genomic hybridization microarrays were also used to detect large-scale copy-number variations in CP and an additional 47 genes involved in PD and/or copper/iron metabolism. The frequencies of eight SNPs (one intronic SNP and seven promoter SNPs of the CP gene) and their haplotypes were significantly different between PD patients, especially those with lowered serum CP levels, and controls. However, the luciferase reporter system revealed no significant effect of the risk haplotype on promoter activity of the CP gene. Neither these SNPs nor their haplotypes were correlated with the Hoehn and Yahr staging of PD. The results of this study suggest that common genetic variants of CP are associated with PD and further investigation is needed to explore their functions in PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jenner P, Olanow CW. Understanding cell death in Parkinson’s disease. Ann Neurol 1998, 44: S72–84.

    Article  CAS  PubMed  Google Scholar 

  2. Vassiliev V, Harris ZL, Zatta P. Ceruloplasmin in neurodegenerative diseases. Brain Res Brain Res Rev 2005, 49: 633–640.

    Article  CAS  PubMed  Google Scholar 

  3. Osaki S, Johnson DA, Frieden E. The possible significance of the ferrous oxidase activity of ceruloplasmin in normal human serum. J Biol Chem 1966, 241: 2746–2751.

    CAS  PubMed  Google Scholar 

  4. Lee GR, Nacht S, Lukens JN, Cartwright GE. Iron metabolism in copper-deficient swine. J Clin Invest 1968, 47: 2058–2069.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Harris ZL, Takahashi Y, Miyajima H, Serizawa M, MacGillivray RT, Gitlin JD. Aceruloplasminemia: molecular characterization of this disorder of iron metabolism. Proc Natl Acad Sci U S A 1995, 92: 2539–2543.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Patel BN, Dunn RJ, Jeong SY, Zhu Q, Julien JP, David S. Ceruloplasmin regulates iron levels in the CNS and prevents free radical injury. J Neurosci 2002, 22: 6578–6586.

    CAS  PubMed  Google Scholar 

  7. Torsdottir G, Kristinsson J, Sveinbjornsdottir S, Snaedal J, Johannesson T. Copper, ceruloplasmin, superoxide dismutase and iron parameters in Parkinson’s disease. Pharmacol Toxicol 1999, 85: 239–243.

    Article  CAS  PubMed  Google Scholar 

  8. Torsdottir G, Sveinbjornsdottir S, Kristinsson J, Snaedal J, Johannesson T. Ceruloplasmin and superoxide dismutase (SOD1) in Parkinson’s disease: a follow-up study. J Neurol Sci 2006, 241: 53–58.

    Article  CAS  PubMed  Google Scholar 

  9. Torsdottir G, Kristinsson J, Snaedal J, Sveinbjornsdottir S, Gudmundsson G, Hreidarsson S, et al. Case-control studies on ceruloplasmin and superoxide dismutase (SOD1) in neurodegenerative diseases: a short review. J Neurol Sci 2010, 299: 51–54.

    Article  CAS  PubMed  Google Scholar 

  10. Boll MC, Sotelo J, Otero E, Alcaraz-Zubeldia M, Rios C. Reduced ferroxidase activity in the cerebrospinal fluid from patients with Parkinson’s disease. Neurosci Lett 1999, 265: 155–158.

    Article  CAS  PubMed  Google Scholar 

  11. Olivieri S, Conti A, Iannaccone S, Cannistraci CV, Campanella A, Barbariga M, et al. Ceruloplasmin oxidation, a feature of Parkinson’s disease CSF, inhibits ferroxidase activity and promotes cellular iron retention. J Neurosci 2011, 31: 18568–18577.

    Article  CAS  PubMed  Google Scholar 

  12. Ayton S, Lei P, Duce JA, Wong BX, Sedjahtera A, Adlard PA, et al. Ceruloplasmin dysfunction and therapeutic potential for parkinson disease. Ann Neuol 2013, 73: 554–559.

    Article  CAS  Google Scholar 

  13. Pal A, Kumar A, Prasad R. Predictive association of copper metabolism proteins with Alzheimer’s disease and Parkinson’s disease: a preliminary perspective. Biometals 2014, 27: 25–31.

    Article  CAS  PubMed  Google Scholar 

  14. Bharucha KJ, Friedman JK, Vincent AS, Ross ED. Lower serum ceruloplasmin levels correlate with younger age of onset in Parkinson’s disease. J Neurol 2008, 255: 1957–1962.

    Article  CAS  PubMed  Google Scholar 

  15. Jin L, Wang J, Zhao L, Jin H, Fei G, Zhang Y, et al. Decreased serum ceruloplasmin levels characteristically aggravate nigral iron deposition in Parkinson’s disease. Brain 2011, 134: 50–58.

    Article  PubMed  Google Scholar 

  16. Jin L, Wang J, Jin H, Fei G, Zhang Y, Chen W, et al. Nigral iron deposition occurs across motor phenotypes of Parkinson’s disease. Eur J Neurol 2012, 19: 969–976.

    Article  CAS  PubMed  Google Scholar 

  17. Martinez-Hernandez R, Montes S, Higuera-Calleja J, Yescas P, Boll MC, Diaz-Ruiz A, et al. Plasma ceruloplasmin ferroxidase activity correlates with the nigral sonographic area in Parkinson’s disease patients: a pilot study. Neurochem Res 2011, 36: 2111–2115.

    Article  CAS  PubMed  Google Scholar 

  18. Zhang F, Gu W, Hurles ME, Lupski JR. Copy number variation in human health, disease, and evolution. Annu Rev Genomics Hum Genet 2009, 10: 451–481.

    Article  CAS  PubMed  Google Scholar 

  19. Gelb DJ, Oliver E, Gilman S. Diagnostic criteria for Parkinson disease. Arch Neurol 1999, 56: 33–39.

    Article  CAS  PubMed  Google Scholar 

  20. Hoehn MM, Yahr MD. Parkinsonism: onset, progression and mortality. Neurology 1967, 17: 427–442.

    Article  CAS  PubMed  Google Scholar 

  21. Shi YY, He L. SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res 2005, 15: 97–98.

    Article  CAS  PubMed  Google Scholar 

  22. Miyajima H, Kono S, Takahashi Y, Sugimoto M, Sakamoto M, Sakai N. Cerebellar ataxia associated with heteroallelic ceruloplasmin gene mutation. Neurology 2001, 57: 2205–2210.

    Article  CAS  PubMed  Google Scholar 

  23. Lirong J, Jianjun J, Hua Z, Guoqiang Fei, Yuhao Z, Xiaoli P et al. Hypoceruloplasminemia-related movement disorder without Kayser-Fleischer rings is different from Wilson disease and not involved in ATP7B mutation. Eur J Neurol 2009, 16: 1130–1137.

    Article  CAS  PubMed  Google Scholar 

  24. Hochstrasser H, Bauer P, Walter U, Behnke S, Spiegel J, Csoti I, et al. Ceruloplasmin gene variations and substantia nigra hyperechogenicity in Parkinson disease. Neurology 2004, 63: 1912–1917.

    Article  CAS  PubMed  Google Scholar 

  25. Castiglioni E, Finazzi D, Goldwurm S, Pezzoli G, Forni G, Girelli D, et al. Analysis of nucleotide variations in genes of iron management in patients of Parkinson’s disease and other movement disorders. Parkinsons Dis 2010, 2011: 827693.

    PubMed Central  PubMed  Google Scholar 

  26. Chartier-Harlin MC, Kachergus J, Roumier C, Mouroux V, Douay X, Lincoln S, et al. Alpha-synuclein locus duplication as a cause of familial Parkinson’s disease. Lancet 2004, 364: 1167–1169.

    Article  CAS  PubMed  Google Scholar 

  27. Ibanez P, Bonnet AM, Debarges B, Lohmann E, Tison F, Pollak P, et al. Causal relation between alpha-synuclein gene duplication and familial Parkinson’s disease. Lancet 2004, 364: 1169–1171.

    Article  CAS  PubMed  Google Scholar 

  28. Singleton AB, Farrer M, Johnson J, Singleton A, Hague S, Kachergus J, et al. alpha-Synuclein locus triplication causes Parkinson’s disease. Science 2003, 302: 841.

    Article  CAS  PubMed  Google Scholar 

  29. Miller DW, Hague SM, Clarimon J, Baptista M, Gwinn-Hardy K, Cookson MR, et al. Alpha-synuclein in blood and brain from familial Parkinson disease with SNCA locus triplication. Neurology 2004, 62: 1835–1838.

    Article  CAS  PubMed  Google Scholar 

  30. Kay DM, Stevens CF, Hamza TH, Montimurro JS, Zabetian CP, Factor SA, et al. A comprehensive analysis of deletions, multiplications, and copy number variations in PARK2. Neurology 2010, 75: 1189–1194.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Wang L, Nuytemans K, Bademci G, Jauregui C, Martin ER, Scott WK, et al. High-resolution survey in familial Parkinson disease genes reveals multiple independent copy number variation events in PARK2. Hum Mutat 2013, 34: 1071–1074.

    Article  CAS  PubMed  Google Scholar 

  32. Nuytemans K, Theuns J, Cruts M, Van Broeckhoven C. Genetic etiology of Parkinson disease associated with mutations in the SNCA, PARK2, PINK1, PARK7, and LRRK2 genes: a mutation update. Hum Mutat 2010, 31: 763–780.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Harraz MM, Dawson TM, Dawson VL. MicroRNAs in Parkinson’s disease. J Chem Neuroanat 2011, 42: 127–130.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Filatova EV, Alieva A, Shadrina MI, Slominsky PA. MicroRNAs: possible role in pathogenesis of Parkinson’s disease. Biochemistry (Mosc) 2012, 77: 813–819.

    Article  CAS  Google Scholar 

  35. Mouradian MM. MicroRNAs in Parkinson’s disease. Neurobiol Dis 2012, 46: 279–284.

    Article  CAS  PubMed  Google Scholar 

  36. Kim J, Inoue K, Ishii J, Vanti WB, Voronov SV, Murchison E et al. A MicroRNA feedback circuit in midbrain dopamine neurons. Science 2007, 317: 1220–1224.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lirong Jin or Chunjiu Zhong.

Additional information

These authors contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, N., Xiao, J., Zheng, Z. et al. Single-nucleotide polymorphisms and haplotypes of non-coding area in the CP gene are correlated with Parkinson’s disease. Neurosci. Bull. 31, 245–256 (2015). https://doi.org/10.1007/s12264-014-1512-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-014-1512-6

Keywords

Navigation