Skip to main content

Advertisement

Log in

Advances in longitudinal studies of amnestic mild cognitive impairment and Alzheimer’s disease based on multi-modal MRI techniques

  • Review
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Amnestic mild cognitive impairment (aMCI) is a prodromal stage of Alzheimer’s disease (AD), and 75%–80% of aMCI patients finally develop AD. So, early identification of patients with aMCI or AD is of great significance for prevention and intervention. According to cross-sectional studies, it is known that the hippocampus, posterior cingulate cortex, and corpus callosum are key areas in studies based on structural MRI (sMRI), functional MRI (fMRI), and diffusion tensor imaging (DTI) respectively. Recently, longitudinal studies using each MRI modality have demonstrated that the neuroimaging abnormalities generally involve the posterior brain regions at the very beginning and then gradually affect the anterior areas during the progression of aMCI to AD. However, it is not known whether follow-up studies based on multi-modal neuroimaging techniques (e.g., sMRI, fMRI, and DTI) can help build effective MRI models that can be directly applied to the screening and diagnosis of aMCI and AD. Thus, in the future, large-scale multi-center follow-up studies are urgently needed, not only to build an MRI diagnostic model that can be used on a single person, but also to evaluate the variability and stability of the model in the general population. In this review, we present longitudinal studies using each MRI modality separately, and then discuss the future directions in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kaye JA, Swihart T, Howieson D, Dame A, Moore MM, Karnos T, et al. Volume loss of the hippocampus and temporal lobe in healthy elderly persons destined to develop dementia. Neurology 1997, 48: 1297–1304.

    Article  PubMed  CAS  Google Scholar 

  2. Whitwell JL, Shiung MM, Przybelski SA, Weigand SD, Knopman DS, Boeve BF, et al. MRI patterns of atrophy associated with progression to AD in amnestic mild cognitive impairment. Neurology 2008, 70: 512–520.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  3. McDonald CR, McEvoy LK, Gharapetian L, Fennema-Notestine C, Hagler DJ, Jr., Holland D, et al. Regional rates of neocortical atrophy from normal aging to early Alzheimer disease. Neurology 2009, 73: 457–465.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  4. Korf ES, Wahlund LO, Visser PJ, Scheltens P. Medial temporal lobe atrophy on MRI predicts dementia in patients with mild cognitive impairment. Neurology 2004, 63: 94–100.

    Article  PubMed  Google Scholar 

  5. Prasad K, Wiryasaputra L, Ng A, Kandiah N. White matter disease independently predicts progression from mild cognitive impairment to Alzheimer’s disease in a clinic cohort. Dement Geriatr Cogn Disord 2011, 31: 431–434.

    Article  PubMed  Google Scholar 

  6. Bakkour A, Morris JC, Dickerson BC. The cortical signature of prodromal AD: regional thinning predicts mild AD dementia. Neurology 2009, 72: 1048–1055.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Plant C, Teipel SJ, Oswald A, Bohm C, Meindl T, Mourao-Miranda J, et al. Automated detection of brain atrophy patterns based on MRI for the prediction of Alzheimer’s disease. Neuroimage 2010, 50: 162–174.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Desikan RS, Fischl B, Cabral HJ, Kemper TL, Guttmann CR, Blacker D, et al. MRI measures of temporoparietal regions show differential rates of atrophy during prodromal AD. Neurology 2008, 71: 819–825.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  9. Killiany RJ, Gomez-Isla T, Moss M, Kikinis R, Sandor T, Jolesz F, et al. Use of structural magnetic resonance imaging to predict who will get Alzheimer’s disease. Ann Neurol 2000, 47: 430–439.

    Article  PubMed  CAS  Google Scholar 

  10. Henneman WJ, Sluimer JD, Barnes J, van der Flier WM, Sluimer IC, Fox NC, et al. Hippocampal atrophy rates in Alzheimer disease: added value over whole brain volume measures. Neurology 2009, 72: 999–1007.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  11. Morra JH, Tu Z, Apostolova LG, Green AE, Avedissian C, Madsen SK, et al. Automated mapping of hippocampal atrophy in 1-year repeat MRI data from 490 subjects with Alzheimer’s disease, mild cognitive impairment, and elderly controls. Neuroimage 2009, 45: S3–15.

    Article  PubMed Central  PubMed  Google Scholar 

  12. den Heijer T, van der Lijn F, Koudstaal PJ, Hofman A, van der Lugt A, Krestin GP, et al. A 10-year follow-up of hippocampal volume on magnetic resonance imaging in early dementia and cognitive decline. Brain 2010, 133: 1163–1172.

    Article  Google Scholar 

  13. Leung KK, Bartlett JW, Barnes J, Manning EN, Ourselin S, Fox NC. Cerebral atrophy in mild cognitive impairment and Alzheimer disease: rates and acceleration. Neurology 2013, 80: 648–654.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Honea RA, Swerdlow RH, Vidoni ED, Burns JM. Progressive regional atrophy in normal adults with a maternal history of Alzheimer disease. Neurology 2011, 76: 822–829.

    Article  PubMed Central  PubMed  Google Scholar 

  15. den Heijer T, Geerlings MI, Hoebeek FE, Hofman A, Koudstaal PJ, Breteler MM. Use of hippocampal and amygdalar volumes on magnetic resonance imaging to predict dementia in cognitively intact elderly people. Arch Gen Psychiatry 2006, 63: 57–62.

    Article  Google Scholar 

  16. Mungas D, Harvey D, Reed BR, Jagust WJ, DeCarli C, Beckett L, et al. Longitudinal volumetric MRI change and rate of cognitive decline. Neurology 2005, 65: 565–571.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. van de Pol LA, van der Flier WM, Korf ES, Fox NC, Barkhof F, Scheltens P. Baseline predictors of rates of hippocampal atrophy in mild cognitive impairment. Neurology 2007, 69: 1491–1497.

    Article  PubMed  Google Scholar 

  18. Haight TJ, Jagust WJ. Relative contributions of biomarkers in Alzheimer’s disease. Ann Epidemiol 2012, 22: 868–875.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Longstreth WT Jr, Arnold AM, Beauchamp NJ Jr, Manolio TA, Lefkowitz D, Jungreis C, et al. Incidence, manifestations, and predictors of worsening white matter on serial cranial magnetic resonance imaging in the elderly: the Cardiovascular Health Study. Stroke 2005, 36: 56–61.

    Article  PubMed  Google Scholar 

  20. Maillard P, Carmichael O, Fletcher E, Reed B, Mungas D, DeCarli C. Coevolution of white matter hyperintensities and cognition in the elderly. Neurology 2012, 79: 442–448.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Garde E, Mortensen EL, Krabbe K, Rostrup E, Larsson HB. Relation between age-related decline in intelligence and cerebral white-matter hyperintensities in healthy octogenarians: a longitudinal study. Lancet 2000, 356: 628–634.

    Article  PubMed  CAS  Google Scholar 

  22. Fazekas F, Kleinert R, Offenbacher H, Schmidt R, Kleinert G, Payer F, et al. Pathologic correlates of incidental MRI white matter signal hyperintensities. Neurology 1993, 43: 1683–1689.

    Article  PubMed  CAS  Google Scholar 

  23. Schmidt R, Enzinger C, Ropele S, Schmidt H, Fazekas F. Progression of cerebral white matter lesions: 6-year results of the Austrian Stroke Prevention Study. Lancet 2003, 361: 2046–2048.

    Article  PubMed  Google Scholar 

  24. Vermeer SE, Prins ND, den Heijer T, Hofman A, Koudstaal PJ, Breteler MM. Silent brain infarcts and the risk of dementia and cognitive decline. N Engl J Med 2003, 348: 1215–1222.

    Article  PubMed  Google Scholar 

  25. Brickman AM, Honig LS, Scarmeas N, Tatarina O, Sanders L, Albert MS, et al. Measuring cerebral atrophy and white matter hyperintensity burden to predict the rate of cognitive decline in Alzheimer disease. Arch Neurol 2008, 65: 1202–1208.

    PubMed Central  PubMed  Google Scholar 

  26. Smith EE, Egorova S, Blacker D, Killiany RJ, Muzikansky A, Dickerson BC, et al. Magnetic resonance imaging white matter hyperintensities and brain volume in the prediction of mild cognitive impairment and dementia. Arch Neurol 2008, 65: 94–100.

    PubMed  Google Scholar 

  27. DeCarli C, Mungas D, Harvey D, Reed B, Weiner M, Chui H, et al. Memory impairment, but not cerebrovascular disease, predicts progression of MCI to dementia. Neurology 2004, 63: 220–227.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Carlson NE, Moore MM, Dame A, Howieson D, Silbert LC, Quinn JF, et al. Trajectories of brain loss in aging and the development of cognitive impairment. Neurology 2008, 70: 828–833.

    Article  PubMed  CAS  Google Scholar 

  29. Jack CR Jr, Weigand SD, Shiung MM, Przybelski SA, O’Brien PC, Gunter JL, et al. Atrophy rates accelerate in amnestic mild cognitive impairment. Neurology 2008, 70: 1740–1752.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Jack CR Jr, Shiung MM, Weigand SD, O’Brien PC, Gunter JL, Boeve BF, et al. Brain atrophy rates predict subsequent clinical conversion in normal elderly and amnestic MCI. Neurology 2005, 65: 1227–1231.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Sluimer JD, van der Flier WM, Karas GB, Fox NC, Scheltens P, Barkhof F, et al. Whole-brain atrophy rate and cognitive decline: longitudinal MR study of memory clinic patients. Radiology 2008, 248: 590–598.

    Article  PubMed  Google Scholar 

  32. Rusinek H, De Santi S, Frid D, Tsui WH, Tarshish CY, Convit A, et al. Regional brain atrophy rate predicts future cognitive decline: 6-year longitudinal MR imaging study of normal aging. Radiology 2003, 229: 691–696.

    Article  PubMed  Google Scholar 

  33. Risacher SL, Shen L, West JD, Kim S, McDonald BC, Beckett LA, et al. Longitudinal MRI atrophy biomarkers: relationship to conversion in the ADNI cohort. Neurobiol Aging 2010, 31: 1401–1418.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Silbert LC, Quinn JF, Moore MM, Corbridge E, Ball MJ, Murdoch G, et al. Changes in premorbid brain volume predict Alzheimer’s disease pathology. Neurology 2003, 61: 487–492.

    Article  PubMed  CAS  Google Scholar 

  35. Vemuri P, Whitwell JL, Kantarci K, Josephs KA, Parisi JE, Shiung MS, et al. Antemortem MRI based STructural Abnormality iNDex (STAND)-scores correlate with postmortem Braak neurofibrillary tangle stage. Neuroimage 2008, 42: 559–567.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Binnewijzend MA, Schoonheim MM, Sanz-Arigita E, Wink AM, van der Flier WM, Tolboom N, et al. Resting-state fMRI changes in Alzheimer’s disease and mild cognitive impairment. Neurobiol Aging 2012, 33: 2018–2028.

    Article  PubMed  Google Scholar 

  37. Bai F, Watson DR, Shi Y, Wang Y, Yue C, Yuhuan Teng, et al. Specifically progressive deficits of brain functional marker in amnestic type mild cognitive impairment. PLoS One 2011, 6: e24271.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  38. Wang Z, Liang P, Jia X, Jin G, Song H, Han Y, et al. The baseline and longitudinal changes of PCC connectivity in mild cognitive impairment: a combined structure and resting-state fMRI study. PLoS One 2012, 7: e36838.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  39. Bai F, Xie C, Watson DR, Shi Y, Yuan Y, Wang Y, et al. Aberrant hippocampal subregion networks associated with the classifications of aMCI subjects: a longitudinal resting-state study. PLoS One 2011, 6: e29288.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  40. Damoiseaux JS, Prater KE, Miller BL, Greicius MD. Functional connectivity tracks clinical deterioration in Alzheimer’s disease. Neurobiol Aging 2012, 33: 828 e819–830.

    Article  Google Scholar 

  41. Bai F, Liao W, Watson DR, Shi Y, Yuan Y, Cohen AD, et al. Mapping the altered patterns of cerebellar resting-state function in longitudinal amnestic mild cognitive impairment patients. J Alzheimers Dis 2011, 23: 87–99.

    PubMed  Google Scholar 

  42. Vannini P, Almkvist O, Dierks T, Lehmann C, Wahlund LO. Reduced neuronal efficacy in progressive mild cognitive impairment: a prospective fMRI study on visuospatial processing. Psychiatry Res 2007, 156: 43–57.

    Article  PubMed  Google Scholar 

  43. Miller SL, Fenstermacher E, Bates J, Blacker D, Sperling RA, Dickerson BC. Hippocampal activation in adults with mild cognitive impairment predicts subsequent cognitive decline. J Neurol Neurosurg Psychiatry 2008, 79: 630–635.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  44. O’Brien JL, O’Keefe KM, LaViolette PS, DeLuca AN, Blacker D, Dickerson BC, et al. Longitudinal fMRI in elderly reveals loss of hippocampal activation with clinical decline. Neurology 2010, 74: 1969–1976.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Petrella JR, Prince SE, Wang L, Hellegers C, Doraiswamy PM. Prognostic value of posteromedial cortex deactivation in mild cognitive impairment. PLoS One 2007, 2: e1104.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Kochan NA, Breakspear M, Valenzuela M, Slavin MJ, Brodaty H, Wen W, et al. Cortical responses to a graded working memory challenge predict functional decline in mild cognitive impairment. Biol Psychiatry 2011, 70: 123–130.

    Article  PubMed  Google Scholar 

  47. Petrella JR, Sheldon FC, Prince SE, Calhoun VD, Doraiswamy PM. Default mode network connectivity in stable vs progressive mild cognitive impairment. Neurology 2011, 76: 511–517.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  48. Jones DK, Lythgoe D, Horsfield MA, Simmons A, Williams SC, Markus HS. Characterization of white matter damage in ischemic leukoaraiosis with diffusion tensor MRI. Stroke 1999, 30: 393–397.

    Article  PubMed  CAS  Google Scholar 

  49. Scola E, Bozzali M, Agosta F, Magnani G, Franceschi M, Sormani MP, et al. A diffusion tensor MRI study of patients with MCI and AD with a 2-year clinical follow-up. J Neurol Neurosurg Psychiatry 2010, 81: 798–805.

    Article  PubMed  Google Scholar 

  50. Teipel SJ, Meindl T, Wagner M, Stieltjes B, Reuter S, Hauenstein KH, et al. Longitudinal changes in fiber tract integrity in healthy aging and mild cognitive impairment: a DTI follow-up study. J Alzheimers Dis 2010, 22: 507–522.

    PubMed  Google Scholar 

  51. van Bruggen T, Stieltjes B, Thomann PA, Parzer P, Meinzer HP, Fritzsche KH. Do Alzheimer-specific microstructural changes in mild cognitive impairment predict conversion? Psychiatry Res 2012, 203: 184–193.

    Article  PubMed  Google Scholar 

  52. Nowrangi MA, Lyketsos CG, Leoutsakos JM, Oishi K, Albert M, Mori S, et al. Longitudinal, region-specific course of diffusion tensor imaging measures in mild cognitive impairment and Alzheimer’s disease. Alzheimers Dement 2013, 9: 519–528.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Fellgiebel A, Dellani PR, Greverus D, Scheurich A, Stoeter P, Muller MJ. Predicting conversion to dementia in mild cognitive impairment by volumetric and diffusivity measurements of the hippocampus. Psychiatry Res 2006, 146: 283–287.

    Article  PubMed  Google Scholar 

  54. Mielke MM, Kozauer NA, Chan KC, George M, Toroney J, Zerrate M, et al. Regionally-specific diffusion tensor imaging in mild cognitive impairment and Alzheimer’s disease. Neuroimage 2009, 46: 47–55.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  55. Charlton RA, Schiavone F, Barrick TR, Morris RG, Markus HS. Diffusion tensor imaging detects age related white matter change over a 2 year follow-up which is associated with working memory decline. J Neurol Neurosurg Psychiatry 2010, 81: 13–19.

    Article  PubMed  CAS  Google Scholar 

  56. Mielke MM, Okonkwo OC, Oishi K, Mori S, Tighe S, Miller MI, et al. Fornix integrity and hippocampal volume predict memory decline and progression to Alzheimer’s disease. Alzheimers Dement 2012, 8: 105–113.

    Article  PubMed Central  PubMed  Google Scholar 

  57. Vemuri P, Wiste HJ, Weigand SD, Shaw LM, Trojanowski JQ, Weiner MW, et al. MRI and CSF biomarkers in normal, MCI, and AD subjects: diagnostic discrimination and cognitive correlations. Neurology 2009, 73: 287–293.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  58. Vemuri P, Wiste HJ, Weigand SD, Shaw LM, Trojanowski JQ, Weiner MW, et al. MRI and CSF biomarkers in normal, MCI, and AD subjects: predicting future clinical change. Neurology 2009, 73: 294–301.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  59. Vemuri P, Wiste HJ, Weigand SD, Knopman DS, Trojanowski JQ, Shaw LM, et al. Serial MRI and CSF biomarkers in normal aging, MCI, and AD. Neurology 2010, 75: 143–151.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  60. Fjell AM, Walhovd KB, Fennema-Notestine C, McEvoy LK, Hagler DJ, Holland D, et al. CSF biomarkers in prediction of cerebral and clinical change in mild cognitive impairment and Alzheimer’s disease. J Neurosci 2010, 30: 2088–2101.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  61. Villain N, Fouquet M, Baron JC, Mezenge F, Landeau B, de La Sayette V, et al. Sequential relationships between grey matter and white matter atrophy and brain metabolic abnormalities in early Alzheimer’s disease. Brain 2010, 133: 3301–3314.

    Article  PubMed Central  PubMed  Google Scholar 

  62. Karow DS, McEvoy LK, Fennema-Notestine C, Hagler DJ Jr, Jennings RG, Brewer JB, et al. Relative capability of MR imaging and FDG PET to depict changes associated with prodromal and early Alzheimer disease. Radiology 2010, 256: 932–942.

    Article  PubMed Central  PubMed  Google Scholar 

  63. Selnes P, Aarsland D, Bjornerud A, Gjerstad L, Wallin A, Hessen E, et al. Diffusion tensor imaging surpasses cerebrospinal fluid as predictor of cognitive decline and medial temporal lobe atrophy in subjective cognitive impairment and mild cognitive impairment. J Alzheimers Dis 2013, 33: 723–736.

    PubMed  CAS  Google Scholar 

  64. Brewer JB. Fully-automated volumetric MRI with normative ranges: translation to clinical practice. Behav Neurol 2009, 21: 21–28.

    Article  PubMed  CAS  Google Scholar 

  65. Sperling R. Functional MRI studies of associative encoding in normal aging, mild cognitive impairment, and Alzheimer’s disease. Ann N Y Acad Sci 2007, 1097: 146–155.

    Article  PubMed  Google Scholar 

  66. Clark VH, Resnick SM, Doshi J, Beason-Held LL, Zhou Y, Ferrucci L, et al. Longitudinal imaging pattern analysis (SPARE-CD index) detects early structural and functional changes before cognitive decline in healthy older adults. Neurobiol Aging 2012, 33: 2733–2745.

    Article  PubMed  Google Scholar 

  67. Wee CY, Yap PT, Zhang D, Denny K, Browndyke JN, Potter GG, et al. Identification of MCI individuals using structural and functional connectivity networks. Neuroimage 2012, 59: 2045–2056.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Han.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, Z., Wu, L., Jia, J. et al. Advances in longitudinal studies of amnestic mild cognitive impairment and Alzheimer’s disease based on multi-modal MRI techniques. Neurosci. Bull. 30, 198–206 (2014). https://doi.org/10.1007/s12264-013-1407-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-013-1407-y

Keywords

Navigation