Skip to main content
Log in

Uric formaldehyde levels are negatively correlated with cognitive abilities in healthy older adults

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Recent studies have shown that the abnormal accumulation of endogenous formaldehyde could be a critical factor in age-related cognitive decline. The aim of this study was to estimate the correlation between uric formaldehyde and general cognitive abilities in a community-based elderly population, and to measure the extent and direction in which the correlation varied with demographic characteristics. Using a double-blind design, formaldehyde in human urine was analyzed by high-performance liquid chromatography (n = 604), and general cognitive abilities were measured using the Montreal Cognitive Assessment (MoCA). Demographic characteristics, in terms of age, gender, residential region, and education were taken into consideration. We found that uric formaldehyde levels were inversely correlated with the MoCA score, and the concentration varied with demographic features: higher odds of a high formaldehyde level occurred among the less educated and those living in old urban or rural areas. In cytological experiments, the level of cellular formaldehyde released into the medium increased as SH-SY5Y and BV2 cells were incubated for three days. Formaldehyde in excess impaired the processes of N2a cells and neurites of primary cultured rat hippocampal cells. However, removal of formaldehyde markedly rescued and regenerated the processes of N2a cells. These results demonstrated a negative correlation between the endogenous formaldehyde and general cognitive abilities. High formaldehyde levels could be a risk factor for cognitive impairment in older adults, and could be developed as a non-invasive marker for detection and monitoring of age-related cognitive impairment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shi H, Wang Z. A brief review on studies of Alzheimer’s disease in China: Its mechanism, imaging and therapy. Sci China Life Sci 2013, 56: 1142–1144.

    Article  PubMed  Google Scholar 

  2. Flyvholm MA, Menne T. Allergic contact dermatitis from formaldehyde. A case study focussing on sources of formaldehyde exposure. Contact Dermat 1992, 27: 27–36.

    CAS  Google Scholar 

  3. Perna RB, Bordini EJ, Deinzer-Lifrak M. A case of claimed persistent neuropsychological sequelae of chronic formaldehyde exposure: clinical, psychometric, and functional findings. Arch Clin Neuropsychol 2001, 16: 33–44.

    Article  PubMed  CAS  Google Scholar 

  4. Chen K, Kazachkov M, Yu P. Effect of aldehydes derived from oxidative deamination and oxidative stress on β-amyloid aggregation; pathological implications to Alzheimer’s disease. J Neural Transm 2007, 114: 835–839.

    Article  PubMed  CAS  Google Scholar 

  5. Marceaux JC, Dilks LS, Hixson S. Neuropsychological effects of formaldehyde use. J Psychoactive Drugs 2008, 40: 207–210.

    Article  PubMed  Google Scholar 

  6. Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA, et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 2004, 119: 941–953.

    Article  PubMed  CAS  Google Scholar 

  7. Wang J, Su T, Liu Y, Yue Y, He R. Postoperative Cognitive Dysfunction is Correlated with Urine Formaldehyde in Elderly Noncardiac Surgical Patients. Neurochem Res 2012: 1–10.

    Google Scholar 

  8. Tong Z, Zhang J, Luo W, Wang W, Li F, Li H, et al. Urine formaldehyde level is inversely correlated to mini mental state examination scores in senile dementia. Neurobiol Aging 2011, 32: 31–41.

    Article  PubMed  CAS  Google Scholar 

  9. Tong Z, Han C, Luo W, Wang X, Li H, Luo H, et al. Accumulated hippocampal formaldehyde induces age-dependent memory decline. Age 2012: 1–14.

    Google Scholar 

  10. Miao J, He R. Chronic formaldehyde-mediated impairments and age-related dement ia. In: Martins LM (Ed.). Neurodegeneration. Rijeka: InTech, 2012: 59–76.

    Google Scholar 

  11. Chen K, Maley J, Yu PH. Potential implications of endogenous aldehydes in β-amyloid misfolding, oligomerization and fibrillogenesis. J Neurochem 2006, 99: 1413–1424.

    Article  PubMed  CAS  Google Scholar 

  12. Chen JY, Sun MR, Wang XH, Lu J, Wei Y, Tan Y, et al. The herbal compound geniposide rescues formaldehyde-induced apoptosis in N2a neuroblastoma cells. Sci China Life Sci 2014, 57: 412–421. doi: 10.1007/s11427-014-4643-0

    Article  CAS  Google Scholar 

  13. Hua Q, He RQ. Effect of phosphorylation and aggregation on tau binding to DNA. Protein Pept Lett 2002, 9: 349–357.

    Article  PubMed  CAS  Google Scholar 

  14. Nie CL, Zhang W, Zhang D, He RQ. Changes in conformation of human neuronal tau during denaturation in formaldehyde solution. Protein Pept Lett 2005, 12: 75–78.

    Article  PubMed  CAS  Google Scholar 

  15. Yu PH, Cauglin C, Wempe KL, Gubisne-Haberle D. A novel sensitive high-performance liquid chromatography/electrochemical procedure for measuring formaldehyde produced from oxidative deamination of methylamine and in biological samples. Anal Biochem 2003, 318: 285–290.

    Article  PubMed  CAS  Google Scholar 

  16. Fangxu L, Jing L, Yajia X, Zhiqian T, Chunlai N, Rongqiao H. Formaldehyde-mediated chronic damage may be related to sporadic neurodegeneration. Prog in Biochem Biophys 2008, 35: 394–400.

    Google Scholar 

  17. He RQ, Lu J, Miao JY. Formaldehyde stress. Sci China Life Sci 2010, 53: 1399–1404.

    Article  PubMed  CAS  Google Scholar 

  18. Lu J, Miao J, Su T, Liu Y, He R. Formaldehyde induces hyperphosphorylation and polymerization of Tau protein both in vitro and in vivo. Biochim Biophys Acta 2013, 1830: 4102–4116.

    Article  PubMed  CAS  Google Scholar 

  19. Lu Y, He HJ, Zhou J, Miao JY, Lu J, He YG, et al. Hyperphosphorylation results in tau dysfunction in DNA folding and protection. J Alzheimers Dis 2013, 37: 551–563.

    PubMed  Google Scholar 

  20. Tong Z, Han C, Luo W, Li H, Luo H, Qiang M, et al. Aging-associated excess formaldehyde leads to spatial memory deficits. Sci Rep 2013, 3: 1807.

    PubMed Central  PubMed  Google Scholar 

  21. Szende B, Tyihak E. Effect of formaldehyde on cell proliferation and death. Cell Biol Int 2010 34: 1273–1282.

    Article  PubMed  CAS  Google Scholar 

  22. Tong Z, Han C, Miao J, Lu J, He R. Excess endogenous formaldehyde induces memory decline. Prog Biochem Biophysics 2011, 38: 575–579.

    Article  CAS  Google Scholar 

  23. Tong Z, Wang Y, Luo W, He R. Endogenous formaldehyde and related diseases in human. Prog Nat Sci 2008, 18: 1202–1210.

    Google Scholar 

  24. Wang WS, Hao ZH, Zhang L. Research on urine formaldehyde concentration in Alzheimer’s disease elderly and normal elderly. Chin J Geriatr Heart Brain Vessel Dis 2010, 12: 721–722.

    Google Scholar 

  25. Hao ZH, Li WJ, Li M, He RQ. Correlation of urine formaldehyde levels and mini mental state examination scores in Alzheimer’s disease. Chin J Gerontol 2011, 31: 3442–3444.

    CAS  Google Scholar 

  26. Tong Z, Han C, Luo W, Wang X, Li H, Luo H, et al. Accumulated hippocampal formaldehyde induces age-dependent memory decline. Age 2013, 35: 583–596.

    Article  PubMed  Google Scholar 

  27. Tong Z, Zhang J, Luo W, Wang W, Li F, Li H, et al. Urine formaldehyde level is inversely correlated to mini mental state examination scores in senile dementia. Neurobiol Aging 2011, 32: 31–41.

    Article  PubMed  CAS  Google Scholar 

  28. Shao C, Wang Y, Gao Y. Applications of urinary proteomics in biomarker discovery. Sci China Life Sci 2011, 54: 409–417.

    Article  PubMed  CAS  Google Scholar 

  29. Cummings JL, Mega M, Gray K, Rosenberg-Thompson S, Carusi DA, Gornbein J. The Neuropsychiatric Inventory comprehensive assessment of psychopathology in dementia. Neurology 1994, 44: 2308–2308.

    Article  PubMed  CAS  Google Scholar 

  30. Galasko D, Bennett D, Sano M, Ernesto C, Thomas R, Grundman M, et al. An inventory to assess activities of daily living for clinical trials in Alzheimer’s disease. Alzheimer Dis Assoc Disord 1997, 11: 33–39.

    Article  Google Scholar 

  31. Reisberg B, Ferris SH, de Leon MJ, Crook T. The Global Deterioration Scale for assessment of primary degenerative dementia. Am J Psychiatry 1982, 39: 1136–1139.

    Google Scholar 

  32. Morris JC. The Clinical Dementia Rating (CDR): current version and scoring rules. Neurology 1993, 43: 2412–2414.

    Article  PubMed  CAS  Google Scholar 

  33. Hachinski VC, Iliff LD, Zilhka E, Du Boulay GH, McAllister VL, Marshall J, et al. Cerebral blood flow in dementia. Arch Neurol 1975, 32: 632–637.

    Article  PubMed  CAS  Google Scholar 

  34. First MB, SpitzeR RL, Gibbon M, Williams JBW. User’s Guide for the Structured Clinical Interview for DSM-IV Axis I Disorders: SCID-1 Clinician Version. Washington, DC: American Psychiatric Press, 1997.

    Google Scholar 

  35. Nasreddine ZS, Phillips NA, Bédirian V, Charbonneau S, Whitehead V, Collin I, et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc 2005, 53: 695–699.

    Article  PubMed  Google Scholar 

  36. Folstein MF, Folstein SE, McHugh PR. Mini-Mental State: a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 1975, 12(3): 189–198.

    Article  PubMed  CAS  Google Scholar 

  37. Luis CA, Keegan AP, Mullan M. Cross validation of the Montreal Cognitive Assessment in community dwelling older adults residing in the Southeastern US. Int J Geriatr Psychiatry 2009, 24: 197–201.

    Article  PubMed  Google Scholar 

  38. Yu J, Li J, Huang X. The Beijing version of the montreal cognitive assessment as a brief screening tool for mild cognitive impairment: a community-based study. BMC Psychiatry 2012, 12: 156.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Su T, Wei Y, He R. Assay of brain endogenous formaldehyde with 2, 4-dinitrophenylhydrazine through UV-HPLC. Prog Biochem Biophys 2011, 38: 1171–1177.

    Article  CAS  Google Scholar 

  40. Li YP, Bushnell AF, Lee CM, Perlmutter LS, Wong SK. Beta-amyloid induces apoptosis in human-derived neurotypic SHSY5Y cells. Brain Res 1996, 738: 196–204.

    Article  PubMed  CAS  Google Scholar 

  41. Petro KA, Schengrund CL. Membrane raft disruption promotes axonogenesis in n2a neuroblastoma cells. Neurochem Res 2009, 34: 29–37.

    Article  PubMed  CAS  Google Scholar 

  42. Molder A, Sebesta M, Gustafsson M, Gisselson L, Wingren AG, Alm K. Non-invasive, label-free cell counting and quantitative analysis of adherent cells using digital holography. J Microsc 2008, 232: 240–247.

    Article  PubMed  CAS  Google Scholar 

  43. Xu Z, Xu RX, Liu BS, Jiang XD, Huang T, Ding LS, et al. Time window characteristics of cultured rat hippocampal neurons subjected to ischemia and reperfusion. Chin J Traumatol 2005, 8: 179–182.

    PubMed  Google Scholar 

  44. Nie CL, Wei Y, Chen X, Liu YY, Dui W, Liu Y, et al. Formaldehyde at low concentration induces protein tau into globular amyloid-like aggregates in vitro and in vivo. PLoS One 2007, 2: e629.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  45. Nie CL, Wang XS, Liu Y, Perrett S, He RQ. Amyloid-like aggregates of neuronal tau induced by formaldehyde promote apoptosis of neuronal cells. BMC Neurosci 2007, 8: 9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  46. Heffner TG, Hartman JA, Seiden LS. A rapid method for the regional dissection of the rat brain. Pharmacol Biochem Behav 1980, 13: 453–456.

    Article  PubMed  CAS  Google Scholar 

  47. Ke Y, Qin X, Zhang Y, Li H, Li R, Yuan J, et al. In vitro study on cytotoxicity and intracellular formaldehyde concentration changes after exposure to formaldehyde and its derivatives. Hum Exp Toxicol 2013. doi: 10.1177/0960327113510538

    Google Scholar 

  48. Qiang M, Xiao R, Su T, Wu BB, Tong ZQ, Liu Y, et al. A novel mechanism for endogenous formaldehyde elevation in SAMP8 mouse. J Alzheimers Dis 2014. doi: 10.3233/JAD-131595.

    Google Scholar 

  49. Wei Y MJ, Liu Y. Endogenous and exogenous factors in hyperphosphorylation of tau in Alzheimer’s disease. Prog Biochem Biophys 2012, 39: 778–784.

    Article  CAS  Google Scholar 

  50. Luo W, Li H, Zhang Y, Ang CY. Determination of formaldehyde in blood plasma by high-performance liquid chromatography with fluorescence detection. J Chromatogr B Biomed Sci Appl 2001, 753: 253–257.

    Article  PubMed  CAS  Google Scholar 

  51. Kalász H. Biological role of formaldehyde, and cycles related to methylation, demethylation, and formaldehyde production. Mini Rev Med Chem 2003, 3: 175–192.

    Article  PubMed  Google Scholar 

  52. Wang Tan, Sun Xiulian. Molecular regulation of BACE1 and its function at the early onset of Alzheimer’s disease. Prog Biochem Biophys 2012, 39: 709–714.

    Article  CAS  Google Scholar 

  53. Lin Lü, Shujun X, Qinwen W. The relationship between astrocyte-mediated metabolism of β-amyloid protein and pathogenesis of the early stages of Alzheimer’s disease. Prog Biochem Biophys 2012, 39: 715–720.

    Article  CAS  Google Scholar 

  54. Hua Qian, Ding Haimin, Mi L. Progress on Aβ-targeted therapeutic strategies for Alzheimer’s disease. Prog Biochem Biophys 2012, 39: 734–740.

    Article  CAS  Google Scholar 

  55. Chen K, Kazachkov M, Yu PH. Effect of aldehydes derived from oxidative deamination and oxidative stress on betaamyloid aggregation; pathological implications to Alzheimer’s disease. J Neural Transm 2007, 114: 835–839.

    Article  PubMed  CAS  Google Scholar 

  56. Yu PH, Cauglin C, Wempe KL, Gubisne-Haberle D. A novel sensitive high-performance liquid chromatography/electrochemical procedure for measuring formaldehyde produced from oxidative deamination of methylamine and in biological samples. Anal Biochem 2003, 318: 285–290.

    Article  PubMed  CAS  Google Scholar 

  57. He R-Q. The research window of Alzheimer’s disease should be brought forward. Prog Biochem Biophys 2012, 39: 692–697.

    Article  Google Scholar 

  58. LI T, QIANG M, HE R-Q. Chronic Dehydration and regularly drinking water to mitigate age-related cognitive impairment. Acta Neuropharmacologica 2012, 2: 43–51.

    Google Scholar 

  59. Ridpath JR, Nakamura A, Tano K, Luke AM, Sonoda E, Arakawa H, et al. Cells deficient in the FANC/BRCA pathway are hypersensitive to plasma levels of formaldehyde. Cancer Res 2007, 67: 11117–11122.

    Article  PubMed  CAS  Google Scholar 

  60. Nishiyama R, Qi L, Lacey M, Ehrlich M. Both hypomethylation and hypermethylation in a 0.2-kb region of a DNA repeat in cancer. Mol Cancer Res 2005, 3: 617–626.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  61. Han Y, Li Y, Xiao X, Liu J, Meng XL, Liu FY, et al. Formaldehyde up-regulates TRPV1 through MAPK and PI3K signaling pathways in a rat model of bone cancer pain. Neurosci Bull 2012, 28: 165–172.

    Article  PubMed  CAS  Google Scholar 

  62. Dahl AR, Hadley WM. Formaldehyde production promoted by rat nasal cytochrome P-450-dependent monooxygenases with nasal decongestants, essences, solvents, air pollutants, nicotine, and cocaine as substrates. Toxicol Appl Pharmacol 1983, 67: 200–205.

    Article  PubMed  CAS  Google Scholar 

  63. Keys A, Taylor HL, Grande F. Basal metabolism and age of adult man. Metabolism 1973, 22: 579–587.

    Article  PubMed  CAS  Google Scholar 

  64. Su Y, Ma Z. Research on China’s rural environmental pollution problems and corresponding countemeasures in rural modernizing process. China Population, Resources and Environment 2006, 16: 12–18.

    Google Scholar 

  65. Retfalvi T, Nemeth Z, Sarudi I, Albert L. Alteration of endogenous formaldehyde level following mercury accumulation in different pig tissues. Acta Biol Hung 1998, 49: 375–379.

    PubMed  CAS  Google Scholar 

  66. Ely J. Mercury induced Alzheimer’s disease: accelerating incidence? Bull Environ Contam Toxicol 2001, 67: 800–806.

    Article  PubMed  CAS  Google Scholar 

  67. Hachinski VC, Iliff LD, Zilhka E, Du Boulay GH, McAllister VL, Marshall J, et al. Cerebral blood flow in dementia. Arch Neurol 1975, 32: 632–637.

    Article  PubMed  CAS  Google Scholar 

  68. Del Ser T, Hachinski V, Merskey H, Munoz DG. An autopsy-verified study of the effect of education on degenerative dementia. Brain 1999, 122: 2309–2319.

    Article  PubMed  Google Scholar 

  69. Coppedè F. One-carbon metabolism and Alzheimer’s disease: focus on epigenetics. Curr Genomics 2010, 11: 246–260.

    Article  PubMed Central  PubMed  Google Scholar 

  70. Park DC, Reuter-Lorenz P. The adaptive brain: aging and neurocognitive scaffolding. Annu Rev Psychol 2009, 60: 173–196.

    Article  PubMed Central  PubMed  Google Scholar 

  71. Li Juan, Yu jing, Yanan N. Neuropsychological impairment characteristics of MCI and its early detection and intervention: prevent and delay the onset of AD. Prog Biochem Biophys 2012, 39: 804–810.

    Article  Google Scholar 

  72. Machado S, Portella CE, Silva JG, Velasques B, Bastos VH, Cunha M, et al. Learning and implicit memory: mechanisms and neuroplasticity. Rev Neurol 2008, 46: 543–549.

    PubMed  CAS  Google Scholar 

  73. Gao Y. Urine-an untapped goldmine for biomarker discovery? Sci China Life Sci 2013, 56: 1145–1146.

    Article  PubMed  Google Scholar 

  74. Shcherbakova LN, Tel’pukhov VI, Trenin SO, Bashilov IA, Lapkina TI. Permeability of the blood-brain barrier to intra-arterial formaldehyde. Biull Eksp Biol Med 1986, 102: 573–575.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Juan Li or Rongqiao He.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, J., Su, T., Zhou, T. et al. Uric formaldehyde levels are negatively correlated with cognitive abilities in healthy older adults. Neurosci. Bull. 30, 172–184 (2014). https://doi.org/10.1007/s12264-013-1416-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-013-1416-x

Keywords

Navigation