Skip to main content

Advertisement

Log in

Visual acuity evaluated by pattern-reversal visual-evoked potential is affected by check size/visual angle

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Objective

To systemically explore the range of visual angles that affect visual acuity, and to establish the relationship between the P1 component (peak latency ∼100 ms) of the pattern-reversal visual-evoked potential (PRVEP) and the visual acuity at particular visual angles.

Methods

Two hundred and ten volunteers were divided into seven groups, according to visual acuity as assessed by the standard logarithmic visual acuity chart (SLD-ii). For each group, the PRVEP components were elicited in response to visual angle presentations at 8°, 4°, 2°, 1°/60′, 30′, 15′, and 7.5′, in the whiteblack chess-board reversal mode with a contrast level of 100% at a frequency of 2 Hz. Visual stimuli were presented monocularly, and 200 presentations were averaged for each block of trials. The early and stable component P1 was recorded at the mid-line of the occipital region (oz) and analyzed with SPSS 13.00.

Results

(1) oz had the maximum P1 amplitude; there was no significant difference between genders or for interocular comparison in normal controls and subjects with optic myopia. (2) The P1 latency decreased slowly below 30′, then increased rapidly. The P1 amplitude initially increased with check size, and was maximal at ∼1° and ∼30′. (3) The P1 latency in the group with visual acuity ≤0.2 was significantly different at 8°, 15′ and 7.5′, while the amplitude differed at all visual angles, compared with the group with normal vision. Differences in P1 for the groups with 0.5 and 0.6 acuity were only present at visual angles <1°. (4) Regression analysis showed that the P1 latency and amplitude were associated with visual acuity over the full range of visual angles. There was a moderate correlation at visual angles <30′. Regression equations were calculated for the P1 components and visual acuity, based on visual angle.

Conclusion

(1) Visual angle should be taken into consideration when exploring the function of the visual pathway, especially visual acuity. A visual angle ∼60′ might be appropriate when using PRVEP components to evaluate poor vision and to identify malingerers. (2) increased P1 amplitude and decreased P1 latency were associated with increasing visual acuity, and the P1 components displayed a linear correlation with visual acuity, especially in the range of optimal visual angles. Visual acuity can be deduced from P1 based on visual angle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cobb WA, Morton HB, Ettlinger G. Cerebral potentials evoked by pattern reversal and their suppression in visual rivalry. Nature 1967, 216(5120): 1123–1125.

    Article  PubMed  CAS  Google Scholar 

  2. Cobb WA, Ettlinger G, Morton HB. Cerebral potentials evoked in man by pattern reversal and their suppression in visual rivalry. J Physiol 1968, 195(2): 33P–34P.

    PubMed  CAS  Google Scholar 

  3. Halliday AM, McDonald Wi, Mushin J. Delayed pattern-evoked responses in optic neuritis in relation to visual acuity. Trans ophthalmol Soc U K 1973, 93(0): 315–324.

    PubMed  CAS  Google Scholar 

  4. Halliday AM, McDonald Wi, Mushin J. Delayed visual evoked response in optic neuritis. Lancet 1972, 1(7758): 982–985.

    Article  PubMed  CAS  Google Scholar 

  5. Marg E, Johnson DE, Anderson KW, Baker RL, Neroth CC. Computer-assisted eye examination. V. Preliminary evaluation of the refractor III system for subjective examination. Am J Optom Physiol opt 1977, 54(1): 2–18.

    Article  PubMed  CAS  Google Scholar 

  6. Oner A, Coskun M, Evereklioglu C, Dogan H. Pattern VEP is a useful technique in monitoring the effectiveness of occlusion therapy in amblyopic eyes under occlusion therapy. Doc ophthalmol 2004, 109(3): 223–227.

    Article  PubMed  Google Scholar 

  7. Shpak AA. Visual evoked potentials in patients with refraction amblyopia in the presence of high myopia. Vestn oftalmol 1996, 112(5): 19–21. [Article in Russian]

    PubMed  CAS  Google Scholar 

  8. Bergua A, Horn FK, Martus P, Junemann AM, Korth M. Stereoscopic visual evoked potentials in normal subjects and patients with open-angle glaucomas. Graefes Arch Clin Exp ophthalmol 2004, 242(3): 197–203.

    Article  PubMed  Google Scholar 

  9. Weinstock-Guttman B, Baier M, Stockton R, Weinstock A, Justinger T, Munschauer F, et al. Pattern reversal visual evoked potentials as a measure of visual pathway pathology in multiple sclerosis. Mult Scler 2003, 9(5): 529–534.

    Article  PubMed  CAS  Google Scholar 

  10. Martinelli V, Lacerenza M, Merenda M, Meschi F, Somazzi L, Comi G. The objective assessment of visual contrast sensitivity by pattern reversal visual evoked potentials in diabetes. J Diabet Complications 1988, 2(1): 44–46.

    Article  PubMed  CAS  Google Scholar 

  11. Malyszczak K, Kubiszewski M, Pilecki W, Maciejowski A, Sobieszczanska M. Distribution of latencies of visual evoked potentials in a sample of schizophrenic patients. Psychiatr Pol 2003, 37(6): 989–997. [Article in Polish]

    PubMed  Google Scholar 

  12. Takeda M, Tachibana H, Okuda B, Kawabata K, Sugita M. Eventrelated potential and visual evoked potential in patients with Parkinson’s disease. Nippon Ronen igakkai Zasshi 1993, 30(5): 363–368. [Article in Japanese]

    Article  PubMed  CAS  Google Scholar 

  13. Manresa MJ, Bonaventura i, Martinez i, Gomez L, Aguilar M. Voluntary changes of visual evoked potentials in cases with hysteria and/or simulation. Rev Neurol 1996, 24(127): 285–286. [Article in Spanish]

    PubMed  CAS  Google Scholar 

  14. Geller AM, Hudnell HK, Vaughn BV, Messenheimer JA, Boyes WK. Epilepsy and medication effects on the pattern visual evoked potential. Doc ophthalmol 2005, 110(1): 121–131.

    Article  PubMed  Google Scholar 

  15. Fatourechi M, Bashashati A, Ward RK, Birch GE. EMG and EoG artifacts in brain computer interface systems: A survey. Clin Neurophysiol 2007, 118(3): 480–494.

    Article  PubMed  Google Scholar 

  16. Shawkat FS, Kriss A. A study of the effects of contrast change on pattern VEPS, and the transition between onset, reversal and offset modes of stimulation. Doc ophthalmol 2000, 101(1): 73–89.

    Article  PubMed  CAS  Google Scholar 

  17. Zhang X. Simultaneously recording local luminance responses, spatial and temporal interactions in the visual system with m-sequences. Vision Res 2003, 43(15): 1689–1698.

    Article  PubMed  Google Scholar 

  18. Rudvin i, Valberg A. Visual evoked potentials for red-green gratings reversing at different temporal frequencies: asymmetries with respect to isoluminance. Vis Neurosci 2005, 22(6): 735–747.

    PubMed  Google Scholar 

  19. Taghavy A, Kugler CF. Pattern reversal visual evoked potentials (white-black- and colour-black-PVEPs) in the study of eye dominance. Eur Arch Psychiatry Neurol Sci 1987, 236(6): 329–332.

    Article  PubMed  CAS  Google Scholar 

  20. Steele M, Seiple WH, Carr RE, Klug R. The clinical utility of visual-evoked potential acuity testing. Am J ophthalmol 1989, 108(5): 572–577.

    PubMed  CAS  Google Scholar 

  21. Kurita-Tashima S, Tobimatsu S, Nakayama-Hiromatsu M, Kato M. Effect of check size on the pattern reversal visual evoked potential. Electroencephalogr Clin Neurophysiol 1991, 80(3): 161–166.

    Article  PubMed  CAS  Google Scholar 

  22. Hashiba A, Tabuchi A, Matsuda E, Yamaguchi W. Visual acuity measured by pattern visual evoked potential. Nippon Ganka Gakkai Zasshi 1997, 101(8): 644–647.

    PubMed  CAS  Google Scholar 

  23. Nakamura A. Pattern visual evoked potentials visual acuity—the evaluation of visual acuity of less than 0.1. Nippon Ganka Gakkai Zasshi 2000, 104(9): 631–637. [Article in Japanese]

    PubMed  CAS  Google Scholar 

  24. Patrick Cavanagh. Visual cognition. Vision Res 2011, 51(13): 1538–1551.

    Article  PubMed  Google Scholar 

  25. Saitoh E, Adachi-Usami E, Mizota A, Fujimoto N. Comparison of visual evoked potentials in patients with psychogenic visual disturbance and malingering. J Pediatr ophthalmol Strabismus 2001, 38(1): 21–26.

    PubMed  CAS  Google Scholar 

  26. Nakamura A, Akio T, Matsuda E, Wakami Y. Pattern visual evoked potentials in malingering. J Neuroophthalmol 2001, 21(1): 42–45.

    Article  PubMed  CAS  Google Scholar 

  27. Oka S, Victor JD, Conte MM, Yanagida J. VEPs elicited by local correlations and global symmetry: characteristics and interactions. Vision Res 2007, 47(16): 2212–2222.

    Article  PubMed  Google Scholar 

  28. Besana C, Comi G, Del Maschio A, Praderio L, Vergani A, Medaglini S, et al. Electrophysiological and MRi evaluation of neurological involvement in Beh9et’s disease. J Neurol Neurosurg Psychiatry 1989, 52: 749–754.

    Article  PubMed  CAS  Google Scholar 

  29. Momose K. Relationship between the binary kernels of visually evoked potentials and the visual responses on the magnocellular and parvocellular pathways. Methods inf Med 2007, 46(2): 169–173.

    PubMed  CAS  Google Scholar 

  30. Asselman P, Chadwick DW, Marsden DC. Visual evoked responses in the diagnosis and management of patients suspected of multiple sclerosis. Brain 1975, 98(2): 261–282.

    Article  PubMed  CAS  Google Scholar 

  31. Moskowitz A, Sokol S. Spatial and temporal interaction of patternevoked cortical potentials in human infants. Vision Res 1980, 20(8): 699–707.

    Article  PubMed  CAS  Google Scholar 

  32. Millodot M, Riggs LA. Refraction determined electrophysiologically. Responses to alternation of visual contours. Arch ophthalmol 1970, 84(3): 272–278.

    Article  PubMed  CAS  Google Scholar 

  33. Erwin CW. Pattern reversal evoked potentials. Am J EEG Technol 1980, 20: 161.

    Google Scholar 

  34. Sacai PY, Salomão SR, Carelli V, Pereira JM, Belfort R Jr, Sadun AA, et al. Visual evoked potentials findings in non-affected subjects from a large Brazilian pedigree of 11778 Leber’s hereditary optic neuropathy. Doc ophthalmol 2010, 121(2): 147–154.

    Article  PubMed  Google Scholar 

  35. McCormack GL, Tomlinson AA. Human visual acuity assessment through linear extrapolation to threshold of bar grating VERs. Am J optom Physiol opt 1979, 56(8): 480–489.

    Article  PubMed  CAS  Google Scholar 

  36. Kurita-Tashima S, Tobimatsu S, Nakayama-Hiromatsu M, Kato M. Effect of check size on the pattern reversal visual evoked potential. Electroencephalogr Clin Neurophysiol 1991, 80(3): 161–166.

    Article  PubMed  CAS  Google Scholar 

  37. Van der Tweel H, Spekreijse H. Signification of the stimulus in human pattern evoked potentials. Trace 1968, 6: 8–12.

    Google Scholar 

  38. Sieving PA. Photopic oN- and oFF-pathway abnormalities in retinal dystrophies. Trans Am ophthalmol Soc 1993, 91: 701–773.

    PubMed  CAS  Google Scholar 

  39. Di Russo F, Martinez A, Sereno Mi, Pitzalis S, Hillyard SA. Cortical sources of the early components of the visual evoked potential. Hum Brain Mapp 2002, 15(2): 95–111.

    Article  PubMed  Google Scholar 

  40. Datta S, MacLean RR. Neurobiological mechanisms for the regulation of mammalian sleep-wake behavior: reinterpretation of historical evidence and inclusion of contemporary cellular and molecular evidence. Neurosci Biobehav Rev 2007, 31(5): 775–824.

    Article  PubMed  CAS  Google Scholar 

  41. Burnstock G. invited Lectures: overviews Purinergic signalling: past, present and future. Purinergic Signal 2006, 2(1): 1–324.

    Article  Google Scholar 

  42. Capilla A, Pazo-Alvarez P, Darriba A, Campo P, Gross J. Steadystate visual evoked potentials can be explained by temporal superposition of transient event-related responses. PLoS one 2011, 6(1): e14543.

    Article  PubMed  CAS  Google Scholar 

  43. Kharauzov AK, Pronin SV, Sobolev AF, Koskin SA, Boiko EV, Shelepin YE. Objective measurement of human visual acuity by visual evoked potentials. Neurosci Behav Physiol 2006, 36(9): 1021–1030.

    Article  PubMed  CAS  Google Scholar 

  44. Tan CT, Murray NM, Sawyers D, Leonard TJ. Deliberate alteration of the visual evoked potential. J Neurol Neurosurg Psychiatry 1984, 47(5): 518–523.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luyang Tao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, X., Li, Q., Liu, X. et al. Visual acuity evaluated by pattern-reversal visual-evoked potential is affected by check size/visual angle. Neurosci. Bull. 28, 737–745 (2012). https://doi.org/10.1007/s12264-012-1292-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-012-1292-9

Keywords

Navigation