Skip to main content
Log in

Genetics and epigenetics of circadian rhythms and their potential roles in neuropsychiatric disorders

  • Review
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Circadian rhythm alterations have been implicated in multiple neuropsychiatric disorders, particularly those of sleep, addiction, anxiety, and mood. Circadian rhythms are known to be maintained by a set of classic clock genes that form complex mutual and self-regulatory loops. While many other genes showing rhythmic expression have been identified by genome-wide studies, their roles in circadian regulation remain largely unknown. In attempts to directly connect circadian rhythms with neuropsychiatric disorders, genetic studies have identified gene mutations associated with several rare sleep disorders or sleep-related traits. Other than that, genetic studies of circadian genes in psychiatric disorders have had limited success. As an important mediator of environmental factors and regulators of circadian rhythms, the epigenetic system may hold the key to the etiology or pathology of psychiatric disorders, their subtypes or endophenotypes. Epigenomic regulation of the circadian system and the related changes have not been thoroughly explored in the context of neuropsychiatric disorders. We argue for systematic investigation of the circadian system, particularly epigenetic regulation, and its involvement in neuropsychiatric disorders to improve our understanding of human behavior and disease etiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Honma K, Honma S, Wada T. Entrainment of human circadian rhythms by artificial bright light cycles. Experientia 1987, 43: 572–574.

    CAS  PubMed  Google Scholar 

  2. Buhr ED, Yoo SH, Takahashi JS. Temperature as a universal resetting cue for mammalian circadian oscillators. Science 2010, 330: 379–385.

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Sherman H, Genzer Y, Cohen R, Chapnik N, Madar Z, Froy O. Timed high-fat diet resets circadian metabolism and prevents obesity. FASEB J 2012, 26: 3493–3502.

    CAS  PubMed  Google Scholar 

  4. Abraham U, Saleh M, Kramer A. Odor is a time cue for circadian behavior. J Biol Rhythms 2013, 28: 26–37.

    CAS  PubMed  Google Scholar 

  5. Fuller CA, Hoban-Higgins TM, Griffin DW, Murakami DM. Influence of gravity on the circadian timing system. Adv Space Res 1994, 14: 399–408.

    CAS  PubMed  Google Scholar 

  6. Bailey SM, Udoh US, Young ME. Circadian regulation of metabolism. J Endocrinol 2014, 222: R75–R96.

    CAS  PubMed  Google Scholar 

  7. Morris CJ, Yang JN, Scheer FA. The impact of the circadian timing system on cardiovascular and metabolic function. Prog Brain Res 2012, 199: 337–358.

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Abe M, Herzog ED, Yamazaki S, Straume M, Tei H, Sakaki Y, et al. Circadian rhythms in isolated brain regions. J Neurosci 2002, 22: 350–356.

    CAS  PubMed  Google Scholar 

  9. Balsalobre A. Clock genes in mammalian peripheral tissues. Cell Tissue Res 2002, 309: 193–199.

    CAS  PubMed  Google Scholar 

  10. Leise TL, Wang CW, Gitis PJ, Welsh DK. Persistent cell-autonomous circadian oscillations in fibroblasts revealed by six-week single-cell imaging of PER2::LUC bioluminescence. PLoS One 2012, 7: e33334.

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Ruan GX, Allen GC, Yamazaki S, McMahon DG. An autonomous circadian clock in the inner mouse retina regulated by dopamine and GABA. PLoS Biol 2008, 6: e249.

    PubMed  Google Scholar 

  12. Hughes ME, Hong HK, Chong JL, Indacochea AA, Lee SS, Han M, et al. Brain-specific rescue of Clock reveals systemdriven transcriptional rhythms in peripheral tissue. PLoS Genet 2012, 8: e1002835.

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Wager-Smith K, Kay SA. Circadian rhythm genetics: from flies to mice to humans. Nat Genet 2000, 26: 23–27.

    CAS  PubMed  Google Scholar 

  14. Gachon F, Olela FF, Schaad O, Descombes P, Schibler U. The circadian PAR-domain basic leucine zipper transcription factors DBP, TEF, and HLF modulate basal and inducible xenobiotic detoxification. Cell Metab 2006, 4: 25–36.

    CAS  PubMed  Google Scholar 

  15. Mitsui S, Yamaguchi S, Matsuo T, Ishida Y, Okamura H. Antagonistic role of E4BP4 and PAR proteins in the circadian oscillatory mechanism. Genes Dev 2001, 15: 995–1006.

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Jetten AM, Kurebayashi S, Ueda E. The ROR nuclear orphan receptor subfamily: critical regulators of multiple biological processes. Prog Nucleic Acid Res Mol Biol 2001, 69: 205–247.

    CAS  PubMed  Google Scholar 

  17. Obrietan K, Impey S, Smith D, Athos J, Storm DR. Circadian regulation of cAMP response element-mediated gene expression in the suprachiasmatic nuclei. J Biol Chem 1999, 274: 17748–17756.

    CAS  PubMed  Google Scholar 

  18. Buhr ED, Takahashi JS. Molecular components of the Mammalian circadian clock. Handb Exp Pharmacol 2013, (217): 3–27.

    Google Scholar 

  19. Brown SA, Azzi A. Peripheral circadian oscillators in mammals. Handb Exp Pharmacol 2013, (217): 45–66.

    Google Scholar 

  20. Bozek K, Relogio A, Kielbasa SM, Heine M, Dame C, Kramer A, et al. Regulation of clock-controlled genes in mammals. PLoS One 2009, 4: e4882.

    PubMed Central  PubMed  Google Scholar 

  21. Kumaki Y, Ukai-Tadenuma M, Uno KD, Nishio J, Masumoto KH, Nagano M, et al. Analysis and synthesis of high-amplitude Cis-elements in the mammalian circadian clock. Proc Natl Acad Sci U S A 2008, 105: 14946–14951.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Bozek K, Kielbasa SM, Kramer A, Herzel H. Promoter analysis of Mammalian clock controlled genes. Genome Inform 2007, 18: 65–74.

    CAS  PubMed  Google Scholar 

  23. Akhtar RA, Reddy AB, Maywood ES, Clayton JD, King VM, Smith AG, et al. Circadian cycling of the mouse liver transcriptome, as revealed by cDNA microarray, is driven by the suprachiasmatic nucleus. Curr Biol 2002, 12: 540–550.

    CAS  PubMed  Google Scholar 

  24. Kornmann B, Preitner N, Rifat D, Fleury-Olela F, Schibler U. Analysis of circadian liver gene expression by ADDER, a highly sensitive method for the display of differentially expressed mRNAs. Nucleic Acids Res 2001, 29: E51.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Miller BH, McDearmon EL, Panda S, Hayes KR, Zhang J, Andrews JL, et al. Circadian and CLOCK-controlled regulation of the mouse transcriptome and cell proliferation. Proc Natl Acad Sci U S A 2007, 104: 3342–3347.

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Panda S, Antoch MP, Miller BH, Su AI, Schook AB, Straume M, et al. Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 2002, 109: 307–320.

    CAS  PubMed  Google Scholar 

  27. Storch KF, Lipan O, Leykin I, Viswanathan N, Davis FC, Wong WH, et al. Extensive and divergent circadian gene expression in liver and heart. Nature 2002, 417: 78–83.

    CAS  PubMed  Google Scholar 

  28. Storch KF, Paz C, Signorovitch J, Raviola E, Pawlyk B, Li T, et al. Intrinsic circadian clock of the mammalian retina: importance for retinal processing of visual information. Cell 2007, 130: 730–741.

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Leonardson AS, Zhu J, Chen Y, Wang K, Lamb JR, Reitman M, et al. The effect of food intake on gene expression in human peripheral blood. Hum Mol Genet 2010, 19: 159–169.

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Li JZ, Bunney BG, Meng F, Hagenauer MH, Walsh DM, Vawter MP, et al. Circadian patterns of gene expression in the human brain and disruption in major depressive disorder. Proc Natl Acad Sci U S A 2013, 110: 9950–9955.

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Lim AS, Srivastava GP, Yu L, Chibnik LB, Xu J, Buchman AS, et al. 24-hour rhythms of DNA methylation and their relation with rhythms of RNA expression in the human dorsolateral prefrontal cortex. PLoS Genet 2014, 10: e1004792.

    PubMed Central  PubMed  Google Scholar 

  32. Yan J, Wang H, Liu Y, Shao C. Analysis of gene regulatory networks in the mammalian circadian rhythm. PLoS Comput Biol 2008, 4: e1000193.

    PubMed Central  PubMed  Google Scholar 

  33. Goriki A, Hatanaka F, Myung J, Kim JK, Yoritaka T, Tanoue S, et al. A novel protein, CHRONO, functions as a core component of the mammalian circadian clock. PLoS Biol 2014, 12: e1001839

    PubMed Central  PubMed  Google Scholar 

  34. Anafi RC, Lee Y, Sato TK, Venkataraman A, Ramanathan C, Kavakli IH, Hughes ME, Baggs JE, Growe J, Liu AC, et al. Machine learning helps identify CHRONO as a circadian clock component. PLoS Biol 2014, 12: e1001840.

    PubMed Central  PubMed  Google Scholar 

  35. Gossan NC, Zhang F, Guo B, Jin D, Yoshitane H, Yao A, et al. The E3 ubiquitin ligase UBE3A is an integral component of the molecular circadian clock through regulating the BMAL1 transcription factor. Nucleic Acids Res 2014, 42: 5765–5775.

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Jouffe C, Cretenet G, Symul L, Martin E, Atger F, Naef F, et al. The circadian clock coordinates ribosome biogenesis. PLoS Biol 2013, 11: e1001455.

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Zhang EE, Liu AC, Hirota T, Miraglia LJ, Welch G, Pongsawakul PY, et al. A genome-wide RNAi screen for modifiers of the circadian clock in human cells. Cell 2009, 139: 199–210.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Podobed PS, Kirby GM, Martino TA. Circadian Proteomics and Its Unique Advantage for Discovery of Biomarkers of Heart Disease. In: Tsz Kwong Man, editor. Proteomics - Human Diseases and Protein Functions. InTech, 2012.

    Google Scholar 

  39. Mehra A, Baker CL, Loros JJ, Dunlap JC. Post-translational modifications in circadian rhythms. Trends Biochem Sci 2009, 34: 483–490.

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Moller M, Lund-Andersen C, Rovsing L, Sparre T, Bache N, Roepstorff P, et al. Proteomics of the photoneuroendocrine circadian system of the brain. Mass Spectrom Rev 2010, 29: 313–325.

    PubMed  Google Scholar 

  41. Mauvoisin D, Dayon L, Gachon F, Kussmann M. Proteomics and circadian rhythms: It’s all about signaling! Proteomics. 2014

    Google Scholar 

  42. Klei L, Reitz P, Miller M, Wood J, Maendel S, Gross D, et al. Heritability of morningness-eveningness and self-report sleep measures in a family-based sample of 521 hutterites. Chronobiol Int 2005, 22: 1041–1054.

    PubMed  Google Scholar 

  43. Katzenberg D, Young T, Finn L, Lin L, King DP, Takahashi JS, et al. A CLOCK polymorphism associated with human diurnal preference. Sleep 1998, 21: 569–576.

    CAS  PubMed  Google Scholar 

  44. Allebrandt KV, Amin N, Muller-Myhsok B, Esko T, Teder-Laving M, Azevedo RV, et al. A K(ATP) channel gene effect on sleep duration: from genome-wide association studies to function in Drosophila. Mol Psychiatry 2013, 18: 122–132.

    CAS  PubMed  Google Scholar 

  45. Silver R, Kriegsfeld LJ. Circadian rhythms have broad implications for understanding brain and behavior. Eur J Neurosci 2014, 39: 1866–1880.

    PubMed  Google Scholar 

  46. Huang W, Ramsey KM, Marcheva B, Bass J. Circadian rhythms, sleep, and metabolism. J Clin Invest 2011, 121: 2133–2141.

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Barclay JL, Husse J, Bode B, Naujokat N, Meyer-Kovac J, Schmid SM, et al. Circadian desynchrony promotes metabolic disruption in a mouse model of shiftwork. PLoS One 2012, 7: e37150.

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Maury E, Ramsey KM, Bass J. Circadian rhythms and metabolic syndrome: from experimental genetics to human disease. Circ Res 2010, 106: 447–462.

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Froy O. Metabolism and circadian rhythms—implications for obesity. Endocr Rev 2010, 31: 1–24.

    CAS  PubMed  Google Scholar 

  50. Nagorny C, Lyssenko V. Tired of diabetes genetics? Circadian rhythms and diabetes: the MTNR1B story? Curr Diab Rep 2012, 12: 667–672.

    CAS  PubMed  Google Scholar 

  51. Swanson GR, Burgess HJ, Keshavarzian A. Sleep disturbances and inflammatory bowel disease: a potential trigger for disease flare? Expert Rev Clin Immunol 2011, 7: 29–36.

    PubMed Central  PubMed  Google Scholar 

  52. Savvidis C, Koutsilieris M. Circadian rhythm disruption in cancer biology. Mol Med 2012, 18: 1249–1260.

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Levi F, Schibler U. Circadian rhythms: mechanisms and therapeutic implications. Annu Rev Pharmacol Toxicol 2007, 47: 593–628.

    CAS  PubMed  Google Scholar 

  54. Takeda N, Maemura K. Circadian clock and cardiovascular disease. J Cardiol 2011, 57: 249–256.

    PubMed  Google Scholar 

  55. Lamont EW, Coutu DL, Cermakian N, Boivin DB. Circadian rhythms and clock genes in psychotic disorders. Isr J Psychiatry Relat Sci 2010, 47: 27–35.

    PubMed  Google Scholar 

  56. Lamont EW, Legault-Coutu D, Cermakian N, Boivin DB. The role of circadian clock genes in mental disorders. Dialogues Clin Neurosci 2007, 9: 333–342.

    PubMed  Google Scholar 

  57. Wulff K, Gatti S, Wettstein JG, Foster RG. Sleep and circadian rhythm disruption in psychiatric and neurodegenerative disease. Nat Rev Neurosci 2010, 11: 589–599.

    CAS  PubMed  Google Scholar 

  58. Neckelmann D, Mykletun A, Dahl AA. Chronic insomnia as a risk factor for developing anxiety and depression. Sleep 2007, 30: 873–880.

    PubMed Central  PubMed  Google Scholar 

  59. Ford DE, Kamerow DB. Epidemiologic study of sleep disturbances and psychiatric disorders. An opportunity for prevention? JAMA 1989, 262: 1479–1484.

    CAS  PubMed  Google Scholar 

  60. Roane BM, Taylor DJ. Adolescent insomnia as a risk factor for early adult depression and substance abuse. Sleep 2008, 31: 1351–1356.

    PubMed Central  PubMed  Google Scholar 

  61. Shibley HL, Malcolm RJ, Veatch LM. Adolescents with insomnia and substance abuse: consequences and comorbidities SHIBLEY2008. J Psychiatr Pract 2008, 14: 146–153.

    PubMed  Google Scholar 

  62. Armstrong SM, Cassone VM, Chesworth MJ, Redman JR, Short RV. Synchronization of mammalian circadian rhythms by melatonin. J.Neural Transm.Suppl 1986, 21: 375–394.

    CAS  PubMed  Google Scholar 

  63. de BC, Guardiola-Lemaitre B, Mocaer E, Renard P, Munoz C, Millan MJ. Agomelatine, the first melatonergic antidepressant: discovery, characterization and development. Nat Rev Drug Discov 2010, 9: 628–642.

    Google Scholar 

  64. Kasper S, Hajak G, Wulff K, Hoogendijk WJ, Montejo AL, Smeraldi E, et al. Efficacy of the novel antidepressant agomelatine on the circadian rest-activity cycle and depressive and anxiety symptoms in patients with major depressive disorder: a randomized, double-blind comparison with sertraline. J Clin Psychiatry 2010, 71: 109–120.

    CAS  PubMed  Google Scholar 

  65. Bellet MM, Vawter MP, Bunney BG, Bunney WE, Sassone-Corsi P. Ketamine influences CLOCK:BMAL1 function leading to altered circadian gene expression. PLoS One 2011, 6: e23982.

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Li SX, Liu LJ, Xu LZ, Gao L, Wang XF, Zhang JT, et al. Diurnal alterations in circadian genes and peptides in major depressive disorder before and after escitalopram treatment. Psychoneuroendocrinology 2013, 38: 2789–2799.

    CAS  PubMed  Google Scholar 

  67. Roybal K, Theobold D, Graham A, DiNieri JA, Russo SJ, Krishnan V, et al. Mania-like behavior induced by disruption of CLOCK. Proc Natl Acad Sci U S A 2007, 104: 6406–6411.

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Oliver PL, Sobczyk MV, Maywood ES, Edwards B, Lee S, Livieratos A, et al. Disrupted circadian rhythms in a mouse model of schizophrenia. Curr Biol 2012, 22: 314–319.

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Gorwood P. Anxiety disorders and circadian rhythms. Medicographia 2012, 34: 289–294.

    Google Scholar 

  70. Wong CC, Schumann G. Integration of the circadian and stress systems: influence of neuropeptides and implications for alcohol consumption. J Neural Transm 2012, 119: 1111–1120.

    CAS  PubMed  Google Scholar 

  71. Landgraf D, McCarthy MJ, Welsh DK. Circadian clock and stress interactions in the molecular biology of psychiatric disorders. Curr Psychiatry Rep 2014, 16: 483.

    PubMed  Google Scholar 

  72. Doi M, Yujnovsky I, Hirayama J, Malerba M, Tirotta E, Sassone-Corsi P, et al. Impaired light masking in dopamine D2 receptor-null mice DOI2006. Nat Neurosci 2006, 9: 732–734.

    CAS  PubMed  Google Scholar 

  73. Clarke TK, Weiss AR, Ferarro TN, Kampman KM, Dackis CA, et al. The dopamine receptor D2 (DRD2) SNP rs1076560 is associated with opioid addiction. Ann Hum Genet 2014, 78: 33–39.

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Li MD, Burmeister M. New insights into the genetics of addiction. Nat Rev Genet 2009, 10: 225–231.

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Wang F, Simen A, Arias A, Lu QW, Zhang H. A large-scale meta-analysis of the association between the ANKK1/DRD2 Taq1A polymorphism and alcohol dependence. Hum Genet 2013, 132: 347–358.

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Olfson E, Bierut LJ. Convergence of genome-wide association and candidate gene studies for alcoholism. Alcohol Clin Exp Res 2012, 36: 2086–2094.

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Sipila T, Kananen L, Greco D, Donner J, Silander K, Terwilliger JD, et al. An association analysis of circadian genes in anxiety disorders. Biol Psychiatry 2010, 67: 1163–1170.

    PubMed  Google Scholar 

  78. Wing YK, Zhang J, Lam SP, Li SX, Tang NL, Lai KY, et al. Familial aggregation and heritability of insomnia in a community-based study. Sleep Med 2012, 13: 985–990.

    CAS  PubMed  Google Scholar 

  79. McCarren M, Goldberg J, Ramakrishnan V, Fabsitz R. Insomnia in Vietnam era veteran twins: influence of genes and combat experience. Sleep 1994, 17: 456–461.

    CAS  PubMed  Google Scholar 

  80. Watson NF, Goldberg J, Arguelles L, Buchwald D. Genetic and environmental influences on insomnia, daytime sleepiness, and obesity in twins. Sleep 2006, 29: 645–649.

    PubMed  Google Scholar 

  81. Palagini L, Biber K, Riemann D. The genetics of insomnia—evidence for epigenetic mechanisms? Sleep Med Rev 2014, 18: 225–235.

    PubMed  Google Scholar 

  82. Manfredi RL, Brennan RW, Cadieux RJ. Disorders of excessive sleepiness: narcolepsy and hypersomnia. Semin Neurol 1987, 7: 250–258.

    CAS  PubMed  Google Scholar 

  83. Buysse DJ. Insomnia. JAMA 2013, 309: 706–716.

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Longstreth WT, Jr., Koepsell TD, Ton TG, Hendrickson AF, van BG. The epidemiology of narcolepsy. Sleep 2007, 30: 13–26.

    PubMed  Google Scholar 

  85. Buhr A, Bianchi MT, Baur R, Courtet P, Pignay V, Boulenger JP, et al. Functional characterization of the new human GABA(A) receptor mutation beta3(R192H). Hum Genet 2002, 111: 154–160.

    CAS  PubMed  Google Scholar 

  86. Rye DB, Bliwise DL, Parker K, Trotti LM, Saini P, Fairley J, et al. Modulation of vigilance in the primary hypersomnias by endogenous enhancement of GABAA receptors. Sci.Transl. Med. 2012, 4: 161ra151.

    PubMed  Google Scholar 

  87. Wurtman RJ. Narcolepsy and the hypocretins. Metabolism 2006, 55(10 Suppl 2): S36–S39.

    CAS  PubMed  Google Scholar 

  88. Toh KL, Jones CR, He Y, Eide EJ, Hinz WA, Virshup DM, et al. An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science 2001, 291: 1040–1043.

    CAS  PubMed  Google Scholar 

  89. Xu Y, Padiath QS, Shapiro RE, Jones CR, Wu SC, Saigoh N, et al. Functional consequences of a CKIdelta mutation causing familial advanced sleep phase syndrome. Nature 2005, 434: 640–644.

    CAS  PubMed  Google Scholar 

  90. Punia S, Rumery KK, Yu EA, Lambert CM, Notkins AL, Weaver DR. Disruption of gene expression rhythms in mice lacking secretory vesicle proteins IA-2 and IA-2beta. Am J Physiol Endocrinol Metab 2012, 303: E762–E776.

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Zhang EE, Kay SA. Clocks not winding down: unravelling circadian networks. Nat Rev Mol Cell Biol 2010, 11: 764–776.

    CAS  PubMed  Google Scholar 

  92. Byrne EM, Gehrman PR, Medland SE, Nyholt DR, Heath AC, Madden PA, et al. A genome-wide association study of sleep habits and insomnia. Am J Med Genet B Neuropsychiatr Genet 2013, 162B: 439–451.

    PubMed  Google Scholar 

  93. Winkelmann J, Czamara D, Schormair B, Knauf F, Schulte EC, Trenkwalder C, et al. Genome-wide association study identifies novel restless legs syndrome susceptibility loci on 2p14 and 16q12.1. PLoS Genet 2011, 7: e1002171.

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Schormair B, Kemlink D, Roeske D, Eckstein G, Xiong L, Lichtner P, et al. PTPRD (protein tyrosine phosphatase receptor type delta) is associated with restless legs syndrome. Nat Genet 2008, 40: 946–948.

    CAS  PubMed  Google Scholar 

  95. Winkelmann J, Schormair B, Lichtner P, Ripke S, Xiong L, Jalilzadeh S, et al. Genome-wide association study of restless legs syndrome identifies common variants in three genomic regions. Nat Genet 2007, 39: 1000–1006.

    CAS  PubMed  Google Scholar 

  96. Stefansson H, Rye DB, Hicks A, Petursson H, Ingason A, Thorgeirsson TE, et al. A genetic risk factor for periodic limb movements in sleep. N Engl J Med 2007, 357: 639–647.

    CAS  PubMed  Google Scholar 

  97. Hallmayer J, Faraco J, Lin L, Hesselson S, Winkelmann J, Kawashima M, et al. Narcolepsy is strongly associated with the T-cell receptor alpha locus. Nat Genet 2009, 41: 708–711.

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Etain B, Jamain S, Milhiet V, Lajnef M, Boudebesse C, Dumaine A, et al. Association between circadian genes, bipolar disorders and chronotypes. Chronobiol Int 2014, 31: 807–814.

    CAS  PubMed  Google Scholar 

  99. Shi J, Wittke-Thompson JK, Badner JA, Hattori E, Potash JB, Willour VL, et al. Clock genes may influence bipolar disorder susceptibility and dysfunctional circadian rhythm. Am J Med Genet B Neuropsychiatr Genet 2008, 147B: 1047–1055.

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Kripke DF, Nievergelt CM, Tranah GJ, Murray SS, Rex KM, Grizas AP, et al. FMR1, circadian genes and depression: suggestive associations or false discovery? J Circadian Rhythms 2013, 11: 3.

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Johansson C, Willeit M, Smedh C, Ekholm J, Paunio T, Kieseppa T, et al. Circadian clock-related polymorphisms in seasonal affective disorder and their relevance to diurnal preference. Neuropsychopharmacology 2003, 28: 734–739.

    CAS  PubMed  Google Scholar 

  102. Partonen T, Treutlein J, Alpman A, Frank J, Johansson C, Depner M, et al. Three circadian clock genes Per2, Arntl, and Npas2 contribute to winter depression. Ann Med 2007, 39: 229–238.

    CAS  PubMed  Google Scholar 

  103. Kovanen L, Saarikoski ST, Haukka J, Pirkola S, Aromaa A, Lonnqvist J, et al. Circadian clock gene polymorphisms in alcohol use disorders and alcohol consumption. Alcohol Alcohol 2010, 45: 303–311.

    CAS  PubMed  Google Scholar 

  104. Levran O, Londono D, O’Hara K, Nielsen DA, Peles E, Rotrosen J, et al. Genetic susceptibility to heroin addiction: a candidate gene association study. Genes Brain Behav 2008, 7: 720–729.

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Mansour HA, Talkowski ME, Wood J, Chowdari KV, McClain L, Prasad K, et al. Association study of 21 circadian genes with bipolar I disorder, schizoaffective disorder, and schizophrenia. Bipolar Disord 2009, 11: 701–710.

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Soria V, Martinez-Amoros E, Escaramis G, Valero J, Perez-Egea R, Garcia C, et al. Differential association of circadian genes with mood disorders: CRY1 and NPAS2 are associated with unipolar major depression and CLOCK and VIP with bipolar disorder. Neuropsychopharmacology 2010, 35: 1279–1289.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Utge SJ, Soronen P, Loukola A, Kronholm E, Ollila HM, Pirkola S, et al. Systematic analysis of circadian genes in a population-based sample reveals association of TIMELESS with depression and sleep disturbance. PLoS One 2010, 5: e9259.

    PubMed Central  PubMed  Google Scholar 

  108. McCarthy MJ, Nievergelt CM, Kelsoe JR, Welsh DK. A survey of genomic studies supports association of circadian clock genes with bipolar disorder spectrum illnesses and lithium response. PLoS One 2012, 7: e32091.

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Wetherill L, Agrawal A, Kapoor M, Bertelsen S, Bierut LJ, Brooks A, et al. Association of substance dependence phenotypes in the COGA sample. Addict.Biol 2014

    Google Scholar 

  110. Schosser A, Butler AW, Uher R, Ng MY, Cohen-Woods S, Craddock N, et al. Genome-wide association study of co-occurring anxiety in major depression. World J Biol Psychiatry 2013, 14: 611–621.

    PubMed  Google Scholar 

  111. Lee SH, Ripke S, Neale BM, Faraone SV, Purcell SM, Perlis RH, et al. Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nat Genet 2013, 45: 984–994.

    CAS  PubMed  Google Scholar 

  112. Trzaskowski M, Eley TC, Davis OS, Doherty SJ, Hanscombe KB, Meaburn EL, et al. First genome-wide association study on anxiety-related behaviours in childhood. PLoS One 2013, 8: e58676.

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Chen X, Cho K, Singer BH, Zhang H. The nuclear transcription factor PKNOX2 is a candidate gene for substance dependence in European-origin women. PLoS One 2011, 6: e16002.

    PubMed Central  PubMed  Google Scholar 

  114. Etchegaray JP, Lee C, Wade PA, Reppert SM. Rhythmic histone acetylation underlies transcription in the mammalian circadian clock. Nature 2003, 421: 177–182.

    CAS  PubMed  Google Scholar 

  115. Doi M, Hirayama J, Sassone-Corsi P. Circadian regulator CLOCK is a histone acetyltransferase. Cell 2006, 125: 497–508.

    CAS  PubMed  Google Scholar 

  116. Hirayama J, Sahar S, Grimaldi B, Tamaru T, Takamatsu K, Nakahata Y, et al. CLOCK-mediated acetylation of BMAL1 controls circadian function. Nature 2007, 450: 1086–1090.

    CAS  PubMed  Google Scholar 

  117. Johansson AS, Brask J, Owe-Larsson B, Hetta J, Lundkvist GB. Valproic acid phase shifts the rhythmic expression of Period2::Luciferase. J Biol Rhythms 2011, 26: 541–551.

    CAS  PubMed  Google Scholar 

  118. Alenghat T, Meyers K, Mullican SE, Leitner K, iji-Adele A, Avila J, et al. Nuclear receptor corepressor and histone deacetylase 3 govern circadian metabolic physiology. Nature 2008, 456: 997–1000.

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Feng D, Liu T, Sun Z, Bugge A, Mullican SE, Alenghat T, et al. A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism. Science 2011, 331: 1315–1319.

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Asher G, Gatfield D, Stratmann M, Reinke H, Dibner C, Kreppel F, et al. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 2008, 134: 317–328.

    CAS  PubMed  Google Scholar 

  121. Gan L, Mucke L. Paths of convergence: sirtuins in aging and neurodegeneration. Neuron 2008, 58: 10–14.

    CAS  PubMed  Google Scholar 

  122. Chang HC, Guarente L. SIRT1 mediates central circadian control in the SCN by a mechanism that decays with aging. Cell 2013, 153: 1448–1460.

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Michan S, Li Y, Chou MM, Parrella E, Ge H, Long JM, et al. SIRT1 is essential for normal cognitive function and synaptic plasticity. J Neurosci 2010, 30: 9695–9707.

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Gao J, Wang WY, Mao YW, Graff J, Guan JS, Pan L, et al. A novel pathway regulates memory and plasticity via SIRT1 and miR-134. Nature 2010, 466: 1105–1109.

    CAS  PubMed Central  PubMed  Google Scholar 

  125. DiTacchio L, Le HD, Vollmers C, Hatori M, Witcher M, Secombe J, et al. Histone lysine demethylase JARID1a activates CLOCK-BMAL1 and influences the circadian clock. Science 2011, 333: 1881–1885.

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Bonsch D, Hothorn T, Krieglstein C, Koch M, Nehmer C, Lenz B, et al. Daily variations of homocysteine concentration may influence methylation of DNA in normal healthy individuals. Chronobiol Int 2007, 24: 315–326.

    PubMed  Google Scholar 

  127. Krishna SM, Dear A, Craig JM, Norman PE, Golledge J. The potential role of homocysteine mediated DNA methylation and associated epigenetic changes in abdominal aortic aneurysm formation. Atherosclerosis 2013, 228: 295–305.

    CAS  PubMed  Google Scholar 

  128. Azzi A, Dallmann R, Casserly A, Rehrauer H, Patrignani A, Maier B, et al. Circadian behavior is light-reprogrammed by plastic DNA methylation. Nat Neurosci 2014, 17: 377–382.

    CAS  PubMed  Google Scholar 

  129. Massart R, Freyburger M, Suderman M, Paquet J, El HJ, Belanger-Nelson E, et al. The genome-wide landscape of DNA methylation and hydroxymethylation in response to sleep deprivation impacts on synaptic plasticity genes. Transl Psychiatry 2014, 4: e347.

    CAS  PubMed Central  PubMed  Google Scholar 

  130. Chen R, D’Alessandro M, Lee C. miRNAs are required for generating a time delay critical for the circadian oscillator. Curr Biol 2013, 23: 1959–1968.

    CAS  PubMed  Google Scholar 

  131. Cheng HY, Papp JW, Varlamova O, Dziema H, Russell B, Curfman JP, et al. microRNA modulation of circadian-clock period and entrainment. Neuron 2007, 54: 813–829.

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Varez-Saavedra M, Antoun G, Yanagiya A, Oliva-Hernandez R, Cornejo-Palma D, Perez-Iratxeta C, et al. miRNA-132 orchestrates chromatin remodeling and translational control of the circadian clock. Hum Mol Genet 2011, 20: 731–751.

    Google Scholar 

  133. Coon SL, Munson PJ, Cherukuri PF, Sugden D, Rath MF, Moller M, et al. Circadian changes in long noncoding RNAs in the pineal gland. Proc Natl Acad Sci U S A 2012, 109: 13319–13324.

    CAS  PubMed Central  PubMed  Google Scholar 

  134. Xue Z, Ye Q, Anson SR, Yang J, Xiao G, Kowbel D, et al. Transcriptional interference by antisense RNA is required for circadian clock function. Nature 2014

    Google Scholar 

  135. Hughes ME, Grant GR, Paquin C, Qian J, Nitabach MN. Deep sequencing the circadianand diurnal transcriptome of Drosophila brain HUGHES2012. Genome Res 2012, 22: 1266–1281.

    CAS  PubMed Central  PubMed  Google Scholar 

  136. Johnsson P, Lipovich L, Grander D, Morris KV. Evolutionary conservation of long non-coding RNAs, sequence, structure, function. Biochim Biophys Acta 2014, 1840: 1063–1071.

    CAS  PubMed  Google Scholar 

  137. Pang KC, Frith MC, Mattick JS. Rapid evolution of noncoding RNAs: lack of conservation does not mean lack of function. Trends Genet 2006, 22: 1–5.

    CAS  PubMed  Google Scholar 

  138. Fustin JM, Doi M, Yamaguchi Y, Hida H, Nishimura S, Yoshida M, et al. RNA-methylation-dependent RNA processing controls the speed of the circadian clock. Cell 2013, 155: 793–806.

    CAS  PubMed  Google Scholar 

  139. Suter M, Bocock P, Showalter L, Hu M, Shope C, McKnight R, et al. Epigenomics: maternal high-fat diet exposure in utero disrupts peripheral circadian gene expression in nonhuman primates. FASEB J 2011, 25: 714–726.

    CAS  PubMed Central  PubMed  Google Scholar 

  140. Ciarleglio CM, Axley JC, Strauss BR, Gamble KL, McMahon DG. Perinatal photoperiod imprints the circadian clock CIARLEGLIO2011. Nat Neurosci 2011, 14: 25–27.

    CAS  PubMed Central  PubMed  Google Scholar 

  141. Chavez SL, McElroy SL, Bossert NL, De Jonge CJ, Rodriguez MV, Leong DE, et al. Comparison of epigenetic mediator expression and function in mouse and human embryonic blastomeres. Hum Mol Genet 2014, 23: 4970–4984.

    CAS  PubMed Central  PubMed  Google Scholar 

  142. Moller-Levet CS, Archer SN, Bucca G, Laing EE, Slak A, Kabiljo R, et al. Effects of insufficient sleep on circadian rhythmicity and expression amplitude of the human blood transcriptome. Proc Natl Acad Sci U S A 2013, 110: E1132–E1141.

    CAS  PubMed Central  PubMed  Google Scholar 

  143. Archer SN, Laing EE, Moller-Levet CS, van d, V, Bucca G, Lazar AS, et al. Mistimed sleep disrupts circadian regulation of the human transcriptome. Proc Natl Acad Sci U S A 2014, 111: E682–E691.

    CAS  PubMed Central  PubMed  Google Scholar 

  144. Bollati V, Baccarelli A, Sartori S, Tarantini L, Motta V, Rota F, et al. Epigenetic effects of shiftwork on blood DNA methylation. Chronobiol Int 2010, 27: 1093–1104.

    CAS  PubMed Central  PubMed  Google Scholar 

  145. Dykens E, Shah B. Psychiatric disorders in Prader-Willi syndrome: epidemiology and management. CNS Drugs 2003, 17: 167–178.

    PubMed  Google Scholar 

  146. Sahoo T, del GD, German JR, Shinawi M, Peters SU, Person RE, et al. Prader-Willi phenotype caused by paternal deficiency for the HBII-85 C/D box small nucleolar RNA cluster. Nat Genet 2008, 40: 719–721.

    CAS  PubMed Central  PubMed  Google Scholar 

  147. Powell WT, Coulson RL, Crary FK, Wong SS, Ach RA, Tsang P, et al. A Prader-Willi locus lncRNA cloud modulates diurnal genes and energy expenditure. Hum Mol Genet 2013, 22: 4318–4328.

    CAS  PubMed Central  PubMed  Google Scholar 

  148. Saus E, Soria V, Escaramis G, Vivarelli F, Crespo JM, Kagerbauer B, et al. Genetic variants and abnormal processing of pre-miR-182, a circadian clock modulator, in major depression patients with late insomnia. Hum Mol Genet 2010, 19: 4017–4025.

    CAS  PubMed  Google Scholar 

  149. Grennan KS, Chen C, Gershon ES, Liu C. Molecular network analysis enhances understanding of the biology of mental disorders. Bioessays 2014, 36: 606–616.

    CAS  PubMed  Google Scholar 

  150. Hayes KR, Baggs JE, Hogenesch JB. Circadian clocks are seeing the systems biology light. Genome Biol 2005, 6: 219.

    PubMed Central  PubMed  Google Scholar 

  151. Patel VR, Eckel-Mahan K, Sassone-Corsi P, Baldi P. CircadiOmics: integrating circadian genomics, transcriptomics, proteomics and metabolomics. Nat Methods 2012, 9: 772–773.

    CAS  PubMed  Google Scholar 

  152. Ukai H, Ueda HR. Systems biology of mammalian circadian clocks. Annu Rev Physiol 2010, 72: 579–603.

    CAS  PubMed  Google Scholar 

  153. McDonald MJ, Rosbash M. Microarray analysis and organization of circadian gene expression in Drosophila. Cell 2001, 107: 567–578.

    CAS  PubMed  Google Scholar 

  154. Ueda HR. A systems-biological approach in drug discovery for circadian rhythm disorders. Nihon Yakurigaku Zasshi 2002, 120: 37P–40P.

    PubMed  Google Scholar 

  155. Zvonic S, Ptitsyn AA, Conrad SA, Scott LK, Floyd ZE, Kilroy G, et al. Characterization of peripheral circadian clocks in adipose tissues. Diabetes 2006, 55: 962–970.

    CAS  PubMed  Google Scholar 

  156. Oster H, Damerow S, Hut RA, Eichele G. Transcriptional profiling in the adrenal gland reveals circadian regulation of hormone biosynthesis genes and nucleosome assembly genes. J Biol Rhythms 2006, 21: 350–361.

    CAS  PubMed  Google Scholar 

  157. Lemos DR, Downs JL, Urbanski HF. Twenty-four-hour rhythmic gene expression in the rhesus macaque adrenal gland. Mol Endocrinol 2006, 20: 1164–1176.

    CAS  PubMed  Google Scholar 

  158. Zvonic S, Ptitsyn AA, Kilroy G, Wu X, Conrad SA, Scott LK, et al. Circadian oscillation of gene expression in murine calvarial bone. J Bone Miner Res 2007, 22: 357–365.

    CAS  PubMed  Google Scholar 

  159. Yang S, Wang K, Valladares O, Hannenhalli S, Bucan M. Genome-wide expression profiling and bioinformatics analysis of diurnally regulated genes in the mouse prefrontal cortex. Genome Biol 2007, 8: R247.

    PubMed Central  PubMed  Google Scholar 

  160. Maret S, Dorsaz S, Gurcel L, Pradervand S, Petit B, Pfister C, et al. Homer1a is a core brain molecular correlate of sleep loss. Proc Natl Acad Sci U S A 2007, 104: 20090–20095.

    CAS  PubMed Central  PubMed  Google Scholar 

  161. Bray MS, Shaw CA, Moore MW, Garcia RA, Zanquetta MM, Durgan DJ, et al. Disruption of the circadian clock within the cardiomyocyte influences myocardial contractile function, metabolism, and gene expression. Am J Physiol Heart Circ Physiol 2008, 294: H1036–H1047.

    CAS  PubMed  Google Scholar 

  162. Kronfeld-Schor N, Einat H. Circadian rhythms and depression: human psychopathology and animal models. Neuropharmacology 2012, 62: 101–114.

    CAS  PubMed  Google Scholar 

  163. Mendlewicz J, Kerkhofs M. Sleep electroencephalography in depressive illness. A collaborative study by the World Health Organization. Br J Psychiatry 1991, 159: 505–509.

    CAS  PubMed  Google Scholar 

  164. Kupfer DJ. REM latency: a psychobiologic marker for primary depressive disease. Biol Psychiatry 1976, 11: 159–174.

    CAS  PubMed  Google Scholar 

  165. Emens J, Lewy A, Kinzie JM, Arntz D, Rough J. Circadian misalignment in major depressive disorder. Psychiatry Res 2009, 168: 259–261.

    PubMed  Google Scholar 

  166. Robillard R, Naismith SL, Hickie IB. Recent advances in sleep-wake cycle and biological rhythms in bipolar disorder. Curr Psychiatry Rep 2013, 15: 402.

    PubMed  Google Scholar 

  167. Plante DT, Winkelman JW. Sleep disturbance in bipolar disorder: therapeutic implications. Am J Psychiatry 2008, 165: 830–843.

    PubMed  Google Scholar 

  168. Monk TH, Burk LR, Klein MH, Kupfer DJ, Soehner AM, Essex MJ. Behavioral circadian regularity at age 1 month predicts anxiety levels during school-age years. Psychiatry Res 2010, 178: 370–373.

    PubMed Central  PubMed  Google Scholar 

  169. Shibley HL, Malcolm RJ, Veatch LM. Adolescents with insomnia and substance abuse: consequences and comorbidities SHIBLEY2008. J Psychiatr Pract 2008, 14: 146–153.

    PubMed  Google Scholar 

  170. Lam RW, Levitan RD. Pathophysiology of seasonal affective disorder: a review. J Psychiatry Neurosci 2000, 25: 469–480.

    CAS  PubMed Central  PubMed  Google Scholar 

  171. Leibenluft E, Wehr TA. Is sleep deprivation useful in the treatment of depression? Am J Psychiatry 1992, 149: 159–168.

    CAS  PubMed  Google Scholar 

  172. Colombo C, Benedetti F, Barbini B, Campori E, Smeraldi E. Rate of switch from depression into mania after therapeutic sleep deprivation in bipolar depression. Psychiatry Res 1999, 86: 267–270.

    CAS  PubMed  Google Scholar 

  173. Iwahana E, Hamada T, Uchida A, Shibata S. Differential effect of lithium on the circadian oscillator in young and old hamsters. Biochem Biophys Res Commun. 2007, 354: 752–756.

    CAS  PubMed  Google Scholar 

  174. McCarthy MJ, Wei H, Marnoy Z, Darvish RM, McPhie DL, Cohen BM, et al. Genetic and clinical factors predict lithium’s effects on PER2 gene expression rhythms in cells from bipolar disorder patients. Transl Psychiatry 2013, 3: e318.

    CAS  PubMed Central  PubMed  Google Scholar 

  175. Osland TM, Ferno J, Havik B, Heuch I, Ruoff P, Laerum OD, et al. Lithium differentially affects clock gene expression in serum-shocked NIH-3T3 cells. J Psychopharmacol 2011, 25: 924–933.

    CAS  PubMed  Google Scholar 

  176. Demyttenaere K. Agomelatine in treating generalized anxiety disorder. Expert Opin Investig Drugs 2014, 23: 857–864.

    CAS  PubMed  Google Scholar 

  177. Stein DJ, Ahokas A, Marquez MS, Hoschl C, Oh KS, et al. Agomelatine in generalized anxiety disorder: an active comparator and placebo-controlled study. J Clin Psychiatry 2014, 75: 362–368.

    CAS  PubMed  Google Scholar 

  178. Mansour HA, Wood J, Chowdari KV, Dayal M, Thase ME, Kupfer DJ, et al. Circadian phase variation in bipolar I disorder. Chronobiol Int 2005, 22: 571–584.

    PubMed  Google Scholar 

  179. Wood J, Birmaher B, Axelson D, Ehmann M, Kalas C, Monk K, et al. Replicable differences in preferred circadian phase between bipolar disorder patients and control individuals. Psychiatry Res 2009, 166(2–3): 201–209.

    PubMed Central  PubMed  Google Scholar 

  180. Broms U, Pennanen M, Patja K, Ollila H, Korhonen T, Kankaanpaa A, et al. Diurnal Evening Type is Associated with Current Smoking, Nicotine Dependence and Nicotine Intake in the Population Based National FINRISK 2007 Study. J Addict Res Ther 2012, S2

    Google Scholar 

  181. Adan A. Chronotype and personality factors in the daily consumption of alcohol and psychostimulants. Addiction 1994, 89: 455–462.

    CAS  PubMed  Google Scholar 

  182. Malkoff-Schwartz S, Frank E, Anderson BP, Hlastala SA, Luther JF, Sherrill JT, et al. Social rhythm disruption and stressful life events in the onset of bipolar and unipolar episodes. Psychol Med 2000, 30: 1005–1016.

    CAS  PubMed  Google Scholar 

  183. Ashman SB, Monk TH, Kupfer DJ, Clark CH, Myers FS, Frank E, Leibenluft. Relationship between social rhythms and mood in patients with rapid cycling bipolar disorder. Psychiatry Res 1999, 86: 1–8.

    CAS  PubMed  Google Scholar 

  184. Malkoff-Schwartz S, Frank E, Anderson B, Sherrill JT, Siegel L, Patterson D, et al. Stressful life events and social rhythm disruption in the onset of manic and depressive bipolar episodes: a preliminary investigation. Arch Gen Psychiatry 1998, 55: 702–707.

    CAS  PubMed  Google Scholar 

  185. Shear MK, Randall J, Monk TH, Ritenour A, Tu X, Frank E, et al. Social rhythm in anxiety disorder patients. Anxiety 1994, 1: 90–95.

    CAS  PubMed  Google Scholar 

  186. Cassidy F, Carroll BJ. Seasonal variation of mixed and pure episodes of bipolar disorder. J Affect Disord 2002, 68: 25–31.

    PubMed  Google Scholar 

  187. Silverstone T, Romans S, Hunt N, McPherson H. Is there a seasonal pattern of relapse in bipolar affective disorders? A dual northern and southern hemisphere cohort study. Br J Psychiatry 1995, 167: 58–60.

    CAS  PubMed  Google Scholar 

  188. Sandyk R, Kanofsky JD. Cocaine addiction: relationship to seasonal affective disorder. Int J Neurosci 1992, 64(1–4): 195–201.

    CAS  PubMed  Google Scholar 

  189. Nurnberger JI, Jr., Adkins S, Lahiri DK, Mayeda A, Hu K, Lewy A, et al. Melatonin suppression by light in euthymic bipolar and unipolar patients. Arch Gen Psychiatry 2000, 57: 572–579.

    CAS  PubMed  Google Scholar 

  190. Lewy AJ, Nurnberger JI, Jr., Wehr TA, Pack D, Becker LE, Powell RL, et al. Supersensitivity to light: possible trait marker for manic-depressive illness. Am J Psychiatry 1985, 142: 725–727.

    CAS  PubMed  Google Scholar 

  191. Crofford LJ, Young EA, Engleberg NC, Korszun A, Brucksch CB, McClure LA, et al. Basal circadian and pulsatile ACTH and cortisol secretion in patients with fibromyalgia and/or chronic fatigue syndrome. Brain Behav Immun 2004, 18: 314–325.

    CAS  PubMed  Google Scholar 

  192. Lovallo WR. Cortisol secretion patterns in addiction and addiction risk. Int J Psychophysiol 2006, 59: 195–202.

    PubMed Central  PubMed  Google Scholar 

  193. Gonzalez R. The relationship between bipolar disorder and biological rhythms. J Clin Psychiatry 2014, 75: e323–e331.

    PubMed  Google Scholar 

  194. Sipila T, Kananen L, Greco D, Donner J, Silander K, Terwilliger JD, et al. An association analysis of circadian genes in anxiety disorders. Biol Psychiatry 2010, 67: 1163–1170.

    PubMed  Google Scholar 

  195. Blomeyer D, Buchmann AF, Lascorz J, Zimmermann US, Esser G, Desrivieres S, et al. Association of PER2 genotype and stressful life events with alcohol drinking in young adults. PLoS One 2013, 8: e59136.

    CAS  PubMed Central  PubMed  Google Scholar 

  196. Shumay E, Fowler JS, Wang GJ, Logan J, ia-Klein N, Goldstein RZ, et al. Repeat variation in the human PER2 gene as a new genetic marker associated with cocaine addiction and brain dopamine D2 receptor availability. Transl Psychiatry 2012, 2: e86.

    CAS  PubMed Central  PubMed  Google Scholar 

  197. Dong L, Bilbao A, Laucht M, Henriksson R, Yakovleva T, Ridinger M, et al. Effects of the circadian rhythm gene period 1 (per1) on psychosocial stress-induced alcohol drinking. Am J Psychiatry 2011, 168: 1090–1098.

    PubMed  Google Scholar 

  198. Comasco E, Nordquist N, Gokturk C, Aslund C, Hallman J, Oreland L, et al. The clock gene PER2 and sleep problems: association with alcohol consumption among Swedish adolescents. Ups J Med Sci 2010, 115: 41–48.

    PubMed Central  PubMed  Google Scholar 

  199. Malison RT, Kranzler HR, Yang BZ, Gelernter J. Human clock, PER1 and PER2 polymorphisms: lack of association with cocaine dependence susceptibility and cocaine-induced paranoia. Psychiatr Genet 2006, 16: 245–249.

    PubMed  Google Scholar 

  200. Spanagel R, Pendyala G, Abarca C, Zghoul T, Sanchis-Segura C, Magnone MC, et al. The clock gene Per2 influences the glutamatergic system and modulates alcohol consumption. Nat Med 2005, 11: 35–42.

    CAS  PubMed  Google Scholar 

  201. Chung S, Lee EJ, Yun S, Choe HK, Park SB, Son HJ, et al. Impact of circadian nuclear receptor REV-ERBalpha on midbrain dopamine production and mood regulation. Cell 2014, 157: 858–868.

    CAS  PubMed  Google Scholar 

  202. Spencer S, Falcon E, Kumar J, Krishnan V, Mukherjee S, Birnbaum SG, et al. Circadian genes Period 1 and Period 2 in the nucleus accumbens regulate anxiety-related behavior. Eur J Neurosci 2013, 37: 242–250.

    PubMed Central  PubMed  Google Scholar 

  203. Logan RW, Williams WP, III, McClung CA. Circadian rhythms and addiction: mechanistic insights and future directions. Behav.Neurosci. 2014, 128: 387–412.

    CAS  PubMed  Google Scholar 

  204. Padiath QS, Paranjpe D, Jain S, Sharma VK. Glycogen synthase kinase 3beta as a likely target for the action of lithium on circadian clocks. Chronobiol Int 2004, 21: 43–55.

    CAS  PubMed  Google Scholar 

  205. Akiyama M, Kirihara T, Takahashi S, Minami Y, Yoshinobu Y, Moriya T, et al. Modulation of mPer1 gene expression by anxiolytic drugs in mouse cerebellum. Br J Pharmacol 1999, 128: 1616–1622.

    CAS  PubMed Central  PubMed  Google Scholar 

  206. Honma K, Honma S. The SCN-independent clocks, methamphetamine and food restriction. Eur J Neurosci 2009, 30: 1707–1717.

    PubMed  Google Scholar 

  207. Gouin JP, Connors J, Kiecolt-Glaser JK, Glaser R, Malarkey WB, Atkinson C, et al. Altered expression of circadian rhythm genes among individuals with a history of depression. J Affect Disord 2010, 126: 161–166.

    PubMed Central  PubMed  Google Scholar 

  208. Zambon AC, McDearmon EL, Salomonis N, Vranizan KM, Johansen KL, Adey D, et al. Time- and exercise-dependent gene regulation in human skeletal muscle. Genome Biol 2003, 4: R61.

    PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunyu Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Chung, M. Genetics and epigenetics of circadian rhythms and their potential roles in neuropsychiatric disorders. Neurosci. Bull. 31, 141–159 (2015). https://doi.org/10.1007/s12264-014-1495-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-014-1495-3

Keywords

Navigation