Skip to main content

Advertisement

Log in

MiR-206 decreases brain-derived neurotrophic factor levels in a transgenic mouse model of Alzheimer’s disease

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

MicroRNA alterations have been reported in patients with Alzheimer’s disease (AD) and AD mouse models. We now report that miR-206 is upregulated in the hippocampal tissue, cerebrospinal fluid, and plasma of embryonic APP/PS1 transgenic mice. The increased miR-206 downregulates the expression of brain-derived neurotrophic factor (BDNF). BDNF is neuroprotective against cell death after various insults, but in embryonic and newborn APP/PS1 mice it is decreased. Thus, a specific microRNA alteration may contribute to AD pathology by downregulating BDNF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Price DL, Sisodia SS, Gandy SE. Amyloid beta amyloidosis in Alzheimer’s disease. Curr Opin Neurol 1995, 8: 268–274.

    Article  PubMed  CAS  Google Scholar 

  2. Chan AW, Kocerha J. The path to microRNA therapeutics in psychiatric and neurodegenerative disorders. Front Genet 2012, 3: 82.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  3. Delay C, Mandemakers W, Hebert SS. MicroRNAs in Alzheimer’s disease. Neurobiol Dis 2012, 46: 285–290.

    Article  PubMed  CAS  Google Scholar 

  4. Delay C, Hebert SS. MicroRNAs and Alzheimer’s disease mouse models: Current insights and future research avenues. Int J Alzheimers Dis 2011, 2011: 894938.

    PubMed Central  PubMed  Google Scholar 

  5. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science 2001, 294: 853–858.

    Article  PubMed  CAS  Google Scholar 

  6. Jin P, Zarnescu DC, Ceman S, Nakamoto M, Mowrey J, Jongens TA, et al. Biochemical and genetic interaction between the fragile X mental retardation protein and the microRNA pathway. Nat Neurosci 2004, 7: 113–117.

    Article  PubMed  CAS  Google Scholar 

  7. Ashraf SI, McLoon AL, Sclarsic SM, Kunes S. Synaptic protein synthesis associated with memory is regulated by the RISC pathway in Drosophila. Cell 2006, 124: 191–205.

    Article  PubMed  CAS  Google Scholar 

  8. Elmen J, Lindow M, Schutz S, Lawrence M, Petri A, Obad S, et al. LNA-mediated microRNA silencing in non-human primates. Nature 2008, 452: 896–899.

    Article  PubMed  CAS  Google Scholar 

  9. Hollander JA, Im HI, Amelio AL, Kocerha J, Bali P, Lu Q, et al. Striatal microRNA controls cocaine intake through CREB signalling. Nature 2010, 466: 197–202.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Peters L, Meister G. Argonaute proteins: mediators of RNA silencing. Mol Cell 2007, 26: 611–623.

    Article  PubMed  CAS  Google Scholar 

  11. Eulalio A, Huntzinger E, Nishihara T, Rehwinkel J, Fauser M, Izaurralde E. Deadenylation is a widespread effect of miRNA regulation. RNA 2009, 15: 21–32.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  12. Meister G. miRNAs get an early start on translational silencing. Cell 2007, 131: 25–28.

    Article  PubMed  CAS  Google Scholar 

  13. Baek D, Villen J, Shin C, Camargo FD, Gygi SP, Bartel DP. The impact of microRNAs on protein output. Nature 2008, 455: 64–71.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Selbach M, Schwanhausser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N. Widespread changes in protein synthesis induced by microRNAs. Nature 2008, 455: 58–63.

    Article  PubMed  CAS  Google Scholar 

  15. Diniz BS, Teixeira AL. Brain-derived neurotrophic factor and Alzheimer’s disease: physiopathology and beyond. Neuromolecular Med 2011, 13: 217–222.

    Article  PubMed  CAS  Google Scholar 

  16. Tapia-Arancibia L, Aliaga E, Silhol M, Arancibia S. New insights into brain BDNF function in normal aging and Alzheimer disease. Brain Res Rev 2008, 59: 201–220.

    Article  PubMed  CAS  Google Scholar 

  17. Chao MV. Neurotrophins and their receptors: a convergence point for many signalling pathways. Nat Rev Neurosci 2003, 4: 299–309.

    Article  PubMed  CAS  Google Scholar 

  18. Reichardt LF. Neurotrophin-regulated signalling pathways. Philos Trans R Soc Lond B Biol Sci 2006, 361: 1545–1564.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  19. Arancibia S, Silhol M, Mouliere F, Meffre J, Hollinger I, Maurice T, et al. Protective effect of BDNF against beta-amyloid induced neurotoxicity in vitro and in vivo in rats. Neurobiol Dis 2008, 31: 316–326.

    Article  PubMed  CAS  Google Scholar 

  20. Nagahara AH, Merrill DA, Coppola G, Tsukada S, Schroeder BE, Shaked GM, et al. Neuroprotective effects of brain-derived neurotrophic factor in rodent and primate models of Alzheimer’s disease. Nat Med 2009, 15: 331–337.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  21. Poon WW, Blurton-Jones M, Tu CH, Feinberg LM, Chabrier MA, Harris JW, et al. beta-Amyloid impairs axonal BDNF retrograde trafficking. Neurobiol Aging 2011, 32: 821–833.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  22. Peng S, Garzon DJ, Marchese M, Klein W, Ginsberg SD, Francis BM, et al. Decreased brain-derived neurotrophic factor depends on amyloid aggregation state in transgenic mouse models of Alzheimer’s disease. J Neurosci 2009, 29: 9321–9329.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Kunugi H, Ueki A, Otsuka M, Isse K, Hirasawa H, Kato N, et al. A novel polymorphism of the brain-derived neurotrophic factor (BDNF) gene associated with late-onset Alzheimer’s disease. Mol Psychiatry 2001, 6: 83–86.

    Article  PubMed  CAS  Google Scholar 

  24. Tsai SJ, Hong CJ, Liu HC, Liu TY, Hsu LE, Lin CH. Association analysis of brain-derived neurotrophic factor Val66Met polymorphisms with Alzheimer’s disease and age of onset. Neuropsychobiology 2004, 49: 10–12.

    Article  PubMed  CAS  Google Scholar 

  25. Tsai SJ, Hong CJ, Liu HC, Liu TY, Liou YJ. The brain-derived neurotrophic factor gene as a possible susceptibility candidate for Alzheimer’s disease in a chinese population. Dement Geriatr Cogn Disord 2006, 21: 139–143.

    Article  PubMed  CAS  Google Scholar 

  26. Olin D, MacMurray J, Comings DE. Risk of late-onset Alzheimer’s disease associated with BDNF C270T polymorphism. Neurosci Lett 2005, 381: 275–278.

    Article  PubMed  CAS  Google Scholar 

  27. Cui J, Wang Y, Dong Q, Wu S, Xiao X, Hu J, et al. Morphine protects against intracellular amyloid toxicity by inducing estradiol release and upregulation of Hsp70. J Neurosci 2011, 31: 16227–16240.

    Article  PubMed  CAS  Google Scholar 

  28. Wang Y, Cui J, Sun X, Zhang Y. Tunneling-nanotube development in astrocytes depends on p53 activation. Cell Death Differ 2011, 18: 732–742.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  29. Zhang Y, Champagne N, Beitel LK, Goodyer CG, Trifiro M, LeBlanc A. Estrogen and androgen protection of human neurons against intracellular amyloid beta1–42 toxicity through heat shock protein 70. J Neurosci 2004, 24: 5315–5321.

    Article  PubMed  CAS  Google Scholar 

  30. Zhang Y, McLaughlin R, Goodyer C, LeBlanc A. Selective cytotoxicity of intracellular amyloid beta peptide1–42 through p53 and Bax in cultured primary human neurons. J Cell Biol 2002, 156: 519–529.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  31. Cui J, Chen Q, Yue X, Jiang X, Gao GF, Yu LC, et al. Galanin protects against intracellular amyloid toxicity in human primary neurons. J Alzheimers Dis 2010, 19: 529–544.

    PubMed  CAS  Google Scholar 

  32. Zhang Y, Hong Y, Bounhar Y, Blacker M, Roucou X, Tounekti O, et al. p75 neurotrophin receptor protects primary cultures of human neurons against extracellular amyloid beta peptide cytotoxicity. J Neurosci 2003, 23: 7385–7394.

    PubMed  CAS  Google Scholar 

  33. Zhang Y, Goodyer C, LeBlanc A. Selective and protracted apoptosis in human primary neurons microinjected with active caspase-3, -6, -7, and -8. J Neurosci 2000, 20: 8384–8389.

    PubMed  CAS  Google Scholar 

  34. Rothman SM, Olney JW. Glutamate and the pathophysiology of hypoxic—ischemic brain damage. Ann Neurol 1986, 19: 105–111.

    Article  PubMed  CAS  Google Scholar 

  35. Ji Y, Lu Y, Yang F, Shen W, Tang TT, Feng L, et al. Acute and gradual increases in BDNF concentration elicit distinct signaling and functions in neurons. Nat Neurosci 2010, 13: 302–309.

    Article  PubMed  CAS  Google Scholar 

  36. Klein AB, Williamson R, Santini MA, Clemmensen C, Ettrup A, Rios M, et al. Blood BDNF concentrations reflect brain-tissue BDNF levels across species. Int J Neuropsychopharmacol 2011, 14: 347–353.

    Article  PubMed  CAS  Google Scholar 

  37. Lee ST, Chu K, Jung KH, Kim JH, Huh JY, Yoon H, et al. miR-206 regulates brain-derived neurotrophic factor in Alzheimer disease model. Ann Neurol 2012, 72: 269–277.

    Article  PubMed  CAS  Google Scholar 

  38. Chen TJ, Wang DC, Chen SS. Amyloid-beta interrupts the PI3K-Akt-mTOR signaling pathway that could be involved in brain-derived neurotrophic factor-induced Arc expression in rat cortical neurons. J Neurosci Res 2009, 87: 2297–2307.

    Article  PubMed  CAS  Google Scholar 

  39. Echeverria V, Berman DE, Arancio O. Oligomers of beta-amyloid peptide inhibit BDNF-induced arc expression in cultured cortical Neurons. Curr Alzheimer Res 2007, 4: 518–521.

    Article  PubMed  CAS  Google Scholar 

  40. Wang DC, Chen SS, Lee YC, Chen TJ. Amyloid-beta at sublethal level impairs BDNF-induced arc expression in cortical neurons. Neurosci Lett 2006, 398: 78–82.

    Article  PubMed  CAS  Google Scholar 

  41. Bramham CR, Worley PF, Moore MJ, Guzowski JF. The immediate early gene arc/arg3.1: regulation, mechanisms, and function. J Neurosci 2008, 28: 11760–11767.

    CAS  Google Scholar 

  42. Forlenza OV, Diniz BS, Talib LL, Mendonca VA, Ojopi EB, Gattaz WF, et al. Increased serum IL-1beta level in Alzheimer’s disease and mild cognitive impairment. Dement Geriatr Cogn Disord 2009, 28: 507–512.

    Article  PubMed  CAS  Google Scholar 

  43. Diniz BS, Teixeira AL, Ojopi EB, Talib LL, Mendonca VA, Gattaz WF, et al. Higher serum sTNFR1 level predicts conversion from mild cognitive impairment to Alzheimer’s disease. J Alzheimers Dis 2010, 22: 1305–1311.

    PubMed  CAS  Google Scholar 

  44. Mrak RE. Neuropathology and the neuroinflammation idea. J Alzheimers Dis 2009, 18: 473–481.

    PubMed  Google Scholar 

  45. Swerdlow RH, Burns JM, Khan SM. The Alzheimer’s disease mitochondrial cascade hypothesis. J Alzheimers Dis 2010, 20 Suppl 2: S265–279.

    Google Scholar 

  46. Shruster A, Melamed E, Offen D. Neurogenesis in the aged and neurodegenerative brain. Apoptosis 2010, 15: 1415–1421.

    Article  PubMed  CAS  Google Scholar 

  47. Chen Q, Nakajima A, Choi SH, Xiong X, Sisodia SS, Tang YP. Adult neurogenesis is functionally associated with AD-like neurodegeneration. Neurobiol Dis 2008, 29: 316–326.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  48. Forlenza OV, Diniz BS, Radanovic M, Santos FS, Talib LL, Gattaz WF. Disease-modifying properties of long-term lithium treatment for amnestic mild cognitive impairment: randomised controlled trial. Br J Psychiatry 2011, 198: 351–356.

    Article  PubMed  Google Scholar 

  49. Forlenza OV, Torres CA, Talib LL, de Paula VJ, Joaquim HP, Diniz BS, et al. Increased platelet GSK3B activity in patients with mild cognitive impairment and Alzheimer’s disease. J Psychiatr Res 2011, 45: 220–224.

    Article  PubMed  Google Scholar 

  50. Hooper C, Killick R, Lovestone S. The GSK3 hypothesis of Alzheimer’s disease. J Neurochem 2008, 104: 1433–1439.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, N., Cao, Z. & Zhang, Y. MiR-206 decreases brain-derived neurotrophic factor levels in a transgenic mouse model of Alzheimer’s disease. Neurosci. Bull. 30, 191–197 (2014). https://doi.org/10.1007/s12264-013-1419-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-013-1419-7

Keywords

Navigation