Skip to main content

Advertisement

Log in

Environmental factors in the development and progression of late-onset Alzheimer’s disease

  • Review
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Late-onset Alzheimer’s disease (LOAD) is an age-related neurodegenerative disorder characterized by gradual loss of synapses and neurons, but its pathogenesis remains to be clarified. Neurons live in an environment constituted by neurons themselves and glial cells. In this review, we propose that the neuronal degeneration in the AD brain is partially caused by diverse environmental factors. We first discuss various environmental stresses and the corresponding responses at different levels. Then we propose some mechanisms underlying the specific pathological changes, in particular, hypothalamic-pituitary adrenal axis dysfunction at the systemic level; cerebrovascular dysfunction, metal toxicity, glial activation, and Aβ toxicity at the intercellular level; and kinase-phosphatase imbalance and epigenetic modification at the intracellular level. Finally, we discuss the possibility of developing new strategies for the prevention and treatment of LOAD from the perspective of environmental stress. We conclude that environmental factors play a significant role in the development of LOAD through multiple pathological mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kagias K, Nehammer C, Pocock R. Neuronal responses to physiological stress. Front Genet 2012, 3: 222.

    PubMed Central  PubMed  Google Scholar 

  2. Stanton ML, Roy BA, Thiede DA. Evolution in stressful environments. I. Phenotypic variability, phenotypic selection, and response to selection in five distinct environmental stresses. Evolution 2000, 54: 93–111.

    PubMed  CAS  Google Scholar 

  3. Anderegg WR, Berry JA, Field CB. Linking definitions, mechanisms, and modeling of drought-induced tree death. Trends Plant Sci 2012, 17: 693–700.

    PubMed  CAS  Google Scholar 

  4. Han HW, Ohn JH, Moon J, Kim JH. Yin and Yang of disease genes and death genes between reciprocally scale-free biological networks. Nucleic Acids Res 2013, 41: 9209–9217.

    PubMed Central  PubMed  CAS  Google Scholar 

  5. Fields RD, Araque A, Johansen-Berg H, Lim SS, Lynch G, Nave KA, et al. Glial biology in learning and cognition. Neuroscientist 2013. doi: 10.1177/1073858413504465.

    Google Scholar 

  6. Pirttimaki TM, Parri HR. Astrocyte plasticity: implications for synaptic and neuronal activity. Neuroscientist 2013, 19: 604–615.

    PubMed  Google Scholar 

  7. Kagias K, Nehammer C, Pocock R. Neuronal responses to physiological stress. Front Genet 2012, 3: 222.

    PubMed Central  PubMed  Google Scholar 

  8. Caldji C, Hellstrom IC, Zhang TY, Diorio J, Meaney MJ. Environmental regulation of the neural epigenome. FEBS Lett 2011, 585: 2049–2058.

    PubMed  CAS  Google Scholar 

  9. Migliore L, Coppede F. Genetics, environmental factors and the emerging role of epigenetics in neurodegenerative diseases. Mutat Res 2009, 667: 82–97.

    PubMed  CAS  Google Scholar 

  10. Debacq-Chainiaux F, Leduc C, Verbeke A, Toussaint O. UV, stress and aging. Dermatoendocrinol 2012, 4: 236–240.

    PubMed Central  PubMed  CAS  Google Scholar 

  11. Moulton PV, Yang W. Air pollution, oxidative stress, and Alzheimer’s disease. J Environ Public Health 2012, 2012: 472751.

    PubMed Central  PubMed  Google Scholar 

  12. Ayton S, Lei P, Bush AI. Metallostasis in Alzheimer’s disease. Free Radic Biol Med 2013, 62: 76–89.

    PubMed  CAS  Google Scholar 

  13. Bush AI. The metal theory of Alzheimer’s disease. J Alzheimers Dis 2013, 33Suppl 1: S277–281.

    PubMed  Google Scholar 

  14. Calderon-Garciduenas L, Kavanaugh M, Block M, D’Angiulli A, Delgado-Chavez R, Torres-Jardon R, et al. Neuroinflammation, hyperphosphorylated tau, diffuse amyloid plaques, and down-regulation of the cellular prion protein in air pollution exposed children and young adults. J Alzheimers Dis 2012, 28: 93–107.

    PubMed  CAS  Google Scholar 

  15. Cannas A, Costa B, Tacconi P, Pinna L, Fiaschi A. Dementia of Alzheimer type (DAT) in a man chronically exposed to pesticides. Acta Neurol (Napoli) 1992, 14: 220–223.

    CAS  Google Scholar 

  16. Baldi I, Lebailly P, Mohammed-Brahim B, Letenneur L, Dartigues JF, Brochard P. Neurodegenerative diseases and exposure to pesticides in the elderly. Am J Epidemiol 2003, 157: 409–414.

    PubMed  Google Scholar 

  17. Thany SH, Reynier P, Lenaers G. Neurotoxicity of pesticides: its relationship with neurodegenerative diseases. Med Sci (Paris) 2013, 29: 273–278.

    Google Scholar 

  18. Alkadhi KA, Alzoubi KH, Srivareerat M, Tran TT. Chronic psychosocial stress exacerbates impairment of synaptic plasticity in beta-amyloid rat model of Alzheimer’s disease: prevention by nicotine. Curr Alzheimer Res 2011, 8: 718–731.

    PubMed  CAS  Google Scholar 

  19. Rissman RA, Staup MA, Lee AR, Justice NJ, Rice KC, Vale W, et al. Corticotropin-releasing factor receptor-dependent effects of repeated stress on tau phosphorylation, solubility, and aggregation. Proc Natl Acad Sci U S A 2012, 109: 6277–6282.

    PubMed Central  PubMed  CAS  Google Scholar 

  20. Sierksma AS, Prickaerts J, Chouliaras L, Rostamian S, Delbroek L, Rutten BP, et al. Behavioral and neurobiological effects of prenatal stress exposure in male and female APPswe/PS1dE9 mice. Neurobiol Aging 2013, 34: 319–337.

    PubMed  CAS  Google Scholar 

  21. Ma JF, Wang HM, Li QY, Zhang Y, Pan J, Qiang Q, et al. Starvation triggers Abeta42 generation from human umbilical vascular endothelial cells. FEBS Lett 2010, 584: 3101–3106.

    PubMed  CAS  Google Scholar 

  22. Yanagisawa M, Planel E, Ishiguro K, Fujita SC. Starvation induces tau hyperphosphorylation in mouse brain: implications for Alzheimer’s disease. FEBS Lett 1999, 461: 329–333.

    PubMed  CAS  Google Scholar 

  23. Planel E, Miyasaka T, Launey T, Chui D-H, Tanemura K, Sato S, et al. Alterations in glucose metabolism induce hypothermia leading to tau hyperphosphorylation through differential inhibition of kinase and phosphatase activities: Implications for Alzheimer’s disease. J Neurosci 2004, 24: 2401–2411.

    PubMed  CAS  Google Scholar 

  24. Whittington RA, Papon MA, Chouinard F, Planel E. Hypothermia and Alzheimer’s disease neuropathogenic pathways. Curr Alzheimer Res 2010, 7: 717–725.

    PubMed  CAS  Google Scholar 

  25. Bretteville A, Marcouiller F, Julien C, El Khoury NB, Petry FR, Poitras I, et al. Hypothermia-induced hyperphosphorylation: a new model to study tau kinase inhibitors. Sci Rep 2012, 2: 480.

    PubMed Central  PubMed  Google Scholar 

  26. Sivanandam TM, Thakur MK. Traumatic brain injury: a risk factor for Alzheimer’s disease. Neurosci Biobehav Rev 2012, 36: 1376–1381.

    PubMed  Google Scholar 

  27. Fakhran S, Yaeger K, Alhilali L. Symptomatic white matter changes in mild traumatic brain injury resemble pathologic features of early Alzheimer dementia. Radiology 2013, 269: 249–257.

    PubMed  Google Scholar 

  28. Washington PM, Morffy N, Parsadanian M, Zapple D, Burns MP. Experimental traumatic brain injury induces rapid aggregation and oligomerization of amyloid-beta in an Alzheimer’s disease mouse model. J Neurotrauma 2013, 31(1):125–134.

    PubMed  Google Scholar 

  29. Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI. Abnormal phosphorylation of the microtubuleassociated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci U S A 1986, 83: 4913–4917.

    PubMed Central  PubMed  CAS  Google Scholar 

  30. Barton AJ, Harrison PJ, Najlerahim A, Heffernan J, McDonald B, Robinson JR, et al. Increased tau messenger RNA in Alzheimer’s disease hippocampus. Am J Pathol 1990, 137: 497–502.

    PubMed Central  PubMed  CAS  Google Scholar 

  31. Hardy JA, Higgins GA. Alzheimer’s disease: the amyloid cascade hypothesis. Science 1992, 256: 184–185.

    PubMed  CAS  Google Scholar 

  32. Young EA, Abelson JL, Cameron OG. Interaction of brain noradrenergic system and the hypothalamic-pituitary-adrenal (HPA) axis in man. Psychoneuroendocrinology 2005, 30: 807–814.

    PubMed  CAS  Google Scholar 

  33. Rabasa C, Munoz-Abellan C, Daviu N, Nadal R, Armario A. Repeated exposure to immobilization or two different footshock intensities reveals differential adaptation of the hypothalamic-pituitary-adrenal axis. Physiol Behav 2011, 103: 125–133.

    PubMed  CAS  Google Scholar 

  34. Kirby ED, Muroy SE, Sun WG, Covarrubias D, Leong MJ, Barchas LA, et al. Acute stress enhances adult rat hippocampal neurogenesis and activation of newborn neurons via secreted astrocytic FGF2. Elife 2013, 2: e00362.

    PubMed Central  PubMed  Google Scholar 

  35. Conrad CD, Lupien SJ, McEwen BS. Support for a bimodal role for type II adrenal steroid receptors in spatial memory. Neurobiol Learn Mem 1999, 72: 39–46.

    PubMed  CAS  Google Scholar 

  36. Wong EY, Herbert J. The corticoid environment: a determining factor for neural progenitors’ survival in the adult hippocampus. Eur J Neurosci 2004, 20: 2491–2498.

    PubMed Central  PubMed  Google Scholar 

  37. Tanti A, Rainer Q, Minier F, Surget A, Belzung C. Differential environmental regulation of neurogenesis along the septotemporal axis of the hippocampus. Neuropharmacology 2012, 63: 374–384.

    PubMed  CAS  Google Scholar 

  38. Mizoguchi K, Yuzurihara M, Ishige A, Sasaki H, Chui DH, Tabira T. Chronic stress differentially regulates glucocorticoid negative feedback response in rats. Psychoneuroendocrinology 2001, 26: 443–459.

    PubMed  CAS  Google Scholar 

  39. Houshyar H, Galigniana MD, Pratt WB, Woods JH. Differential responsivity of the hypothalamic-pituitary-adrenal axis to glucocorticoid negative-feedback and corticotropin releasing hormone in rats undergoing morphine withdrawal: possible mechanisms involved in facilitated and attenuated stress responses. J Neuroendocrinol 2001, 13: 875–886.

    PubMed  CAS  Google Scholar 

  40. Kim HG, Lim EY, Jung WR, Shin MK, Ann ES, Kim KL. Effects of treadmill exercise on hypoactivity of the hypothalamo-pituitary-adrenal axis induced by chronic administration of corticosterone in rats. Neurosci Lett 2008, 434: 46–49.

    PubMed  CAS  Google Scholar 

  41. Imaki T, Nahan JL, Rivier C, Sawchenko PE, Vale W. Differential regulation of corticotropin-releasing factor mRNA in rat brain regions by glucocorticoids and stress. J Neurosci 1991, 11: 585–599.

    PubMed  CAS  Google Scholar 

  42. Herman JP, Adams D, Prewitt C. Regulatory changes in neuroendocrine stress-integrative circuitry produced by a variable stress paradigm. Neuroendocrinology 1995, 61: 180–190.

    PubMed  CAS  Google Scholar 

  43. Makino S, Smith MA, Gold PW. Increased expression of corticotropin-releasing hormone and vasopressin messenger ribonucleic acid (mRNA) in the hypothalamic paraventricularnucleus during repeated stress: association with reduction in glucocorticoid receptor mRNA levels. Endocrinology 1995, 136: 3299–3309.

    PubMed  CAS  Google Scholar 

  44. Sagare AP, Bell RD, Zlokovic BV. Neurovascular dysfunction and faulty amyloid beta-peptide clearance in Alzheimer disease. Cold Spring Harb Perspect Med 2012, 2.

    Google Scholar 

  45. Gorelick PB. Risk factors for vascular dementia and Alzheimer disease. Stroke 2004, 35: 2620–2622.

    PubMed  Google Scholar 

  46. Casserly I, Topol E. Convergence of atherosclerosis and Alzheimer’s disease: inflammation, cholesterol, and misfolded proteins. Lancet 2004, 363: 1139–1146.

    PubMed  CAS  Google Scholar 

  47. Roher AE, Esh C, Rahman A, Kokjohn TA, Beach TG. Atherosclerosis of cerebral arteries in Alzheimer disease. Stroke 2004, 35: 2623–2627.

    PubMed  Google Scholar 

  48. Greenberg SM, Gurol ME, Rosand J, Smith EE. Amyloid angiopathy-related vascular cognitive impairment. Stroke 2004, 35: 2616–2619.

    PubMed  Google Scholar 

  49. Vinters HV, Farag ES. Amyloidosis of cerebral arteries. Adv Neurol 2003, 92: 105–112.

    PubMed  Google Scholar 

  50. Farkas E, Luiten PG. Cerebral microvascular pathology in aging and Alzheimer’s disease. Prog Neurobiol 2001, 64: 575–611.

    PubMed  CAS  Google Scholar 

  51. Bailey TL, Rivara CB, Rocher AB, Hof PR. The nature and effects of cortical microvascular pathology in aging and Alzheimer’s disease. Neurol Res 2004, 26: 573–578.

    PubMed  Google Scholar 

  52. Capiralla H, Vingtdeux V, Zhao H, Sankowski R, Al-Abed Y, Davies P, et al. Resveratrol mitigates lipopolysaccharideand Abeta-mediated microglial inflammation by inhibiting the TLR4/NF-kappaB/STAT signaling cascade. J Neurochem 2012, 120: 461–472.

    PubMed Central  PubMed  CAS  Google Scholar 

  53. McGeer PL, McGeer EG. The amyloid cascade-inflammatory hypothesis of Alzheimer disease: implications for therapy. Acta Neuropathol 2013, 126: 479–497.

    PubMed  CAS  Google Scholar 

  54. Sanphui P, Biswas SC. FoxO3a is activated and executes neuron death via Bim in response to [beta]-amyloid. Cell Death Dis 2013, 4: e625.

    PubMed Central  PubMed  CAS  Google Scholar 

  55. Woo JA, Jung AR, Lakshmana MK, Bedrossian A, Lim Y, Bu JH, et al. Pivotal role of the RanBP9-cofilin pathway in Abetainduced apoptosis and neurodegeneration. Cell Death Differ 2012, 19: 1413–1423.

    PubMed Central  PubMed  CAS  Google Scholar 

  56. Reddy PH. Amyloid precursor protein-mediated free radicals and oxidative damage: implications for the development and progression of Alzheimer’s disease. J Neurochem 2006, 96: 1–13.

    PubMed  CAS  Google Scholar 

  57. De Felice FG, Velasco PT, Lambert MP, Viola K, Fernandez SJ, Ferreira ST, et al. Aβ Oligomers Induce Neuronal Oxidative Stress through an N-Methyl-D-aspartate Receptordependent Mechanism That Is Blocked by the Alzheimer Drug Memantine. J Biol Chem 2007, 282: 11590–11601.

    PubMed  Google Scholar 

  58. Chen Z, Zhong C. Decoding Alzheimer’s disease from perturbed cerebral glucose metabolism: implications for diagnostic and therapeutic strategies. Prog Neurobiol 2013, 108: 21–43.

    PubMed  CAS  Google Scholar 

  59. Eskici G, Axelsen PH. Copper and oxidative stress in the pathogenesis of Alzheimer’s disease. Biochemistry 2012, 51: 6289–6311.

    PubMed  CAS  Google Scholar 

  60. Lopategui Cabezas I, Herrera Batista A, Penton Rol G. The role of glial cells in Alzheimer’s disease: Potential therapeutic implications. Neurologia 2012. doi: 10.1016/j.nrl.2012.10.006

    Google Scholar 

  61. Cunningham C. Microglia and neurodegeneration: the role of systemic inflammation. Glia 2013, 61: 71–90.

    PubMed  Google Scholar 

  62. Skaper SD, Facci L, Giusti P. Mast cells, glia and neuroinflammation: partners in crime? Immunology 2013. doi: 10.1111/imm.12170

    Google Scholar 

  63. Paresce DM, Chung H, Maxfield FR. Slow degradation of aggregates of the Alzheimer’s disease amyloid beta-protein by microglial cells. J Biol Chem 1997, 272: 29390–29397.

    PubMed  CAS  Google Scholar 

  64. Frautschy SA, Yang F, Irrizarry M, Hyman B, Saido TC, Hsiao K, et al. Microglial response to amyloid plaques in APPsw transgenic mice. Am J Pathol 1998, 152: 307–317.

    PubMed Central  PubMed  CAS  Google Scholar 

  65. Wyss-Coray T, Lin C, Yan F, Yu G-Q, Rohde M, McConlogue L, et al. TGF-[beta]1 promotes microglial amyloid-[beta] clearance and reduces plaque burden in transgenic mice. Nat Med 2001, 7: 612–618.

    PubMed  CAS  Google Scholar 

  66. Block ML, Calderon-Garciduenas L. Air pollution: mechanisms of neuroinflammation and CNS disease. Trends Neurosci 2009, 32: 506–516.

    PubMed Central  PubMed  CAS  Google Scholar 

  67. Campbell A. Inflammation, neurodegenerative diseases, and environmental exposures. Ann N Y Acad Sci 2004, 1035: 117–132.

    PubMed  CAS  Google Scholar 

  68. Heyman A, Wilkinson WE, Stafford JA, Helms MJ, Sigmon AH, Weinberg T. Alzheimer’s disease: a study of epidemiological aspects. Ann Neurol 1984, 15: 335–341.

    PubMed  CAS  Google Scholar 

  69. Guo Z, Cupples LA, Kurz A, Auerbach SH, Volicer L, Chui H, et al. Head injury and the risk of AD in the MIRAGE study. Neurology 2000, 54: 1316–1323.

    PubMed  CAS  Google Scholar 

  70. McKee AC, Cantu RC, Nowinski CJ, Hedley-Whyte ET, Gavett BE, Budson AE, et al. Chronic traumatic encephalopathy in athletes: progressive tauopathy after repetitive head injury. J Neuropathol Exp Neurol 2009, 68: 709–735.

    PubMed Central  PubMed  Google Scholar 

  71. Lehmann DJ, Worwood M, Ellis R, Wimhurst VL, Merryweather-Clarke AT, Warden DR, et al. Iron genes, iron load and risk of Alzheimer’s disease. J Med Genet 2006, 43: e52.

    PubMed Central  PubMed  CAS  Google Scholar 

  72. Roberts GW, Gentleman SM, Lynch A, Murray L, Landon M, Graham DI. Beta amyloid protein deposition in the brain after severe head injury: implications for the pathogenesis of Alzheimer’s disease. J Neurol Neurosurg Psychiatry 1994, 57: 419–425.

    PubMed Central  PubMed  CAS  Google Scholar 

  73. Adle-Biassette H, Duyckaerts C, Wasowicz M, He Y, Fornes P, Foncin JF, et al. Beta AP deposition and head trauma. Neurobiol Aging 1996, 17: 415–419.

    PubMed  CAS  Google Scholar 

  74. Ikonomovic MD, Uryu K, Abrahamson EE, Ciallella JR, Trojanowski JQ, Lee VM, et al. Alzheimer’s pathology in human temporal cortex surgically excised after severe brain injury. Exp Neurol 2004, 190: 192–203.

    PubMed  CAS  Google Scholar 

  75. Uryu K, Laurer H, McIntosh T, Pratico D, Martinez D, Leight S, et al. Repetitive mild brain trauma accelerates Abeta deposition, lipid peroxidation, and cognitive impairment in a transgenic mouse model of Alzheimer amyloidosis. J Neurosci 2002, 22: 446–454.

    PubMed  CAS  Google Scholar 

  76. Ritchie K, Polge C, de Roquefeuil G, Djakovic M, Ledesert B. Impact of anesthesia on the cognitive functioning of the elderly. Int Psychogeriatr 1997, 9: 309–326.

    PubMed  CAS  Google Scholar 

  77. Ancelin ML, de Roquefeuil G, Scali J, Bonnel F, Adam JF, Cheminal JC, et al. Long-term post-operative cognitive decline in the elderly: the effects of anesthesia type, apolipoprotein E genotype, and clinical antecedents. J Alzheimers Dis 2010, 22Suppl 3: 105–113.

    PubMed  Google Scholar 

  78. Dong Y, Zhang G, Zhang B, Moir RD, Xia W, Marcantonio ER, et al. The common inhalational anesthetic sevoflurane induces apoptosis and increases beta-amyloid protein levels. Arch Neurol 2009, 66: 620–631.

    PubMed Central  PubMed  Google Scholar 

  79. Xie H, Guan J, Borrelli LA, Xu J, Serrano-Pozo A, Bacskai BJ. Mitochondrial alterations near amyloid plaques in an Alzheimer’s disease mouse model. J Neurosci 2013, 33: 17042–17051.

    PubMed  CAS  PubMed Central  Google Scholar 

  80. Pan C, Xu Z, Dong Y, Zhang Y, Zhang J, McAuliffe S, et al. The potential dual effects of anesthetic isoflurane on hypoxiainduced caspase-3 activation and increases in beta-site amyloid precursor protein-cleaving enzyme levels. Anesth Analg 2011, 113: 145–152.

    PubMed Central  PubMed  CAS  Google Scholar 

  81. Zhang L, Zhang Y. Halothane increases neuronal cell death vulnerability by downregulating miR-214 and upregulating Bax. Int J Clin Exp Med 2013, 6: 452–460.

    PubMed Central  PubMed  CAS  Google Scholar 

  82. Zhen Y, Dong Y, Wu X, Xu Z, Lu Y, Zhang Y, et al. Nitrous oxide plus isoflurane induces apoptosis and increases betaamyloid protein levels. Anesthesiology 2009, 111: 741–752.

    PubMed Central  PubMed  CAS  Google Scholar 

  83. Alkadhi KA. Chronic psychosocial stress exposes Alzheimer’s disease phenotype in a novel at-risk model. Front Biosci (Elite Ed) 2012, 4: 214–229.

    Google Scholar 

  84. Bohnen N, Warner MA, Kokmen E, Kurland LT. Early and midlife exposure to anesthesia and age of onset of Alzheimer’s disease. Int J Neurosci 1994, 77: 181–185.

    PubMed  CAS  Google Scholar 

  85. Andre D, Dartigues JF, Sztark F. [Alzheimer’s disease and anaesthesia: potential relationships and clinical implications]. Ann Fr Anesth Reanim 2011, 30: 37–46.

    PubMed  CAS  Google Scholar 

  86. Lye TC, Shores EA. Traumatic brain injury as a risk factor for Alzheimer’s disease: a review. Neuropsychol Rev 2000, 10: 115–129.

    PubMed  CAS  Google Scholar 

  87. Sinigaglia-Coimbra R, Cavalheiro EA, Coimbra CG. Postischemic hyperthermia induces Alzheimer-like pathology in the rat brain. Acta Neuropathol 2002, 103: 444–452.

    PubMed  CAS  Google Scholar 

  88. Ostrander MM, Ulrich-Lai YM, Choi DC, Richtand NM, Herman JP. Hypoactivity of the hypothalamo-pituitaryadrenocortical axis during recovery from chronic variable stress. Endocrinology 2006, 147: 2008–2017.

    PubMed Central  PubMed  CAS  Google Scholar 

  89. Green KN, Billings LM, Roozendaal B, McGaugh JL, LaFerla FM. Glucocorticoids increase amyloid-beta and tau pathology in a mouse model of Alzheimer’s disease. J Neurosci 2006, 26: 9047–9056.

    PubMed  CAS  Google Scholar 

  90. Shinkai Y, Yoshimura M, Morishima-Kawashima M, Ito Y, Shimada H, Yanagisawa K, et al. Amyloid beta-protein deposition in the leptomeninges and cerebral cortex. Ann Neurol 1997, 42: 899–908.

    PubMed  CAS  Google Scholar 

  91. Cornejo F, von Bernhardi R. Role of scavenger receptors in glia-mediated neuroinflammatory response associated with Alzheimer’s disease. Mediators Inflamm 2013, 2013: 895651.

    Google Scholar 

  92. Morales I, Jimenez JM, Mancilla M, Maccioni RB. Tau oligomers and fibrils induce activation of microglial cells. J Alzheimers Dis 2013, 37: 849–856.

    PubMed  CAS  Google Scholar 

  93. Ogundele OM, Omoaghe AO, Ajonijebu DC, Ojo AA, Fabiyi TD, Olajide OJ, et al. Glia activation and its role in oxidative stress. Metab Brain Dis 2013.

    Google Scholar 

  94. Alonso AC, Zaidi T, Grundke-Iqbal I, Iqbal K. Role of abnormally phosphorylated tau in the breakdown of microtubules in Alzheimer disease. Proc Natl Acad Sci U S A 1994, 91: 5562–5566.

    PubMed Central  PubMed  CAS  Google Scholar 

  95. Gendreau KL, Hall GF. Tangles, toxicity, and tau secretion in AD — new approaches to a vexing problem. Front Neurol 2013, 4: 160.

    PubMed Central  PubMed  Google Scholar 

  96. Chouliaras L, Rutten BP, Kenis G, Peerbooms O, Visser PJ, Verhey F, et al. Epigenetic regulation in the pathophysiology of Alzheimer’s disease. Prog Neurobiol 2010, 90: 498–510.

    PubMed  CAS  Google Scholar 

  97. Kwok JB. Role of epigenetics in Alzheimer’s and Parkinson’s disease. Epigenomics 2010, 2: 671–682.

    PubMed  CAS  Google Scholar 

  98. Babenko O, Kovalchuk I, Metz GA. Epigenetic programming of neurodegenerative diseases by an adverse environment. Brain Res 2012, 1444: 96–111.

    PubMed  CAS  Google Scholar 

  99. Lee DC, Rizer J, Hunt JB, Selenica ML, Gordon MN, Morgan D. Review: experimental manipulations of microglia in mouse models of Alzheimer’s pathology: activation reduces amyloid but hastens tau pathology. Neuropathol Appl Neurobiol 2013, 39: 69–85.

    PubMed  CAS  Google Scholar 

  100. Lee KW, Kim JB, Seo JS, Kim TK, Im JY, Baek IS, et al. Behavioral stress accelerates plaque pathogenesis in the brain of Tg2576 mice via generation of metabolic oxidative stress. J Neurochem 2009, 108: 165–175.

    PubMed  CAS  Google Scholar 

  101. Kang JE, Cirrito JR, Dong H, Csernansky JG, Holtzman DM. Acute stress increases interstitial fluid amyloid-beta via corticotropin-releasing factor and neuronal activity. Proc Natl Acad Sci U S A 2007, 104: 10673–10678.

    PubMed Central  PubMed  CAS  Google Scholar 

  102. Green KN, Billings LM, Roozendaal B, McGaugh JL, LaFerla FM. Glucocorticoids increase amyloid-β and tau pathology in a mouse model of Alzheimer’s disease. J Neurosci 2006, 26: 9047–9056.

    PubMed  CAS  Google Scholar 

  103. Bierhaus A, Wolf J, Andrassy M, Rohleder N, Humpert PM, Petrov D, et al. A mechanism converting psychosocial stress into mononuclear cell activation. Proc Natl Acad Sci U S A 2003, 100: 1920–1925.

    PubMed Central  PubMed  CAS  Google Scholar 

  104. Johnson JD, Campisi J, Sharkey CM, Kennedy SL, Nickerson M, Greenwood BN, et al. Catecholamines mediate stressinduced increases in peripheral and central inflammatory cytokines. Neuroscience 2005, 135: 1295–1307.

    PubMed  CAS  Google Scholar 

  105. Yu NN, Wang XX, Yu JT, Wang ND, Lu RC, Miao D, et al. Blocking beta2-adrenergic receptor attenuates acute stressinduced amyloid beta peptides production. Brain Res 2010, 1317: 305–310.

    PubMed  CAS  Google Scholar 

  106. Tran TT, Srivareerat M, Alhaider IA, Alkadhi KA. Chronic psychosocial stress enhances long-term depression in a subthreshold amyloid-beta rat model of Alzheimer’s disease. J Neurochem 2011, 119: 408–416.

    PubMed  CAS  Google Scholar 

  107. Kamal A, Ramakers GM, Altinbilek B, Kas MJ. Social isolation stress reduces hippocampal long-term potentiation: Effect of animal strain and involvement of glucocorticoid receptors. Neuroscience 2013.

    Google Scholar 

  108. Dong H, Goico B, Martin M, Csernansky CA, Bertchume A, Csernansky JG. Modulation of hippocampal cell proliferation, memory, and amyloid plaque deposition in APPsw (Tg2576) mutant mice by isolation stress. Neuroscience 2004, 127: 601–609.

    PubMed  CAS  Google Scholar 

  109. Tanapat P, Galea LA, Gould E. Stress inhibits the proliferation of granule cell precursors in the developing dentate gyrus. Int J Dev Neurosci 1998, 16: 235–239.

    PubMed  CAS  Google Scholar 

  110. Czeh B, Welt T, Fischer AK, Erhardt A, Schmitt W, Muller MB, et al. Chronic psychosocial stress and concomitant repetitive transcranial magnetic stimulation: effects on stress hormone levels and adult hippocampal neurogenesis. Biol Psychiatry 2002, 52: 1057–1065.

    PubMed  CAS  Google Scholar 

  111. Thomas RM, Hotsenpiller G, Peterson DA. Acute psychosocial stress reduces cell survival in adult hippocampal neurogenesis without altering proliferation. J Neurosci 2007, 27: 2734–2743.

    PubMed  CAS  Google Scholar 

  112. Wood GE, Young LT, Reagan LP, McEwen BS. Acute and chronic restraint stress alter the incidence of social conflict in male rats. Horm Behav 2003, 43: 205–213.

    PubMed  Google Scholar 

  113. Barha CK, Brummelte S, Lieblich SE, Galea LA. Chronic restraint stress in adolescence differentially influences hypothalamic-pituitary-adrenal axis function and adult hippocampal neurogenesis in male and female rats. Hippocampus 2011, 21: 1216–1227.

    PubMed  CAS  Google Scholar 

  114. Diniz L, dos Santos TB, Britto LR, Cespedes IC, Garcia MC, Spadari-Bratfisch RC, et al. Effects of chronic treatment with corticosterone and imipramine on fos immunoreactivity and adult hippocampal neurogenesis. Behav Brain Res 2013, 238: 170–177.

    PubMed  CAS  Google Scholar 

  115. Dubovicky M. Neurobehavioral manifestations of developmental impairment of the brain. Interdiscip Toxicol 2010, 3: 59–67.

    PubMed Central  PubMed  Google Scholar 

  116. Zlokovic BV. Neurovascular mechanisms of Alzheimer’s neurodegeneration. Trends Neurosci 2005, 28: 202–208.

    PubMed  CAS  Google Scholar 

  117. Yan SD, Chen X, Fu J, Chen M, Zhu H, Roher A, et al. RAGE and amyloid-beta peptide neurotoxicity in Alzheimer’s disease. Nature 1996, 382: 685–691.

    PubMed  CAS  Google Scholar 

  118. Sturchler E, Galichet A, Weibel M, Leclerc E, Heizmann CW. Site-specific blockade of RAGE-Vd prevents amyloid-beta oligomer neurotoxicity. J Neurosci 2008, 28: 5149–5158.

    PubMed  CAS  Google Scholar 

  119. Yan SF, Ramasamy R, Schmidt AM. The RAGE axis: a fundamental mechanism signaling danger to the vulnerable vasculature. Circ Res 2010, 106: 842–853.

    PubMed Central  PubMed  CAS  Google Scholar 

  120. Takuma K, Fang F, Zhang W, Yan S, Fukuzaki E, Du H, et al. RAGE-mediated signaling contributes to intraneuronal transport of amyloid-beta and neuronal dysfunction. Proc Natl Acad Sci U S A 2009, 106: 20021–20026.

    PubMed Central  PubMed  CAS  Google Scholar 

  121. Shibata M, Yamada S, Kumar SR, Calero M, Bading J, Frangione B, et al. Clearance of Alzheimer’s amyloid-β1–40 peptide from brain by LDL receptor-related protein-1 at the blood-brain barrier. J Clin Investig 2000, 106: 1489–1499.

    PubMed Central  PubMed  CAS  Google Scholar 

  122. Deane R, Wu Z, Sagare A, Davis J, Du Yan S, Hamm K, et al. LRP/amyloid beta-peptide interaction mediates differential brain efflux of Abeta isoforms. Neuron 2004, 43: 333–344.

    PubMed  CAS  Google Scholar 

  123. Klinge PM, Samii A, Niescken S, Brinker T, Silverberg GD. Brain amyloid accumulates in aged rats with kaolin-induced hydrocephalus. Neuroreport 2006, 17: 657–660.

    PubMed  CAS  Google Scholar 

  124. Paris D, Patel N, DelleDonne A, Quadros A, Smeed R, Mullan M. Impaired angiogenesis in a transgenic mouse model of cerebral amyloidosis. Neurosci Lett 2004, 366: 80–85.

    PubMed  CAS  Google Scholar 

  125. Paris D, Townsend K, Quadros A, Humphrey J, Sun J, Brem S, et al. Inhibition of angiogenesis by Abeta peptides. Angiogenesis 2004, 7: 75–85.

    PubMed  CAS  Google Scholar 

  126. Simpson IA, Carruthers A, Vannucci SJ. Supply and demand in cerebral energy metabolism: the role of nutrient transporters. J Cereb Blood Flow Metab 2007, 27: 1766–1791.

    PubMed Central  PubMed  CAS  Google Scholar 

  127. Simpson IA, Chundu KR, Davies-Hill T, Honer WG, Davies P. Decreased concentrations of GLUT1 and GLUT3 glucose transporters in the brains of patients with Alzheimer’s disease. Ann Neurol 1994, 35: 546–551.

    PubMed  CAS  Google Scholar 

  128. Apelt J, Ach K, Schliebs R. Aging-related down-regulationof neprilysin, a putative beta-amyloid-degrading enzyme, in transgenic Tg2576 Alzheimer-like mouse brain is accompanied by an astroglial upregulation in the vicinity of beta-amyloid plaques. Neurosci Lett 2003, 339: 183–186.

    PubMed  CAS  Google Scholar 

  129. Fuller S, Munch G, Steele M. Activated astrocytes: a therapeutic target in Alzheimer’s disease? Expert Rev Neurother 2009, 9: 1585–1594.

    PubMed  CAS  Google Scholar 

  130. Barnum SJJ, Muller-Ladner U, Samimi A, Campbell IL. Chronic complement C3 gene expression in the CNS of transgenic mice with astrocyte-targeted IL-6 expression. Glia 1996, 18:107–117.

    PubMed  CAS  Google Scholar 

  131. Zhu Y, Hou H, Rezai-Zadeh K, Giunta B, Ruscin A, Gemma C, et al. CD45 deficiency drives amyloid-beta peptide oligomers and neuronal loss in Alzheimer’s disease mice. J Neurosci 2011, 31: 1355–1365.

    PubMed Central  PubMed  CAS  Google Scholar 

  132. Tan J, Town T, Mori T, Wu Y, Saxe M, Crawford F, et al. CD45 opposes beta-amyloid peptide-induced microglial activation via inhibition of p44/42 mitogen-activated protein kinase. J Neurosci 2000, 20: 7587–7594.

    PubMed  CAS  Google Scholar 

  133. Wilcock DM, Gordon MN, Ugen KE, Gottschall PE, DiCarlo G, Dickey C, et al. Number of Abeta inoculations in APP+PS1 transgenic mice influences antibody titers, microglial activation, and congophilic plaque levels. DNA Cell Biol 2001, 20: 731–736.

    PubMed  CAS  Google Scholar 

  134. Yan SD, Stern DM. Mitochondrial dysfunction and Alzheimer’s disease: role of amyloid-beta peptide alcohol dehydrogenase (ABAD). Int J Exp Pathol 2005, 86: 161–171.

    PubMed Central  PubMed  CAS  Google Scholar 

  135. Du H, Guo L, Yan S, Sosunov AA, McKhann GM, Yan SS. Early deficits in synaptic mitochondria in an Alzheimer’s disease mouse model. Proc Natl Acad Sci U S A 2010, 107: 18670–18675.

    PubMed Central  PubMed  CAS  Google Scholar 

  136. Lesort M, Terro F, Esclaire F, Hugon J. Neuronal APP accumulates in toxic membrane blebbings. J Neural Transm 1997, 104: 497–513.

    PubMed  CAS  Google Scholar 

  137. Paula-Lima AC, Brito-Moreira J, Ferreira ST. Deregulation of excitatory neurotransmission underlying synapse failure in Alzheimer’s disease. J Neurochem 2013, 126: 191–202.

    PubMed  CAS  Google Scholar 

  138. Masilamoni JG, Jesudason EP, Jesudoss KS, Murali J, Paul SF, Jayakumar R. Role of fibrillar Abeta25–35 in the inflammation induced rat model with respect to oxidative vulnerability. Free Radic Res 2005, 39: 603–612.

    PubMed  CAS  Google Scholar 

  139. Cai Z, Hussain MD, Yan LJ. Microglia, neuroinflammation, and beta-amyloid protein in Alzheimer’s disease. Int J Neurosci 2013.

    Google Scholar 

  140. Hirai K, Aliev G, Nunomura A, Fujioka H, Russell RL, Atwood CS, et al. Mitochondrial abnormalities in Alzheimer’s disease. J Neurosci 2001, 21: 3017–3023.

    PubMed  CAS  Google Scholar 

  141. Manczak M, Anekonda TS, Henson E, Park BS, Quinn J, Reddy PH. Mitochondria are a direct site of A beta accumulation in Alzheimer’s disease neurons: implications for free radical generation and oxidative damage in disease progression. Hum Mol Genet 2006, 15: 1437–1449.

    PubMed  CAS  Google Scholar 

  142. Cardoso SM, Santos S, Swerdlow RH, Oliveira CR. Functional mitochondria are required for amyloid betamediated neurotoxicity. FASEB J 2001, 15: 1439–1441.

    PubMed  CAS  Google Scholar 

  143. Devi L, Prabhu B M, Galati D F, Avadhani NG, Anandatheerthavarada HK. Accumulation of amyloid precursor protein in the mitochondrial import channels of human Alzheimer’s disease brain is associated with mitochondrial dysfunction. J Neurosci 2006, 26: 9057–9068.

    PubMed  CAS  Google Scholar 

  144. Lustbader JW, Cirilli M, Lin C, Xu HW, Takuma K, Wang N, et al. ABAD directly links Abeta to mitochondrial toxicity in Alzheimer’s disease. Science 2004, 304: 448–452.

    PubMed  CAS  Google Scholar 

  145. Devi L, Prabhu B, Galati D, Avadhani N, HK. Accumulation of amyloid precursor protein in the mitochondrial import channels of human Alzheimer’s disease brain is associated with mitochondrial dysfunction. J Neurosci 2006, 26: 9057–9068.

    PubMed  CAS  Google Scholar 

  146. Luo Y, Sunderland T, Roth GS, Wolozin B. Physiological levels of beta-amyloid peptide promote PC12 cell proliferation. Neurosci Lett 1996, 217: 125–128.

    PubMed  CAS  Google Scholar 

  147. Puzzo D, Privitera L, Leznik E, Fa M, Staniszewski A, Palmeri A, et al. Picomolar amyloid-beta positively modulates synaptic plasticity and memory in hippocampus. J Neurosci 2008, 28: 14537–14545.

    PubMed Central  PubMed  CAS  Google Scholar 

  148. Falangola MF, Lee SP, Nixon RA, Duff K, Helpern JA. Histological co-localization of iron in Abeta plaques of PS/APP transgenic mice. Neurochem Res 2005, 30: 201–205.

    PubMed Central  PubMed  CAS  Google Scholar 

  149. Ghribi O, Golovko MY, Larsen B, Schrag M, Murphy EJ. Deposition of iron and β-amyloid plaques is associated with cortical cellular damage in rabbits fed with long-term cholesterol-enriched diets. J Neurochem 2006, 99: 438–449.

    PubMed  CAS  Google Scholar 

  150. Bodovitz S, Falduto MT, Frail DE, Klein WL. Iron levels modulate alpha-secretase cleavage of amyloid precursor protein. J Neurochem 1995, 64: 307–315.

    PubMed  CAS  Google Scholar 

  151. Connor JR, Lee SY. HFE mutations and Alzheimer’s disease. J Alzheimers Dis 2006, 10: 267–276.

    PubMed  Google Scholar 

  152. Lin M, Zhao L, Fan J, Lian XG, Ye JX, Wu L, et al. Association between HFE polymorphisms and susceptibility to Alzheimer’s disease: a meta-analysis of 22 studies including 4,365 cases and 8,652 controls. Mol Biol Rep 2012, 39: 3089–3095.

    PubMed  CAS  Google Scholar 

  153. Pulliam JF, Jennings CD, Kryscio RJ, Davis DG, Wilson D, Montine TJ, et al. Association of HFE mutations with neurodegeneration and oxidative stress in Alzheimer’s disease and correlation with APOE. Am J Med Genet B Neuropsychiatr Genet 2003, 119B: 48–53.

    PubMed  Google Scholar 

  154. Namekata K, Imagawa M, Terashi A, Ohta S, Oyama F, Ihara Y. Association of transferrin C2 allele with late-onset Alzheimer’s disease. Hum Genet 1997, 101: 126–129.

    PubMed  CAS  Google Scholar 

  155. Crapper DR, Krishnan SS, Dalton AJ. Brain aluminum distribution in Alzheimer’s disease and experimental neurofibrillary degeneration. Science 1973, 180: 511–513.

    PubMed  CAS  Google Scholar 

  156. McLachlan DR, Bergeron C, Smith JE, Boomer D, Rifat SL. Risk for neuropathologically confirmed Alzheimer’s disease and residual aluminum in municipal drinking water employing weighted residential histories. Neurology 1996, 46: 401–405.

    PubMed  CAS  Google Scholar 

  157. Rondeau V, Commenges D, Jacqmin-Gadda H, Dartigues JF. Relation between aluminum concentrations in drinking water and Alzheimer’s disease: An 8-year follow-up study. J Epidemiol 2000, 152: 59–66.

    CAS  Google Scholar 

  158. Langui D, Probst A, Anderton B, Brion JP, Ulrich J. Aluminium-induced tangles in cultured rat neurones. Enhanced effect of aluminium by addition of maltol. Acta Neuropathol 1990, 80: 649–655.

    PubMed  CAS  Google Scholar 

  159. Mera SL. Aluminium, amyloid, and Alzheimer’s disease. Med Lab Sci 1991, 48: 283–295.

    PubMed  CAS  Google Scholar 

  160. Exley C. The aluminium-amyloid cascade hypothesis and Alzheimer’s disease. Subcell Biochem 2005, 38: 225–234.

    PubMed  CAS  Google Scholar 

  161. Forbes MS, Ghribi O, Herman MM, Savory J. Aluminuminduced dendritic pathology revisited: cytochemical and electron microscopic studies of rabbit cortical pyramidal neurons. Ann Clin Lab Sci 2002, 32: 75–86.

    PubMed  CAS  Google Scholar 

  162. Vasudevaraju P, Govindaraju M, Palanisamy AP, Sambamurti K, Rao KS. Molecular toxicity of aluminium in relation to neurodegeneration. Indian J Med Res 2008, 128: 545–556.

    PubMed  CAS  Google Scholar 

  163. Savory J, Herman MM, Ghribi O. Intracellular mechanisms underlying aluminum-induced apoptosis in rabbit brain. J Inorg Biochem 2003, 97: 151–154.

    PubMed  CAS  Google Scholar 

  164. Kawahara M. Effects of aluminum on the nervous system and its possible link with neurodegenerative diseases. J Alzheimers Dis 2005, 8: 171–182; discussion 209–115.

    PubMed  CAS  Google Scholar 

  165. Sensi SL, Paoletti P, Bush AI, Sekler I. Zinc in the physiology and pathology of the CNS. Nat Rev Neurosci 2009, 10: 780–791.

    PubMed  CAS  Google Scholar 

  166. Bush AI, Pettingell WH Jr, Paradis MD, Tanzi RE. Modulation of A beta adhesiveness and secretase site cleavage by zinc. J Biol Chem 1994, 269: 12152–12158.

    PubMed  CAS  Google Scholar 

  167. Lesne S, Koh MT, Kotilinek L, Kayed R, Glabe CG, Yang A, et al. A specific amyloid-beta protein assembly in the brain impairs memory. Nature 2006, 440: 352–357.

    PubMed  CAS  Google Scholar 

  168. Dukes KD, Rodenberg CF, Lammi RK. Monitoring the earliest amyloid-beta oligomers via quantized photobleaching of dyelabeled peptides. Anal Biochem 2008, 382: 29–34.

    PubMed  CAS  Google Scholar 

  169. Deshpande A, Kawai H, Metherate R, Glabe CG, Busciglio J. A role for synaptic zinc in activity-dependent Aβ oligomer formation and accumulation at excitatory synapses. J Neurosci 2009, 29: 4004–4015.

    PubMed  CAS  Google Scholar 

  170. Huang YZ, Pan E, Xiong ZQ, McNamara JO. Zinc-mediated transactivation of TrkB potentiates the hippocampal mossy fiber-CA3 pyramid synapse. Neuron 2008, 57: 546–558.

    PubMed  CAS  Google Scholar 

  171. Bush AI. Drug development based on the metals hypothesis of Alzheimer’s disease. J Alzheimers Dis 2008, 15: 223–240.

    PubMed  CAS  Google Scholar 

  172. Bjorkdahl C, Sjogren MJ, Winblad B, Pei JJ. Zinc induces neurofilament phosphorylation independent of p70 S6 kinase in N2a cells. Neuroreport 2005, 16: 591–595.

    PubMed  Google Scholar 

  173. Freeman JW, Couch JR. Prolonged encephalopathy with arsenic poisoning. Neurology 1978, 28: 853–855.

    PubMed  CAS  Google Scholar 

  174. Lee VM, Balin BJ, Otvos L Jr, Trojanowski JQ. A68: a major subunit of paired helical filaments and derivatized forms of normal Tau. Science 1991, 251: 675–678.

    PubMed  CAS  Google Scholar 

  175. Giasson BI, Sampathu DM, Wilson CA, Vogelsberg-Ragaglia V, Mushynski WE, Lee VMY. The Environmental Toxin Arsenite Induces Tau Hyperphosphorylation. Biochemistry 2002, 41: 15376–15387.

    PubMed  CAS  Google Scholar 

  176. Jenkins SM, Johnson GVW. Microtubule/MAP-Affinity Regulating Kinase (MARK) is activated by phenylarsine oxide in situ and phosphorylates tau within its microtubule-binding domain. J Neurochem 2000, 74: 1463–1468.

    PubMed  CAS  Google Scholar 

  177. Sparks DL, Schreurs BG. Trace amounts of copper in water induce beta-amyloid plaques and learning deficits in a rabbit model of Alzheimer’s disease. Proc Natl Acad Sci U S A 2003, 100: 11065–11069.

    PubMed Central  PubMed  CAS  Google Scholar 

  178. Brewer GJ. The risks of copper toxicity contributing to cognitive decline in the aging population and to Alzheimer’s disease. J Am Coll Nutr 2009, 28: 238–242.

    PubMed  Google Scholar 

  179. Needleman HL, Gatsonis CA. Low-level lead exposure and the IQ of children. A meta-analysis of modern studies. JAMA 1990, 263: 673–678.

    PubMed  CAS  Google Scholar 

  180. Lefauconnier JM, Bernard G, Mellerio F, Sebille A, Cesarini E. Lead distribution in the nervous system of 8-month-old rats intoxicated since birth by lead. Experientia 1983, 39: 1030–1031.

    PubMed  CAS  Google Scholar 

  181. Rahman A, Brew BJ, Guillemin GJ. Lead dysregulates serine/threonine protein phosphatases in human neurons. Neurochem Res 2011, 36: 195–204.

    PubMed Central  PubMed  CAS  Google Scholar 

  182. Wang SC, Oelze B, Schumacher A. Age-specific epigenetic drift in late-onset Alzheimer’s disease. PLoS One 2008, 3: e2698.

    PubMed Central  PubMed  Google Scholar 

  183. Gong CX, Shaikh S, Wang JZ, Zaidi T, Grundke-Iqbal I, Iqbal K. Phosphatase activity toward abnormally phosphorylated tau: decrease in Alzheimer disease brain. J Neurochem 1995, 65: 732–738.

    PubMed  CAS  Google Scholar 

  184. Liu F, Iqbal K, Grundke-Iqbal I, Rossie S, Gong CX. Dephosphorylation of tau by protein phosphatase 5: impairment in Alzheimer’s disease. J Biol Chem 2005, 280: 1790–1796.

    PubMed  CAS  Google Scholar 

  185. Rudrabhatla P, Pant HC. Role of protein phosphatase 2A in Alzheimer’s disease. Curr Alzheimer Res 2011, 8: 623–632.

    PubMed  CAS  Google Scholar 

  186. Sontag E, Luangpirom A, Hladik C, Mudrak I, Ogris E, Speciale S, et al. Altered expression levels of the protein phosphatase 2A ABalphaC enzyme are associated with Alzheimer disease pathology. J Neuropathol Exp Neurol 2004, 63: 287–301.

    PubMed  CAS  Google Scholar 

  187. Gong CX, Singh TJ, Grundke-Iqbal I, Iqbal K. Phosphoprotein phosphatase activities in Alzheimer disease brain. J Neurochem 1993, 61: 921–927.

    PubMed  CAS  Google Scholar 

  188. Liu R, Zhou XW, Tanila H, Bjorkdahl C, Wang JZ, Guan ZZ, et al. Phosphorylated PP2A (tyrosine 307) is associated with Alzheimer neurofibrillary pathology. J Cell Mol Med 2008, 12: 241–257.

    PubMed  CAS  Google Scholar 

  189. Zhou XW, Gustafsson JA, Tanila H, Bjorkdahl C, Liu R, Winblad B, et al. Tau hyperphosphorylation correlates with reduced methylation of protein phosphatase 2A. Neurobiol Dis 2008, 31: 386–394.

    PubMed  CAS  Google Scholar 

  190. Tanimukai H, Grundke-Iqbal I, Iqbal K. Up-regulation of inhibitors of protein phosphatase-2A in Alzheimer’s disease. Am J Pathol 2005, 166: 1761–1771.

    PubMed Central  PubMed  CAS  Google Scholar 

  191. Kins S, Crameri A, Evans DR, Hemmings BA, Nitsch RM, Gotz J. Reduced protein phosphatase 2A activity induces hyperphosphorylation and altered compartmentalization of tau in transgenic mice. J Biol Chem 2001, 276: 38193–38200.

    PubMed  CAS  Google Scholar 

  192. Avila J, Perry G, Martinez-Martin P. Prospects on the origin of Alzheimer’s disease. J Alzheimers Dis 2010, 20: 669–672.

    PubMed  CAS  Google Scholar 

  193. Hanger DP, Hughes K, Woodgett JR, Brion JP, Anderton BH. Glycogen synthase kinase-3 induces Alzheimer’s disease-like phosphorylation of tau: generation of paired helical filament epitopes and neuronal localisation of the kinase. Neurosci Lett 1992, 147: 58–62.

    PubMed  CAS  Google Scholar 

  194. Reynolds CH, Betts JC, Blackstock WP, Nebreda AR, Anderton BH. Phosphorylation sites on tau identified by nanoelectrospray mass spectrometry. J Neurochem 2000, 74: 1587–1595.

    PubMed  CAS  Google Scholar 

  195. Vingtdeux V, Davies P, Dickson D, Marambaud P. AMPK is abnormally activated in tangle- and pre-tangle-bearing neurons in Alzheimer’s disease and other tauopathies. Acta Neuropathologica 2011, 121: 337–349.

    PubMed Central  PubMed  CAS  Google Scholar 

  196. Reynolds CH, Nebreda AR, Gibb GM, Utton MA, Anderton BH. Reactivating kinase/p38 phosphorylates tau protein in vitro. J Neurochem 1997, 69: 191–198.

    PubMed  CAS  Google Scholar 

  197. Reynolds CH, Utton MA, Gibb GM, Yates A, Anderton BH. Stress-activated protein kinase/c-jun N-terminal kinase phosphorylates tau protein. J Neurochem 1997, 68: 1736–1744.

    PubMed  CAS  Google Scholar 

  198. Drewes G, Trinczek B, Illenberger S, Biernat J, Schmitt-Ulms G, Meyer HE, et al. Microtubule-associated Protein/Microtubule Affinity-regulating Kinase (p110mark): A novel protein kinase that regulates tau-microtubule interactions and dynamic instability by phosphorylation at the Alzheimerspecific site Serine 262. J Biol Chem 1995, 270: 7679–7688.

    PubMed  CAS  Google Scholar 

  199. Gupta RP, Abou-Donia MB. Tau phosphorylation by diisopropyl phosphorofluoridate (DFP)-treated hen brain supernatant inhibits its binding with microtubules: role of Ca2+/Calmodulin-dependent protein kinase II in tau phosphorylation. Arch Biochem Biophys 1999, 365: 268–278.

    PubMed  CAS  Google Scholar 

  200. Derkinderen P, Scales TME, Hanger DP, Leung KY, Byers HL, Ward MA, et al. Tyrosine 394 is phosphorylated in Alzheimer’s paired helical filament tau and in fetal tau with c-Abl as the candidate tyrosine kinase. J Neurosci 2005, 25: 6584–6593.

    PubMed  CAS  Google Scholar 

  201. Williamson R, Scales T, Clark BR, Gibb G, Reynolds CH, Kellie S, et al. Rapid tyrosine phosphorylation of neuronal proteins including tau and focal adhesion kinase in response to amyloid-beta peptide exposure: involvement of Src family protein kinases. J Neurosci 2002, 22: 10–20.

    PubMed  CAS  Google Scholar 

  202. Zhu X, Sun Z, Lee HG, Siedlak SL, Perry G, Smith MA. Distribution, levels, and activation of MEK1 in Alzheimer’s disease. J Neurochem 2003, 86: 136–142.

    PubMed  CAS  Google Scholar 

  203. Zhu X, Rottkamp CA, Hartzler A, Sun Z, Takeda A, Boux H, et al. Activation of MKK6, an upstream activator of p38, in Alzheimer’s disease. J Neurochem 2001, 79: 311–318.

    PubMed  CAS  Google Scholar 

  204. Iijima-Ando K, Zhao L, Gatt A, Shenton C, Iijima K. A DNA damage-activated checkpoint kinase phosphorylates tau and enhances tau-induced neurodegeneration. Hum Mol Genet 2010, 19: 1930–1938.

    PubMed Central  PubMed  CAS  Google Scholar 

  205. Leclerc S, Garnier M, Hoessel R, Marko D, Bibb JA, Snyder GL, et al. Indirubins inhibit glycogen synthase kinase-3β and CDK5/P25, two protein kinases involved in abnormal tau phosphorylation in Alzheimer’s disease: A property common to most cyclin-dependent kinase inhibitors? J Biol Chem 2001, 276: 251–260.

    PubMed  CAS  Google Scholar 

  206. Peng CX, Hu J, Liu D, Hong XP, Wu YY, Zhu LQ, et al. Disease-modified glycogen synthase kinase-3beta intervention by melatonin arrests the pathology and memory deficits in an Alzheimer’s animal model. Neurobiol Aging 2013, 34: 1555–1563.

    PubMed  CAS  Google Scholar 

  207. Cheung ZH, Ip NY. Cdk5: a multifaceted kinase in neurodegenerative diseases. Trends Cell Biol 2012, 22: 169–175.

    PubMed  CAS  Google Scholar 

  208. Sundaram JR, Poore CP, Sulaimee NH, Pareek T, Asad AB, Rajkumar R, et al. Specific inhibition of p25/Cdk5 activity by the Cdk5 inhibitory peptide reduces neurodegeneration in vivo. J Neurosci 2013, 33: 334–343.

    PubMed  CAS  Google Scholar 

  209. Basurto-Islas G, Grundke-Iqbal I, Tung YC, Liu F, Iqbal K. Activation of asparaginyl endopeptidase leads to Tau hyperphosphorylation in Alzheimer disease. J Biol Chem 2013, 288: 17495–17507.

    PubMed  CAS  PubMed Central  Google Scholar 

  210. Wasik U, Schneider G, Mietelska-Porowska A, Mazurkiewicz M, Fabczak H, Weis S, et al. Calcyclin binding protein andSiah-1 interacting protein in Alzheimer’s disease pathology: neuronal localization and possible function. Neurobiol Aging 2013, 34: 1380–1388.

    PubMed  CAS  Google Scholar 

  211. Marques SC, Oliveira CR, Pereira CM, Outeiro TF. Epigenetics in neurodegeneration: a new layer of complexity. Prog Neuropsychopharmacol Biol Psychiatry 2011, 35: 348–355.

    PubMed  CAS  Google Scholar 

  212. Zawia NH, Lahiri DK, Cardozo-Pelaez F. Epigenetics, oxidative stress, and Alzheimer disease. Free Radic Biol Med 2009, 46: 1241–1249.

    PubMed Central  PubMed  CAS  Google Scholar 

  213. Fuso A, Seminara L, Cavallaro RA, D’Anselmi F, Scarpa S. S-adenosylmethionine/homocysteine cycle alterations modify DNA methylation status with consequent deregulation of PS1 and BACE and beta-amyloid production. Mol Cell Neurosci 2005, 28: 195–204.

    PubMed  CAS  Google Scholar 

  214. Fuso A, Nicolia V, Pasqualato A, Fiorenza MT, Cavallaro RA, Scarpa S. Changes in Presenilin 1 gene methylation pattern in diet-induced B vitamin deficiency. Neurobiol Aging 2011, 32: 187–199.

    PubMed  CAS  Google Scholar 

  215. Chen KL, Wang SS, Yang YY, Yuan RY, Chen RM, Hu CJ. The epigenetic effects of amyloid-beta(1–40) on global DNA and neprilysin genes in murine cerebral endothelial cells. Biochem Biophys Res Commun 2009, 378: 57–61.

    PubMed  CAS  Google Scholar 

  216. Wu J, Basha MR, Brock B, Cox DP, Cardozo-Pelaez F, McPherson CA, et al. Alzheimer’s disease (AD)-like pathology in aged monkeys after infantile exposure to environmental metal lead (Pb): evidence for a developmental origin and environmental link for AD. J Neurosci 2008, 28: 3–9.

    PubMed Central  PubMed  CAS  Google Scholar 

  217. Fischer A, Sananbenesi F, Wang X, Dobbin M, Tsai L-H. Recovery of learning and memory is associated with chromatin remodelling. Nature 2007, 447: 178–182.

    PubMed  CAS  Google Scholar 

  218. Perez M, Santa-Maria I, De Barreda EG, Zhu X, Cuadros R, Cabrero JR, et al. Tau — an inhibitor of deacetylase HDAC6 function. J Neurochem 2009, 109: 1756–1766.

    PubMed  CAS  Google Scholar 

  219. Green KN, Steffan JS, Martinez-Coria H, Sun X, Schreiber SS, Thompson LM, et al. Nicotinamide restores cognition in Alzheimer’s disease transgenic mice via a mechanism involving sirtuin inhibition and selective reduction of Thr231-phosphotau. J Neurosci 2008, 28: 11500–11510.

    PubMed Central  PubMed  CAS  Google Scholar 

  220. Ricobaraza A, Cuadrado-Tejedor M, Perez-Mediavilla A, Frechilla D, Del Rio J, Garcia-Osta A. Phenylbutyrate ameliorates cognitive deficit and reduces tau pathology in an Alzheimer’s disease mouse model. Neuropsychopharmacology 2009, 34: 1721–1732.

    PubMed  CAS  Google Scholar 

  221. Sweatt JD. Behavioural neuroscience: Down memory lane. Nature 2007, 447: 151–152.

    PubMed  CAS  Google Scholar 

  222. Francis YI, Fa M, Ashraf H, Zhang H, Staniszewski A, Latchman DS, et al. Dysregulation of histone acetylation in the APP/PS1 mouse model of Alzheimer’s disease. J Alzheimers Dis 2009, 18: 131–139.

    PubMed  CAS  Google Scholar 

  223. Zhang K, Schrag M, Crofton A, Trivedi R, Vinters H, Kirsch W. Targeted proteomics for quantification of histone acetylation in Alzheimer’s disease. Proteomics 2012, 12: 1261–1268.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunjiu Zhong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wainaina, M.N., Chen, Z. & Zhong, C. Environmental factors in the development and progression of late-onset Alzheimer’s disease. Neurosci. Bull. 30, 253–270 (2014). https://doi.org/10.1007/s12264-013-1425-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-013-1425-9

Keywords

Navigation