Skip to main content
Log in

Central nervous system regulation of food intake and energy expenditure: role of galanin-mediated feeding behavior

中枢神经系统甘丙肽调节摄食行为及相关机制研究进展

  • Review
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Galanin is a neuropeptide widely expressed in the brain. It is implicated in energy expenditure, feeding, and the regulation of body weight. Numerous studies have revealed that galanin regulates food intake via galanin receptors, 5-HT1A receptor and adrenergic α-2 receptor. In this review, we summarize recent findings that reveal the essential role of galanin in increasing food intake as well as body weight and that identify the individual galanin receptor subtypes involved in the brain’s modulation of food intake and energy expenditure, to provide a theoretical basis for further studies of different aspects of galanin action.

摘要

甘丙肽广泛分布于各个脑区, 具有广泛的生理活性, 能够调节能量消耗、促进摄食、增加体重。研究表明, 甘丙肽主要通过甘丙肽受体1、5-HT1A受体以及α-2肾上腺素能受体调节摄食行为。本文主要对中枢神经系统甘丙肽的调节摄食行为及其相关机制进行综述, 为甘丙肽功能的进一步研究提供依据。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Destexhe A, Marder E. Plasticity in single neuron and circuit computations. Nature 2004, 431(7010): 789–795.

    Article  PubMed  CAS  Google Scholar 

  2. Berthoud HR. Multiple neural systems controlling food intake and body weight. Neurosci Biobehav Rev 2002, 26(4): 393–428.

    Article  PubMed  Google Scholar 

  3. Leibowitz SF, Wortley KE. Hypothalamic control of energy balance: different peptides, different functions. Peptides 2004, 25(3): 473–504.

    Article  PubMed  CAS  Google Scholar 

  4. Kyrkouli SE, Stanley BG, Leibowitz SF. Galanin: stimulation of feeding induced by medial hypothalamic injection of this novel peptide. Eur J Pharmacol 1986, 122(1): 159–160.

    Article  PubMed  CAS  Google Scholar 

  5. Kyrkouli SE, Strubbe JH, Scheurink AJ. Galanin in the PVN increases nutrient intake and changes peripheral hormone levels in the rat. Physiol Behav 2006, 89(1): 103–109.

    Article  PubMed  CAS  Google Scholar 

  6. Tatemoto K, Rökaeus A, Jörnvall H, McDonald TJ, Mutt V. Galanin-a novel biologically active peptide from porcine intestine. FEBS Lett 1983, 164(1): 124–128.

    Article  PubMed  CAS  Google Scholar 

  7. Lang R, Gundlach AL, Kofler B. The galanin peptide family: receptor pharmacology, pleiotropic biological actions, and implications in health and disease. Pharmacol Ther 2007, 115(2): 177–207.

    Article  PubMed  CAS  Google Scholar 

  8. Florén A, Land T, Langel Ü. Galanin receptor subtypes and ligand binding. Neuropeptides 2000, 34(6): 331–337.

    Article  PubMed  Google Scholar 

  9. Wang S, He C, Maguire MT, Clemmons AL, Burrier RE, Guzzi MF, et al. Genomic organization and functional characterization of the mouse GalR1 galanin receptor. FEBS Lett 1997, 411(2–3): 225–230.

    Article  PubMed  CAS  Google Scholar 

  10. Wang S, Hashemi T, Fried S, Clemmons AL, Hawes BE. Differential intracellular signaling of the GalR1 and GalR2 galanin receptor subtypes. Biochemistry 1998, 37(19): 6711–6717.

    Article  PubMed  CAS  Google Scholar 

  11. Crawley JN, Austin MC, Fiske SM, Martin B, Consolo S, Berthold M, et al. Activity of centrally administered galanin fragments on stimulation of feeding behavior and on galanin receptor binding in the rat hypothalamus. J Neurosci 1990, 10(11): 3695–3700.

    PubMed  CAS  Google Scholar 

  12. Corwin RL, Robinson JK, Crawley JN. Galanin antagonists block galanin induced feeding in the hypothalamus and amygdala of the rat. Eur J Neurosci 1993, 5(11): 1528–1533.

    Article  PubMed  CAS  Google Scholar 

  13. Crawley JN, Robinson JK, Langel U, Bartfai T. Galanin receptor antagonists M40 and C7 block galanin-induced feeding. Brain Res 1993, 600(2): 268–272.

    Article  PubMed  CAS  Google Scholar 

  14. Abramov U, Florén A, Echevarria DJ, Brewer A, Manuzon H, Robinson JK, et al. Regulation of feeding by galnon. Neuropeptides 2004, 38(1): 55–61.

    Article  PubMed  CAS  Google Scholar 

  15. Tachibana T, Mori M, Khan MS, Ueda H, Sugahara K, Hiramatsu K. Central administration of galanin stimulates feeding behavior in chicks. Comp Biochem Physiol A Mol Integr Physiol 2008, 151(4): 637–640.

    Article  PubMed  Google Scholar 

  16. de Pedro N, Céspedes MV, Delgado MJ, Alonso-Bedate M. The galanin induced feeding stimulation is mediated via alpha 2-adrenergic receptors in goldfish. Regul Pept 1995, 57(1): 77–84.

    Article  PubMed  Google Scholar 

  17. Smith BK, York DA, Bray GA. Chronic cerebroventricular galanin does not induce sustained hyperphagia or obesity. Peptides 1994, 15(7): 1267–1272.

    Article  PubMed  CAS  Google Scholar 

  18. Leibowitz SF, Akabayashi A, Wang J. Obesity on a high-fat diet: role of hypothalamic galanin in neurons of the anterior paraventricular nucleus projecting to the median eminence. J Neurosci 1998, 18(7): 2709–2719.

    PubMed  CAS  Google Scholar 

  19. Leibowitz SF, Dourmashkin JT, Chang GQ, Hill JO, Gayles EC, Fried SK, et al. Acute high-fat diet paradigms link galanin to triglycerides and their transport and metabolism in muscle. Brain Res 2004, 1008(2): 168–178.

    Article  PubMed  CAS  Google Scholar 

  20. Plaisier CL, Kyttälä M, Weissglas-Volkov D, Sinsheimer JS, Huertas-Vazquez A, Riba L, et al. Galanin preproprotein is associated with elevated plasma triglycerides. Arterioscler Thromb Vasc Biol 2009, 29(1): 147–152.

    Article  PubMed  CAS  Google Scholar 

  21. Malmlöf K, Fledelius C, Johansen T, Theodorsson E. The anorectic response to growth hormone in obese rats is associated with an increased rate of lipid oxidation and decreased hypothalamic galanin. Physiol Behav 2011, 102(5): 459–465.

    Article  PubMed  Google Scholar 

  22. Wang J, Akabayashi A, Yu HJ, Dourmashkin J, Alexander JT, Silva I, et al. Hypothalamic galanin: Control by signals of fat metabolism. Brain Res 1998, 804(1): 7–20.

    Article  PubMed  CAS  Google Scholar 

  23. Tempel DL, Leibowitz KJ, Leibowitz SF. Effects of PVN galanin on macronutrient selection. Peptides 1988, 9(2): 309–314.

    Article  PubMed  CAS  Google Scholar 

  24. Adams AC, Clapham JC, Wynick D, Speakman JR. Feeding behaviour in galanin knockout mice supports a role of galanin in fat intake and preference. J Neuroendocrinol 2008, 20(2): 199–206.

    Article  PubMed  CAS  Google Scholar 

  25. Crawley JN. The role of galanin in feeding behavior. Neuropeptides 1999, 33(5): 369–375.

    Article  PubMed  CAS  Google Scholar 

  26. Hohmann JG, Krasnow SM, Teklemichael DN, Clifton DK, Wynick D, Steiner RA. Neuroendocrine profiles in galanin-overexpressing and knockout mice. Neuroendocrinology 2003, 77(6): 354–366.

    Article  PubMed  CAS  Google Scholar 

  27. Karatayev O, Baylan J, Leibowitz SF. Increased intake of ethanol and dietary fat in galanin overexpressing mice. Alcohol 2009, 43(8): 571–580.

    Article  PubMed  CAS  Google Scholar 

  28. Poritsanos NJ, Mizuno TM, Lautatzis ME, Vrontakis M. Chronic increase of circulating galanin levels induces obesity and marked alterations in lipid metabolism similar to metabolic syndrome. Int J Obes (Lond) 2009, 33(12): 1381–1389.

    Article  CAS  Google Scholar 

  29. Jiang L, Shi M, Guo L, He B, Li G, Zhang L, et al. Effect of M35, a neuropeptide galanin antagonist on glucose uptake translated by glucose transporter 4 in trained rat skeletal muscle. Neurosci Lett 2009, 467(2): 178–181.

    Article  PubMed  CAS  Google Scholar 

  30. He B, Shi M, Zhang L, Li G, Zhang L, Shao H, et al. Beneficial effect of galanin on insulin sensitivity in muscle of type 2 diabetic rats. Physiol Behav 2011, 103(3-4): 284–289.

    Article  PubMed  CAS  Google Scholar 

  31. Guo L, Shi M, Zhang L, Li G, Zhang L, Shao H, et al. Galanin antagonist increases insulin resistance by reducing glucose transporter 4 effect in adipocytes of rats. Gen Comp Endocrinol 2011, 173(1): 159–163.

    Article  PubMed  CAS  Google Scholar 

  32. Lu X, Mazarati A, Sanna P, Shinmei S, Bartfai T. Distribution and differential regulation of galanin receptor subtypes in rat brain: effects of seizure activity. Neuropeptides 2005, 39(3): 147–152.

    Article  PubMed  CAS  Google Scholar 

  33. Kolakowski LF Jr, O’Neill GP, Howard AD, Broussard SR, Sullivan KA, Feighner SD, et al. Molecular characterization and expression of cloned human galanin receptors GALR2 and GALR3. J Neurochem 1998, 71(6): 2239–2251.

    Article  PubMed  CAS  Google Scholar 

  34. He B, Counts SE, Perez SE, Hohmann JG, Koprich JB, Lipton JW, et al. Ectopic galanin expression and normal galanin receptor 2 and galanin receptor 3 mRNA levels in the forebrain of galanin transgenic mice. Neuroscience 2005, 133(2): 371–380.

    Article  PubMed  CAS  Google Scholar 

  35. Zorrilla EP, Brennan M, Sabino V, Lu X, Bartfai T. Galanin type 1 receptor knockout mice show altered responses to high-fat diet and glucose challenge. Physiol Behav 2007, 91(5): 479–485.

    Article  PubMed  CAS  Google Scholar 

  36. Holmes A, Kinney JW, Wrenn CC, Li Q, Yang RJ, Ma L, et al. Galanin GAL-R1 receptor null mutant mice display increased anxietylike behavior specific to the elevated plus-maze. Neuropsychopharmacology 2003, 28(6): 1031–1044.

    PubMed  CAS  Google Scholar 

  37. Wrenn CC, Kinney JW, Marriott LK, Holmes A, Harris AP, Saavedra MC, et al. Learning and memory performance in mice lacking the GAL-R1 subtype of galanin receptor. Eur J Neurosci 2004, 19(5): 1384–1396.

    Article  PubMed  Google Scholar 

  38. Ahren B, Pacini G, Wynick D, Wierup N, Sundler F. Loss-offunction mutation of the galanin gene is associated with perturbed islet function in mice. Endocrinology 2004, 145(7): 3190–3196.

    Article  PubMed  CAS  Google Scholar 

  39. Gottsch ML, Zeng H, Hohmann JG, Weinshenker D, Clifton DK, Steiner RA. Phenotypic analysis of mice deficient in the type 2 galanin receptor (GALR2). Mol Cell Biol 2005, 25(11): 4804–4811.

    Article  PubMed  CAS  Google Scholar 

  40. Lundström L, Sollenberg U, Brewer A, Kouya PF, Zheng K, Xu XJ, et al. A galanin receptor subtype 1 specific agonist. Int J Peptide Res Therap 2005, 11(1): 15–25.

    Google Scholar 

  41. Blackshear A, Yamamoto M, Anderson BJ, Holmes PV, Lundström L, Langel U, et al. Intracerebroventricular administration of galanin or galanin receptor subtype 1 agonist M617 induces c-Fos activation in central amygdala and dorsomedial hypothalamus. Peptides 2007, 28(5): 1120–1124.

    Article  PubMed  CAS  Google Scholar 

  42. Saar I, Runesson J, McNamara I, Järv J, Robinson JK, Langel U. Novel galanin receptor subtype specific ligands in feeding regulation. Neurochem Int 2011, 58(6): 714–720.

    Article  PubMed  CAS  Google Scholar 

  43. Pithadia AB, Jain SM. 5-Hydroxytryptamine receptor subtypes and their modulators with therapeutic potentials. J Clin Med Res 2009, 1(2): 72–80.

    CAS  Google Scholar 

  44. Pal GK, Kannan N, Pal P. Effects of injection of serotonin into nucleus caudatus on food and water intake and body weight in albino rats. Indian J Physiol Pharmacol 2004, 48(4): 437–445.

    PubMed  CAS  Google Scholar 

  45. Mancilla-Diaz JM, Escartin-Perez RE, Lopez-Alonso VE, Floran-Garduño B, Romano-Camacho JB. Role of 5-HT1A and 5HT1B receptors in the hypophagic effect of 5-HT on the structure of feeding behavior. Med Sci Monit 2005, 11(3): BR74–79.

    PubMed  CAS  Google Scholar 

  46. Vickers SP, Dourish CT. Serotonin receptor ligands and the treatment of obesity. Curr Opin Investig Drugs 2004, 5(4): 377–388.

    PubMed  CAS  Google Scholar 

  47. Collin M, Bäckberg M, Onnestam K, Meister B. 5-HT1A receptor immunoreactivity in hypothalamic neurons involved in body weight control. Neuroreport 2002, 13(7): 945–951.

    Article  PubMed  CAS  Google Scholar 

  48. Steffens SM, da Cunha IC, Beckman D, Lopes AP, Faria MS, Marino-Neto J, et al. The effects of metergoline and 8-OH-DPAT injections into arcuate nucleus and lateral hypothalamic area on feeding in female rats during the estrous cycle. Physiol Behav 2008, 95(3): 484–491.

    Article  PubMed  CAS  Google Scholar 

  49. Tanaka M, Kido Y. Serotonergic regulation of galanin-induced selective macronutrient intake in self-selecting rats. J Med Invest 2008, 55(3–4): 196–203.

    Article  PubMed  Google Scholar 

  50. Ögren SO, Razani H, Elvander-Tottie E, Kehr J. The neuropeptide galanin as an in vivo modulator of brain 5-HT1A receptors: possible relevance for affective disorders. Physiol Behav 2007, 92(1–2): 172–179.

    Article  PubMed  Google Scholar 

  51. Fuxe K, Ogren SO, Jansson A, Cintra A, Harfstrand A, Agnati LF. Intraventricular injections of galanin reduces 5-HT metabolism in the ventral limbic cortex, the hippocampal formation and the fronto-parietal cortex of the male rat. Acta Physiol Scand 1988, 133(4): 579–581.

    Article  PubMed  CAS  Google Scholar 

  52. Fuxe K, von Euler G, Agnati LF, Ogren SO. Galanin selectively modulates 5-hydroxytryptamine 1A receptors in the rat ventral limbic cortex. Neurosci Lett 1988, 85(1): 163–167.

    Article  PubMed  CAS  Google Scholar 

  53. Borroto-Escuela DO, Narvaez M, Marcellino D, Parrado C, Narvaez JA, Tarakanov AO, et al. Galanin receptor-1 modulates 5-hydroxtryptamine-1A signaling via heterodimerization. Biochem Biophys Res Commun 2010, 393(4): 767–772.

    Article  PubMed  CAS  Google Scholar 

  54. Kehr J, Yoshitake T, Wang FH, Razani H, Gimenez-Llort L, Jansson A, et al. Galanin is a potent in vivo modulator of mesencephalic serotonergic neurotransmission. Neuropsychopharmacology 2002, 27(3): 341–356.

    Article  PubMed  CAS  Google Scholar 

  55. Ögren SO, Schött PA, Kehr J, Yoshitake T, Misane I, Mannström P, et al. Modulation of acetylcholine and serotonin transmission by galanin. Relationship to spatial and aversive learning. Ann N Y Acad Sci 1998, 863: 342–363.

    Google Scholar 

  56. Bungo T, Shimojo M, Masuda Y, Choi YH, Denbow DM, Furuse M. Induction of food intake by a noradrenergic system using clonidine and fusaric acid in the neonatal chick. Brain Res 1999, 826(2): 313–316.

    Article  PubMed  CAS  Google Scholar 

  57. Bungo T, Ando R, Kawakami S, Ohgushi A, Furuse M. The role of central catecholaminergic systems in regulation of food intake of chicks. J Poult Sci 2001, 38(1): 35–40.

    Article  CAS  Google Scholar 

  58. Kyrkouli SE, Stanley BG, Hutchinson R, Seirafi RD, Leibowitz SF. Peptide-amine interactions in the hypothalamic paraventricular nucleus: Analysis of galanin and neuropeptide Y in relation to feeding. Brain Res 1990, 521(1–2): 185–191.

    Article  PubMed  CAS  Google Scholar 

  59. Dube MG, Horvath TL, Leranth C, Kalra PS, Kalra SP. Naloxone reduces the feeding evoked by intracerebroventricular galanin injection. Physiol Behav 1994, 56(4): 811–813.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Yi Shi  (史明仪).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, PH., Yu, M., Ma, YP. et al. Central nervous system regulation of food intake and energy expenditure: role of galanin-mediated feeding behavior. Neurosci. Bull. 27, 407–412 (2011). https://doi.org/10.1007/s12264-011-1841-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-011-1841-7

Keywords

关键词

Navigation