Skip to main content
Log in

The myelin membrane-associated enzyme 2′,3′-cyclic nucleotide 3′-phosphodiesterase: on a highway to structure and function

  • Review
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

The membrane-anchored myelin enzyme 2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNPase) was discovered in the early 1960s and has since then troubled scientists with its peculiar catalytic activity and high expression levels in the central nervous system. Despite decades of research, the actual physiological relevance of CNPase has only recently begun to unravel. In addition to a role in myelination, CNPase is also involved in local adenosine production in traumatic brain injury and possibly has a regulatory function in mitochondrial membrane permeabilization. Although research focusing on the CNPase phosphodiesterase activity has been helpful, several open questions concerning the protein function in vivo remain unanswered. This review is focused on past research on CNPase, especially in the fields of structural biology and enzymology, and outlines the current understanding regarding the biochemical and physiological significance of CNPase, providing ideas and directions for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hartline DK. What is myelin? Neuron Glia Biol 2008, 4: 153–163.

    Article  PubMed  Google Scholar 

  2. Aggarwal S, Yurlova L, Simons M. Central nervous system myelin: Structure, synthesis and assembly. Trends Cell Biol 2011, 21: 585–593.

    Article  CAS  PubMed  Google Scholar 

  3. Aggarwal S, Yurlova L, Snaidero N, Reetz C, Frey S, Zimmermann J, et al. A size barrier limits protein diffusion at the cell surface to generate lipid-rich myelin-membrane sheets. Dev Cell 2011, 21: 445–456.

    Article  CAS  PubMed  Google Scholar 

  4. de Monasterio-Schrader P, Jahn O, Tenzer S, Wichert SP, Patzig J, Werner HB. Systematic approaches to central nervous system myelin. Cell Mol Life Sci 2012, 69: 2879–2894.

    Article  CAS  PubMed  Google Scholar 

  5. Kursula P. Structural properties of proteins specific to the myelin sheath. Amino Acids 2008, 34: 175–185.

    Article  CAS  PubMed  Google Scholar 

  6. Quarles R. Myelin sheaths: Glycoproteins involved in their formation, maintenance and degeneration. Cell Mol Life Sci 2002, 59: 1851–1871.

    Article  CAS  PubMed  Google Scholar 

  7. Mirshafiey A, Kianiaslani M. Autoantigens and autoantibodies in multiple sclerosis. Iran J Allergy Asthma Immunol 2013, 12: 292–303.

    CAS  PubMed  Google Scholar 

  8. Li J, Parker B, Martyn C, Natarajan C, Guo J. The PMP22 gene and its related diseases. Mol Neurobiol 2013, 47: 673–698.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Yamamoto T, Shimojima K. Pelizaeus-Merzbacher disease as a chromosomal disorder. Congenit Anom (Kyoto) 2013, 53: 3–8.

    Article  CAS  Google Scholar 

  10. Hobson GM, Garbern JY. Pelizaeus-Merzbacher disease, Pelizaeus-Merzbacher-like disease 1, and related hypomyelinating disorders. Semin Neurol 2012, 32: 62–67.

    Article  PubMed  Google Scholar 

  11. Rösener M, Muraro PA, Riethmüller A, Kalbus M, Sappler G, Thompson RJ, et al. 2′,3′-cyclic nucleotide 3′-phosphodiesterase: A novel candidate autoantigen in demyelinating diseases. J Neuroimmunol 1997, 75: 28–34.

    Article  PubMed  Google Scholar 

  12. Drummond GI, Iyer NT, Keith J. Hydrolysis of ribonucleoside 2′,3′-cyclic phosphates by a diesterase from brain. J Biol Chem 1962, 237: 3535–3539

    Google Scholar 

  13. Drummond GI, Perrott-Yee S. Enzymatic hydrolysis of adenosine 3′,5′-phosphoric acid. J Biol Chem 1961, 236: 1126–1129.

    CAS  PubMed  Google Scholar 

  14. Trapp BD, Bernier L, Andrews SB, Colman DR. Cellular and subcellular distribution of 2′,3′-cyclic nucleotide 3′-phosphodiesterase and its mRNA in the rat central nervous system. J Neurochem 1988, 51: 859–868.

    Article  CAS  PubMed  Google Scholar 

  15. Radtke C, Sasaki M, Lankford KL, Gallo V, Kocsis JD. CNPase expression in olfactory ensheathing cells. J Biomed Biotechnol 2011, 2011: 608496.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Monoh K, Kurihara T, Takahashi Y, Ichikawa T, Kumanishi T, Hayashi S, et al. Structure, expression and chromosomal localization of the gene encoding human 2′,3′-cyclicnucleotide 3′-phosphodiesterase. Gene 1993, 129: 297–301.

    Article  CAS  PubMed  Google Scholar 

  17. Kurihara T, Monoh K, Sakimura K, Takahashi Y. Alternative splicing of mouse-brain 2′,3′-cyclic-nucleotide 3′-phosphodiesterase messenger-RNA. Biochem Biophys Res Commun 1990, 170: 1074–1081.

    Article  CAS  PubMed  Google Scholar 

  18. Kurihara T, Tohyama Y, Yamamoto J, Kanamatsu T, Watanabe R, Kitajima S. Origin of brain 2′,3′-cyclic-nucleotide 3′-phosphodiesterase doublet. Neurosci Lett 1992, 138: 49–52.

    Article  CAS  PubMed  Google Scholar 

  19. Douglas AJ, Fox MF, Abbott CM, Hinks LJ, Sharpe G, Povey S, et al. Structure and chromosomal localization of the human 2′,3′-cyclic nucleotide 3′-phosphodiesterase gene. Ann Hum Genet 1992, 56: 243–254.

    Article  CAS  PubMed  Google Scholar 

  20. O’Neill R, Minuk J, Cox M, Braun P, Gravel M. CNP2 mRNA directs synthesis of both CNP1 and CNP2 polypeptides. J Neurosci Res 1997, 50: 248–257.

    Article  PubMed  Google Scholar 

  21. Gravel M, Gao E, Hervouet-Zeiber C, Parsons V, Braun P. Transcriptional regulation of 2′,3′-cyclic nucleotide 3′-phosphodiesterase gene expression by cyclic AMP in C6 cells. J Neurochem 2000, 75: 1940–1950.

    Article  CAS  PubMed  Google Scholar 

  22. Lee J, O’Neill R, Park M, Gravel M, Braun P. Mitochondrial localization of CNP2 is regulated by phosphorylation of the N-terminal targeting signal by PKC: Implications of a mitochondrial function for CNP2 in glial and non-glial cells. Mol Cell Neurosci 2006, 31: 446–462.

    Article  CAS  PubMed  Google Scholar 

  23. Gravel M, DeAngelis D, Braun PE. Molecular-cloning and characterization of rat-brain 2′,3′-cyclic nucleotide 3′-phosphodiesterase isoform-2. J Neurosci Res 1994, 38: 243–247.

    Article  CAS  PubMed  Google Scholar 

  24. Toyama BH, Savas JN, Park SK, Harris MS, Ingolia NT, Yates JR 3rd, et al. Identification of long-lived proteins reveals exceptional stability of essential cellular structures. Cell 2013, 154: 971–982.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Stingo S, Masullo M, Polverini E, Laezza C, Ruggiero I, Arcone R, et al. The N-terminal domain of 2′,3′-cyclic nucleotide 3′-phosphodiesterase harbors a GTP/ATP binding site. Chem Biol Drug Des 2007, 70: 502–510.

    Article  CAS  PubMed  Google Scholar 

  26. Kursula P. The current status of structural studies on proteins of the myelin sheath (review). Int J Mol Med 2001, 8: 475–479.

    CAS  PubMed  Google Scholar 

  27. Myllykoski M, Baumgärtel P, Kursula P. Conformations of peptides derived from myelin-specific proteins in membranemimetic conditions probed by synchrotron radiation CD spectroscopy. Amino Acids 2012, 42: 1467–1474.

    Article  CAS  PubMed  Google Scholar 

  28. Lee J, Gravel M, Gao E, O’Neill R, Braun P. Identification of essential residues in 2′,3′-cyclic nucleotide 3′-phosphodiesterase — chemical modification and site-directed mutagenesis to investigate the role of cysteine and histidine residues in enzymatic activity. J Biol Chem 2001, 276: 14804–14813.

    Article  CAS  PubMed  Google Scholar 

  29. Kozlov G, Lee J, Elias D, Gravel M, Gutierrez P, Ekiel I, et al. Structural evidence that brain cyclic nucleotide phosphodiesterase is a member of the 2H phosphodiesterase superfamily. J Biol Chem 2003, 278: 46021–46028.

    Article  CAS  PubMed  Google Scholar 

  30. Myllykoski M, Raasakka A, Lehtimäki M, Han H, Kursula I, Kursula P. Crystallographic analysis of the reaction cycle of 2′,3′-cyclic nucleotide 3′-phosphodiesterase, a unique member of the 2H phosphoesterase family. J Mol Biol 2013, 425: 4307–432

    Article  CAS  PubMed  Google Scholar 

  31. Verrier JD, Jackson TC, Bansal R, Kochanek PM, Puccio AM, Okonkwo DO, et al. The brain in vivo expresses the 2′,3′-cAMP-adenosine pathway. J Neurochem 2012, 122: 115–125.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Verrier J, Jackson T, Bansal R, Kochanek PM, Jackson E. Oligodendrocyte 2′,3′-cyclic nucleotide 3′-phosphodiesterase participates in localized adenosine production: Possible role in traumatic brain injury. J Neurotrauma 2012, 29: A168–A169.

    Article  Google Scholar 

  33. Lappe-Siefke C, Goebbels S, Gravel M, Nicksch E, Lee J, Braun PE, et al. Disruption of Cnp1 uncouples oligodendroglial functions in axonal support and myelination. Nat Genet 2003, 33: 366–374.

    Article  CAS  PubMed  Google Scholar 

  34. Gravel M, Peterson J, Yong VW, Kottis V, Trapp B, Braun PE. Overexpression of 2′,3′-cyclic nucleotide 3′-phosphodiesterase in transgenic mice alters oligodendrocyte development and produces aberrant myelination. Mol Cell Neurosci 1996, 7: 453–466.

    Article  CAS  PubMed  Google Scholar 

  35. Yin X, Peterson J, Gravel M, Braun P, Trapp B. CNP overexpression induces aberrant oligodendrocyte membranes and inhibits MBP accumulation and myelin compaction. J Neurosci Res 1997, 50: 238–247.

    Article  CAS  PubMed  Google Scholar 

  36. Hinman JD, Chen C, Oh S, Hollander W, Abraham CR. Age-dependent accumulation of ubiquitinated 2′,3′-cyclic nucleotide 3′-phosphodiesterase in myelin lipid rafts. Glia 2008, 56: 118–133.

    Article  PubMed  Google Scholar 

  37. Lee J, Gravel M, Zhang R, Thibault P, Braun P. Process outgrowth in oligodendrocytes is mediated by CNP, a novel microtubule assembly myelin protein. J Cell Biol 2005, 170: 661–673.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Walsh MJ, Murray JM. Dual implication of 2′,3′-cyclic nucleotide 3′ phosphodiesterase as major autoantigen and C3 complement-binding protein in the the pathogenesis of multiple sclerosis. J Clin Invest 1998, 101: 1923–1931.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Muraro PA, Kalbus M, Afshar G, McFarland HF, Martin R. T cell response to 2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNPase) in multiple sclerosis patients. J Neuroimmunol 2002, 130: 233–242.

    Article  CAS  PubMed  Google Scholar 

  40. Lovato L, Cianti R, Gini B, Marconi S, Bianchi L, Armini A, et al. Transketolase and 2′,3′-cyclic-nucleotide 3′-phosphodiesterase type I isoforms are specifically recognized by IgG autoantibodies in multiple sclerosis patients. Mol Cell Proteomics 2008, 7: 2337–2349.

    Article  CAS  PubMed  Google Scholar 

  41. Vlkolinsky R, Cairns N, Fountoulakis M, Lubec G. Decreased brain levels of 2′,3′-cyclic nucleotide-3′-phosphodiesterase in Down syndrome and Alzheimer’s disease. Neurobiol Aging 2001, 22: 547–553.

    Article  CAS  PubMed  Google Scholar 

  42. Hagemeyer N, Goebbels S, Papiol S, Kästner A, Hofer S, Begemann M, et al. A myelin gene causative of a catatonia-depression syndrome upon aging. EMBO Mol Med 2012, 4: 528–539.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Peirce TR, Bray NJ, Williams NM, Haroutunian V, Buxbaum J, Buckland P, et al. Convergent functional genomics, association and linkage analysis suggests 2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNP) as a potential susceptibility gene for schizophrenia. Am J Med Genet, B Neuropsychiatr Genet 2004, 130B: 81.

    Google Scholar 

  44. Peirce TR, Bray NJ, Williams NM, Norton N, Moskvina V, Preece A, et al. Convergent evidence for 2′,3′-cyclic nucleotide 3′-phosphodiesterase as a possible susceptibility gene for schizophrenia. Arch Gen Psychiatry 2006, 63: 18–24.

    Article  CAS  PubMed  Google Scholar 

  45. Georgieva L, Moskvina V, Peirce T, Norton N, Bray NJ, Jones L, et al. Convergent evidence that oligodendrocyte lineage transcription factor 2 (OLIG2) and interacting genes influence susceptibility to schizophrenia. Proc Natl Acad Sci U S A 2006, 103: 12469–12474.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Dracheva S, Davis K, Chin B, Woo D, Schmeidler J, Haroutunian V. Myelin-associated mRNA and protein expression deficits in the anterior cingulate cortex and hippocampus in elderly schizophrenia patients. Neurobiol Dis 2006, 21: 531–540.

    Article  CAS  PubMed  Google Scholar 

  47. Barley K, Dracheva S, Byne W. Subcortical oligodendrocyte- and astrocyte-associated gene expression in subjects with schizophrenia, major depression and bipolar disorder. Schizophr Res 2009, 112: 54–64.

    Article  PubMed  Google Scholar 

  48. Usui H, Takahashi N, Saito S, Ishihara R, Aoyama N, Ikeda M, et al. The 2′,3′-cyclic nucleotide 3′-phosphodiesterase and oligodendrocyte lineage transcription factor 2 genes do not appear to be associated with schizophrenia in the Japanese population. Schizophr Res 2006, 88: 245–250.

    Article  PubMed  Google Scholar 

  49. Donohoe G, Morris D, Allot E, Clarke S, Quinn E, Robertson I, et al. Olig-2 and CNP are associated with schizophrenia risk and variance in general cognition and memory function in an Irish sample. Biol Psychiatry 2007, 61(8): 189S.

    Google Scholar 

  50. Le-Niculescu H, Balaraman Y, Patel S, Tan J, Sidhu K, Jerome RE, et al. Towards understanding the schizophrenia code: An expanded convergent functional genomics approach. Am J Med Genet B Neuropsychiatr Genet 2007, 144B: 129–158.

    Article  CAS  PubMed  Google Scholar 

  51. Tang F, Qu M, Wang L, Ruan Y, Lu T, Zhang H, et al. Casecontrol association study of the 2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNP) gene and schizophrenia in the Han Chinese population. Neurosci Lett 2007, 416: 113–116.

    Article  CAS  PubMed  Google Scholar 

  52. Voineskos AN, de Luca V, Bulgin NL, van Adrichem Q, Shaikh S, Lang DJ, et al. A family-based association study of the myelin-associated glycoprotein and 2′,3′-cyclic nucleotide 3′-phosphodiesterase genes with schizophrenia. Psychiatr Genet 2008, 18: 143–146.

    Article  PubMed  Google Scholar 

  53. Voineskos AN, Bulgin N, von Adrichem Q, Wong A, Lang D, Honer W et al. MAG gene but not CNP gene associated with schizophrenia. Biol Psychiatry 2007, 61: S209.

    Google Scholar 

  54. Mitkus SN, Hyde TM, Vakkalanka R, Kolachana B, Weinberger DR, Kleinman JE, et al. Expression of oligodendrocyte-associated genes in dorsolateral prefrontal cortex of patients with schizophrenia. Schizophr Res 2008, 98: 129–138.

    Article  PubMed Central  PubMed  Google Scholar 

  55. Verrier JD, Exo JL, Jackson TC, Ren J, Gillespie DG, Dubey RK, et al. Expression of the 2′,3′-cAMP-adenosine pathway in astrocytes and microglia. J Neurochem 2011, 118: 979–987.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Verrier JD, Jackson TC, Gillespie DG, Janesko-Feldman K, Bansal R, Goebbels S, et al. Role of CNPase in the oligodendrocytic extracellular 2′,3′-cAMP-adenosine pathway. Glia 2013, 61: 1595–1606

    Article  PubMed Central  PubMed  Google Scholar 

  57. Jackson EK. The 2′,3′-cAMP-adenosine pathway. A Am J Physiol Renal Physiol 2011, 301: 1160–1167.

    Article  Google Scholar 

  58. Thompson JE, Venegas FD, Raines RT. Energetics of catalysis by ribonucleases: Fate of the 2′,3′-cyclic phosphodiester intermediate. Biochemistry 1994, 33: 7408–7414.

    Article  CAS  PubMed  Google Scholar 

  59. Azarashvili T, Krestinina O, Galvita A, Grachev D, Baburina Y, Stricker R, et al. Ca2+-dependent permeability transition regulation in rat brain mitochondria by 2′,3′-cyclic nucleotides and 2′,3′-cyclic nucleotide 3′-phosphodiesterase. Am J Physiol Cell Physiol 2009, 296: C1428–C1439.

    Article  CAS  PubMed  Google Scholar 

  60. Popow J, Schleiffer A, Martinez J. Diversity and roles of (t) RNA ligases. Cell Mol Life Sci 2012, 69: 2657–2670.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Gravel M, Robert F, Kottis V, Gallouzi I, Pelletier J, Braun PE. 2′,3′-cyclic nucleotide 3′-phosphodiesterase: A novel RNA-binding protein that inhibits protein synthesis. J Neurosci Res 2009, 87: 1069–1079.

    Article  CAS  PubMed  Google Scholar 

  62. Myllykoski M, Itoh K, Kangas SM, Heape AM, Kang SU, Lubec G, et al. The N-terminal domain of the myelin enzyme 2′,3′-cyclic nucleotide 3′-phosphodiesterase: Direct molecular interaction with the calcium sensor calmodulin. J Neurochem 2012, 123: 515–524.

    Article  CAS  PubMed  Google Scholar 

  63. Olafson R, Drummond G, Lee J. Studies on 2′,3′-cyclic nucleotide-3′-phosphohydrolase from brain. Can J Biochem 1969, 47: 961–966.

    Article  CAS  PubMed  Google Scholar 

  64. Schwer B, Aronova A, Ramirez A, Braun P, Shuman S. Mammalian 2′,3′ cyclic nucleotide phosphodiesterase (CNP) can function as a tRNA splicing enzyme in vivo. RNA 2008, 14: 204–210.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Heaton P, Eckstein F. Diastereomeric specificity of 2′,3′-cyclic nucleotide 3′-phosphodiesterase. Nucleic Acids Res 1996, 24: 850–853.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Sakamoto Y, Tanaka N, Ichimiya T, Kurihara T, Nakamura K. Crystal structure of the catalytic fragment of human brain 2′,3′-cyclic-nucleotide 3′-phosphodiesterase. J Mol Biol 2005, 346: 789–800.

    Article  CAS  PubMed  Google Scholar 

  67. Myllykoski M, Raasakka A, Han H, Kursula P. Myelin 2′,3′-cyclic nucleotide 3′-phosphodiesterase: Active-site ligand binding and molecular conformation. PLoS One 2012, 7: e32336.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Mazumder R, Iyer L, Vasudevan S, Aravind L. Detection of novel members, structure-function analysis and evolutionary classification of the 2H phosphoesterase superfamily. Nucleic Acids Res 2002, 30: 5229–5243.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Nasr F, Filipowicz W. Characterization of the saccharomyces cerevisiae cyclic nucleotide phosphodiesterase involved in the metabolism of ADP-ribose 1″,2″-cyclic phosphate. Nucleic Acids Res 2000, 28: 1676–1683.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Greer CL, Peebles CL, Gegenheimer P, Abelson J. Mechanism of action of a yeast RNA ligase in tRNA splicing. Cell 1983, 32: 537–546.

    Article  CAS  PubMed  Google Scholar 

  71. Xu Q, Teplow D, Lee TD, Abelson J. Domain structure in yeast tRNA ligase. Biochemistry 1990, 29: 6132–6138.

    Article  CAS  PubMed  Google Scholar 

  72. Kozlov G, Denisov AY, Pomerantseva E, Gravel M, Braun PE, Gehring K. Solution structure of the catalytic domain of RICH protein from goldfish. FEBS J 2007, 274: 1600–1609.

    Article  CAS  PubMed  Google Scholar 

  73. Koonin EV, Gorbalenya AE. Related domains in yeast tRNA ligase, bacteriophage T4 polynucleotide kinase and RNA ligase, and mammalian myelin 2′,3′-cyclic nucleotide phosphohydrolase revealed by amino acid sequence comparison. FEBS Lett 1990, 268: 231–234.

    Article  CAS  PubMed  Google Scholar 

  74. Hanson PI, Whiteheart SW. AAA+ proteins: Have engine, will work. Nat Rev Mol Cell Biol 2005, 6: 519–529.

    Article  CAS  PubMed  Google Scholar 

  75. Walker JE, Saraste M, Runswick MJ, Gay NJ. Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1982, 1: 945–951.

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Berggård T, Arrigoni G, Olsson O, Fex M, Linse S, James P. 140 mouse brain proteins identified by Ca2+-calmodulin affinity chromatography and tandem mass spectrometry. J Proteome Res 2006, 5: 669–687.

    Article  PubMed  Google Scholar 

  77. Braun PE, Bambrick LL, Edwards AM, Bernier L. 2′,3′-cyclic nucleotide 3′-phosphodiesterase has characteristics of cytoskeletal proteins — a hypothesis for its function. Ann NY Acad Sci 1990, 605: 55–65.

    Article  CAS  PubMed  Google Scholar 

  78. Bifulco M, Laezza C, Stingo S, Wolff J. 2′,3′-cyclic nucleotide 3′-phosphodiesterase: A membrane-bound, microtubule-associated protein and membrane anchor for tubulin. Proc Natl Acad Sci U S A 2002, 99: 1807–1812.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Wilson SJ, Schoggins JW, Zang T, Kutluay SB, Jouvenet N, Alim MA, et al. Inhibition of HIV-1 particle assembly by 2′,3′-cyclic nucleotide 3′-phosphodiesterase. Cell Host Microbe 2012, 12: 585–597.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Ma H, Zhao XL, Wang XY, Xie XW, Han JC, Guan W, et al. 2′,3′-cyclic nucleotide 3′-phosphodiesterases inhibit hepatitis B virus replication. PLoS One 2013, 8: e80769.

    Article  PubMed Central  PubMed  Google Scholar 

  81. De Angelis DA, Braun PE. 2′,3′-cyclic nucleotide 3′-phosphodiesterase binds to actin-based cytoskeletal elements in an isoprenylation-independent manner. J Neurochem 1996, 67: 943–951.

    Article  PubMed  Google Scholar 

  82. Carson JH, Barbarese E. Systems analysis of RNA trafficking in neural cells. Biol Cell 2005, 97: 51–62.

    Article  CAS  PubMed  Google Scholar 

  83. Zhang Z, Ottens AK, Golden EC, Hayes RL, Wang KKW. Using calmodulin-affinity capture to study the rat brain calmodulin binding proteome and its vulnerability to calpain and caspase proteolysis. Calcium Bind Proteins 2006, 2: 125–134.

    Google Scholar 

  84. Esposito C, Scrima M, Carotenuto A, Tedeschi A, Rovero P, D’Errico G, et al. Structures and micelle locations of the nonlipidated and lipidated C-terminal membrane anchor of 2′,3′-cyclic nucleotide-3′-phosphodiesterase. Biochemistry 2008, 47: 308–319.

    Article  CAS  PubMed  Google Scholar 

  85. De Angelis DA, Braun PE. Isoprenylation of brain 2′,3′-cyclic nucleotide 3′-phosphodiesterase modulates cell morphology. J Neurosci Res 1994, 39: 386–397.

    Article  PubMed  Google Scholar 

  86. Agrawal HC, Sprinkle TJ, Agrawal D. 2′,3′-cyclic nucleotide-3′-phosphodiesterase in the central-nervous-system is fattyacylated by thioester linkage. J Biol Chem 1990, 265: 11849–11853.

    CAS  PubMed  Google Scholar 

  87. De Angelis DA, Braun PE. Binding of 2′,3′-cyclic nucleotide 3′-phosphodiesterase to myelin: An in vitro study. J Neurochem 1996, 66: 2523–2531.

    Article  PubMed  Google Scholar 

  88. Braun PE, De Angelis DA, Shtybel WW, Bernier L. Isoprenoid modification permits 2′,3′-cyclic nucleotide 3′-phosphodiesterase to bind to membranes. J Neurosci Res 1991, 30(3): 540–544.

    Article  CAS  PubMed  Google Scholar 

  89. Myllykoski M, Kursula P. Expression, purification, and initial characterization of different domains of recombinant mouse 2′,3′-cyclic nucleotide 3′-phosphodiesterase, an enigmatic enzyme from the myelin sheath. BMC Res Notes 2010, 3: 1–7.

    Article  Google Scholar 

  90. Bankston AN, Mandler MD, Feng Y. Oligodendroglia and neurotrophic factors in neurodegeneration. Neurosci Bull 2013, 29: 216–228.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petri Kursula.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raasakka, A., Kursula, P. The myelin membrane-associated enzyme 2′,3′-cyclic nucleotide 3′-phosphodiesterase: on a highway to structure and function. Neurosci. Bull. 30, 956–966 (2014). https://doi.org/10.1007/s12264-013-1437-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-013-1437-5

Keywords

Navigation