Skip to main content
Log in

The role of post-translational modifications of huntingtin in the pathogenesis of Huntington’s disease

亨廷顿蛋白的翻译后修饰在亨廷顿病发病机制中的作用

  • Minireview
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Post-translational modifications are rapid, effective and reversible ways to regulate protein stability, localization, function, and their interactions with other molecules. Post-translational modifications usually occur as chemical modifications at amino acid residues, including SUMOylation, phosphorylation, palmitoylation, acetylation, etc. These complex biochemical modifications tightly regulate and control a variety of cellular processes. Several forms of post-translational modifications of huntingtin (Htt) have been described. These modifications affect Htt metabolism, protein-protein interactions and cellular toxicity. Cleavage and clearance of mutant Htt, and the interactions between mutant Htt and other cellular proteins are important biochemical events leading to Huntington’s disease (HD). Therefore, identifying signaling pathways of Htt modification and evaluating the significance of Htt modifications would lead to a better understanding of the normal function of wild-type Htt and the pathogenic mechanisms of mutant Htt.

摘要

翻译后修饰能快速、 有效且可逆地调节蛋白的稳定性、 分布位置、 功能及其与其它分子之间的相互作用。 翻译后修饰主要包括氨基酸残基的SUMO 化、 磷酸化、 棕榈化以及乙酰化等。 这些复杂的生化修饰能严格、 规范地调节各种细胞过程。 亨廷顿蛋白(Htt)的几种翻译后修饰方式已见报道。 这些翻译后修饰会影响Htt的代谢、 Htt与其它蛋白质的相互作用以及Htt的细胞毒性。 突变Htt的剪切、 清除以及与其它细胞蛋白质的相互作用是导致亨廷顿病的重要生化事件。 因此, 了解Htt修饰的信号转导及其意义, 可以帮助我们更好地理解野生型Htt的正常功能和突变Htt的致病机制。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Steffan JS, Agrawal N, Pallos J, Rockabrand E, Trotman LC, Slepko N, et al. SUMO modification of Huntingtin and Huntington’s disease pathology. Science 2004, 304(5667): 100–104.

    Article  CAS  PubMed  Google Scholar 

  2. Wellington CL, Singaraja R, Ellerby L, Savill J, Roy S, Leavitt B, et al. Inhibiting caspase cleavage of huntingtin reduces toxicity and aggregate formation in neuronal and nonneuronal cells. J Biol Chem 2000, 275(26): 19831–19838.

    Article  CAS  PubMed  Google Scholar 

  3. DiFiglia M, Sapp E, Chase KO, Davies SW, Bates GP, Vonsattel JP, et al. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 1997, 277(5334): 1990–1993.

    Article  CAS  PubMed  Google Scholar 

  4. Kegel KB, Sapp E, Yoder J, Cuiffo B, Sobin L, Kim YJ, et al. Huntingtin associates with acidic phospholipids at the plasma membrane. J Biol Chem 2005, 280(43): 36464–36473.

    Article  CAS  PubMed  Google Scholar 

  5. Humbert S, Bryson EA, Cordelieres FP, Connors NC, Datta SR, Finkbeiner S, et al. The IGF-1/Akt pathway is neuroprotective in Huntington’s disease and involves Huntingtin phosphorylation by Akt. Dev Cell 2002, 2(6): 831–837.

    Article  CAS  PubMed  Google Scholar 

  6. Warby SC, Chan EY, Metzler M, Gan L, Singaraja RR, Crocker SF, et al. Huntingtin phosphorylation on serine 421 is significantly reduced in the striatum and by polyglutamine expansion in vivo. Hum Mol Genet 2005, 14(11): 1569–1577.

    Article  CAS  PubMed  Google Scholar 

  7. Dorval V, Fraser PE. SUMO on the road to neurodegeneration. Biochim Biophys Acta 2007, 1773(6): 694–706.

    Article  CAS  PubMed  Google Scholar 

  8. Dohmen RJ. SUMO protein modification. Biochim Biophys Acta 2004, 1695(1–3): 113–131.

    PubMed  Google Scholar 

  9. Su HL, Li SS. Molecular features of human ubiquitin-like SUMO genes and their encoded proteins. Gene 2002, 296(1–2): 65–73.

    Article  CAS  PubMed  Google Scholar 

  10. Hay RT. SUMO: a history of modification. Mol Cell 2005, 18(1): 1–12.

    Article  CAS  PubMed  Google Scholar 

  11. Bernier-Villamor V, Sampson DA, Matunis MJ, Lima CD. Structural basis for E2-mediated SUMO conjugation revealed by a complex between ubiquitin-conjugating enzyme Ubc9 and RanGAP1. Cell 2002, 108(3): 345–356.

    Article  CAS  PubMed  Google Scholar 

  12. Johnson ES. Protein modification by SUMO. Annu Rev Biochem 2004, 73: 355–382.

    Article  CAS  PubMed  Google Scholar 

  13. Mahajan R, Delphin C, Guan T, Gerace L, Melchior F. A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell 1997, 88(1): 97–107.

    Article  CAS  PubMed  Google Scholar 

  14. Matunis MJ, Coutavas E, Blobel G. A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex. J Cell Biol 1996, 135(6 Pt 1): 1457–1470.

    Article  CAS  PubMed  Google Scholar 

  15. Cheng TS, Chang LK, Howng SL, Lu PJ, Lee CI, Hong YR. SUMO-1 modification of centrosomal protein hNinein promotes hNinein nuclear localization. Life Sci 2006, 78(10): 1114–1120.

    Article  CAS  PubMed  Google Scholar 

  16. Gill G. Something about SUMO inhibits transcription. Curr Opin Genet Dev 2005, 15(5): 536–541.

    Article  CAS  PubMed  Google Scholar 

  17. Barford D, Das AK, Egloff MP. The structure and mechanism of protein phosphatases: insights into catalysis and regulation. Annu Rev Biophys Biomol Struct 1998, 27: 133–164.

    Article  CAS  PubMed  Google Scholar 

  18. Cozzone AJ. Protein phosphorylation in prokaryotes. Annu Rev Microbiol 1988, 42: 97–125.

    Article  CAS  PubMed  Google Scholar 

  19. Tozser J, Bagossi P, Zahuczky G, Specht SI, Majerova E, Copeland TD. Effect of caspase cleavage-site phosphorylation on proteolysis. Biochem J 2003, 372(Pt 1): 137–143.

    Article  PubMed  Google Scholar 

  20. Poon IK, Jans DA. Regulation of nuclear transport: central role in development and transformation? Traffic 2005, 6(3): 173–186.

    Article  CAS  PubMed  Google Scholar 

  21. Colin E, Regulier E, Perrin V, Durr A, Brice A, Aebischer P, et al. Akt is altered in an animal model of Huntington’s disease and in patients. Eur J Neurosci 2005, 21(6): 1478–1488.

    Article  PubMed  Google Scholar 

  22. Klumpp S, Krieglstein J. Phosphorylation and dephosphorylation of histidine residues in proteins. Eur J Biochem 2002, 269(4): 1067–1071.

    Article  CAS  PubMed  Google Scholar 

  23. Linder ME, Middleton P, Hepler JR, Taussig R, Gilman AG, Mumby SM. Lipid modifications of G proteins: alpha subunits are palmitoylated. Proc Natl Acad Sci U S A 1993, 90(8): 3675–3679.

    Article  CAS  PubMed  Google Scholar 

  24. Sadoul K, Boyault C, Pabion M, Khochbin S. Regulation of protein turnover by acetyltransferases and deacetylases. Biochimie 2008, 90(2): 306–312.

    Article  CAS  PubMed  Google Scholar 

  25. Glozak MA, Sengupta N, Zhang X, Seto E. Acetylation and deacetylation of non-histone proteins. Gene 2005, 363: 15–23.

    Article  CAS  PubMed  Google Scholar 

  26. Subramaniam S, Sixt KM, Barrow R, Snyder SH. Rhes, a striatal specific protein, mediates mutant-huntingtin cytotoxicity. Science 2009, 324(5932): 1327–1330.

    Article  CAS  PubMed  Google Scholar 

  27. Yasuda S, Inoue K, Hirabayashi M, Higashiyama H, Yamamoto Y, Fuyuhiro H, et al. Triggering of neuronal cell death by accumulation of activated SEK1 on nuclear polyglutamine aggregations in PML bodies. Genes Cells 1999, 4(12): 743–756.

    Article  CAS  PubMed  Google Scholar 

  28. Steffan JS, Kazantsev A, Spasic-Boskovic O, Greenwald M, Zhu YZ, Gohler H, et al. The Huntington’s disease protein interacts with p53 and CREB-binding protein and represses transcription. Proc Natl Acad Sci U S A 2000, 97(12): 6763–6768.

    Article  CAS  PubMed  Google Scholar 

  29. Shalizi A, Gaudilliere B, Yuan Z, Stegmuller J, Shirogane T, Ge Q, et al. A calcium-regulated MEF2 sumoylation switch controls postsynaptic differentiation. Science 2006, 311(5763): 1012–1017.

    Article  CAS  PubMed  Google Scholar 

  30. Luo S, Vacher C, Davies JE, Rubinsztein DC. Cdk5 phosphorylation of huntingtin reduces its cleavage by caspases: implications for mutant huntingtin toxicity. J Cell Biol 2005, 169(4): 647–656.

    Article  CAS  PubMed  Google Scholar 

  31. Colin E, Zala D, Liot G, Rangone H, Borrell-Pages M, Li XJ, et al. Huntingtin phosphorylation acts as a molecular switch for anterograde/retrograde transport in neurons. EMBO J 2008, 27(15): 2124–2134.

    Article  CAS  PubMed  Google Scholar 

  32. Pardo R, Colin E, Regulier E, Aebischer P, Deglon N, Humbert S, et al. Inhibition of calcineurin by FK506 protects against polyglutamine-huntingtin toxicity through an increase of huntingtin phosphorylation at S421. J Neurosci 2006, 26(5): 1635–1645.

    Article  CAS  PubMed  Google Scholar 

  33. Rangone H, Poizat G, Troncoso J, Ross CA, MacDonald ME, Saudou F, et al. The serum- and glucocorticoid-induced kinase SGK inhibits mutant huntingtin-induced toxicity by phosphorylating serine 421 of huntingtin. Eur J Neurosci 2004, 19(2): 273–279.

    Article  PubMed  Google Scholar 

  34. Warby SC, Doty CN, Graham RK, Shively J, Singaraja RR, Hayden MR. Phosphorylation of huntingtin reduces the accumulation of its nuclear fragments. Mol Cell Neurosci 2009, 40(2): 121–127.

    Article  CAS  PubMed  Google Scholar 

  35. Franke TF, Hornik CP, Segev L, Shostak GA, Sugimoto C. PI3K/Akt and apoptosis: size matters. Oncogene 2003, 22(56): 8983–8998.

    Article  CAS  PubMed  Google Scholar 

  36. Zala D, Colin E, Rangone H, Liot G, Humbert S, Saudou F. Phosphorylation of mutant huntingtin at S421 restores anterograde and retrograde transport in neurons. Hum Mol Genet 2008, 17(24): 3837–3846.

    Article  CAS  PubMed  Google Scholar 

  37. Li H, Li SH, Yu ZX, Shelbourne P, Li XJ. Huntingtin aggregateassociated axonal degeneration is an early pathological event in Huntington’s disease mice. J Neurosci 2001, 21(21): 8473–8481.

    CAS  PubMed  Google Scholar 

  38. Lee WC, Yoshihara M, Littleton JT. Cytoplasmic aggregates trap polyglutamine-containing proteins and block axonal trans port in a Drosophila model of Huntington’s disease. Proc Natl Acad Sci U S A 2004, 101(9): 3224–3229.

    Article  CAS  PubMed  Google Scholar 

  39. Block-Galarza J, Chase KO, Sapp E, Vaughn KT, Vallee RB, DiFiglia M, et al. Fast transport and retrograde movement of huntingtin and HAP 1 in axons. Neuroreport 1997, 8(9–10): 2247–2251.

    Article  CAS  PubMed  Google Scholar 

  40. Gunawardena S, Her LS, Brusch RG, Laymon RA, Niesman IR, Gordesky-Gold B, et al. Disruption of axonal transport by loss of huntingtin or expression of pathogenic polyQ proteins in Drosophila. Neuron 2003, 40(1): 25–40.

    Article  CAS  PubMed  Google Scholar 

  41. Fei E, Jia N, Zhang T, Ma X, Wang H, Liu C, et al. Phosphorylation of ataxin-3 by glycogen synthase kinase 3beta at serine 256 regulates the aggregation of ataxin-3. Biochem Biophys Res Commun 2007, 357(2): 487–492.

    Article  CAS  PubMed  Google Scholar 

  42. Anne SL, Saudou F, Humbert S. Phosphorylation of huntingtin by cyclin-dependent kinase 5 is induced by DNA damage and regulates wild-type and mutant huntingtin toxicity in neurons. J Neurosci 2007, 27(27): 7318–7328.

    Article  CAS  PubMed  Google Scholar 

  43. Cruz JC, Tsai LH. Cdk5 deregulation in the pathogenesis of Alzheimer’s disease. Trends Mol Med 2004, 10(9): 452–458.

    Article  CAS  PubMed  Google Scholar 

  44. Kaminosono S, Saito T, Oyama F, Ohshima T, Asada A, Nagai Y, et al. Suppression of mutant Huntingtin aggregate formation by Cdk5/p35 through the effect on microtubule stability. J Neurosci 2008, 28(35): 8747–8755.

    Article  CAS  PubMed  Google Scholar 

  45. El-Husseini AE, Craven SE, Chetkovich DM, Firestein BL, Schnell E, Aoki C, et al. Dual palmitoylation of PSD-95 mediates its vesiculotubular sorting, postsynaptic targeting, and ion channel clustering. J Cell Biol 2000, 148(1): 159–172.

    Article  CAS  PubMed  Google Scholar 

  46. el-Husseini Ael D, Bredt DS. Protein palmitoylation: a regulator of neuronal development and function. Nat Rev Neurosci 2002, 3(10): 791–802.

    Article  CAS  Google Scholar 

  47. Huang K, El-Husseini A. Modulation of neuronal protein trafficking and function by palmitoylation. Curr Opin Neurobiol 2005, 15(5): 527–535.

    Article  CAS  PubMed  Google Scholar 

  48. Singaraja RR, Hadano S, Metzler M, Givan S, Wellington CL, Warby S, et al. HIP14, a novel ankyrin domain-containing protein, links huntingtin to intracellular trafficking and endocytosis. Hum Mol Genet 2002, 11(23): 2815–2828.

    Article  CAS  PubMed  Google Scholar 

  49. Huang K, Yanai A, Kang R, Arstikaitis P, Singaraja RR, Metzler M, et al. Huntingtin-interacting protein HIP14 is a palmitoyl transferase involved in palmitoylation and trafficking of multiple neuronal proteins. Neuron 2004, 44(6): 977–986.

    Article  CAS  PubMed  Google Scholar 

  50. Yanai A, Huang K, Kang R, Singaraja RR, Arstikaitis P, Gan L, et al. Palmitoylation of huntingtin by HIP14 is essential for its trafficking and function. Nat Neurosci 2006, 9(6): 824–831.

    Article  CAS  PubMed  Google Scholar 

  51. Jeong H, Then F, Melia TJ, Jr., Mazzulli JR, Cui L, Savas JN, et al. Acetylation targets mutant huntingtin to autophagosomes for degradation. Cell 2009, 137(1): 60–72.

    Article  CAS  PubMed  Google Scholar 

  52. Steffan JS, Bodai L, Pallos J, Poelman M, McCampbell A, Apostol BL, et al. Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Nature 2001, 413(6857): 739–743.

    Article  CAS  PubMed  Google Scholar 

  53. Bannister AJ, Kouzarides T. The CBP co-activator is a histone acetyltransferase. Nature 1996, 384(6610): 641–643.

    Article  CAS  PubMed  Google Scholar 

  54. Klionsky DJ. Autophagy: from phenomenology to molecular understanding in less than a decade. Nat Rev Mol Cell Biol 2007, 8(11): 931–937.

    Article  CAS  PubMed  Google Scholar 

  55. Cuervo AM. Autophagy: many paths to the same end. Mol Cell Biochem 2004, 263(1–2): 55–72.

    Article  CAS  PubMed  Google Scholar 

  56. Lievens JC, Iche M, Laval M, Faivre-Sarrailh C, Birman S. AKTsensitive or insensitive pathways of toxicity in glial cells and neurons in Drosophila models of Huntington’s disease. Hum Mol Genet 2008, 17(6): 882–894.

    Article  CAS  PubMed  Google Scholar 

  57. Nixon RA. Endosome function and dysfunction in Alzheimer’s disease and other neurodegenerative diseases. Neurobiol Aging 2005, 26(3): 373–382.

    Article  CAS  PubMed  Google Scholar 

  58. Nagaoka U, Kim K, Jana NR, Doi H, Maruyama M, Mitsui K, et al. Increased expression of p62 in expanded polyglutamine-expressing cells and its association with polyglutamine inclusions. J Neurochem 2004, 91(1): 57–68.

    Article  CAS  PubMed  Google Scholar 

  59. Bjorkoy G, Lamark T, Brech A, Outzen H, Perander M, Overvatn A, et al. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol 2005, 171(4): 603–614.

    Article  PubMed  CAS  Google Scholar 

  60. Kouzarides T. Acetylation: a regulatory modification to rival phosphorylation? EMBO J 2000, 19(6): 1176–1179.

    Article  CAS  PubMed  Google Scholar 

  61. Kegel KB, Meloni AR, Yi Y, Kim YJ, Doyle E, Cuiffo BG, et al. Huntingtin is present in the nucleus, interacts with the transcriptional corepressor C-terminal binding protein, and represses transcription. J Biol Chem 2002, 277(9): 7466–7476.

    Article  CAS  PubMed  Google Scholar 

  62. Ravikumar B, Vacher C, Berger Z, Davies JE, Luo S, Oroz LG, et al. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet 2004, 36(6): 585–595.

    Article  CAS  PubMed  Google Scholar 

  63. Yamamoto A, Cremona ML, Rothman JE. Autophagy-mediated clearance of huntingtin aggregates triggered by the insulin-signaling pathway. J Cell Biol 2006, 172(5): 719–731.

    Article  CAS  PubMed  Google Scholar 

  64. Schilling B, Gafni J, Torcassi C, Cong X, Row RH, LaFevre-Bernt MA, et al. Huntingtin phosphorylation sites mapped by mass spectrometry. Modulation of cleavage and toxicity. J Biol Chem 2006, 281(33): 23686–23697.

    CAS  Google Scholar 

  65. Pennuto M, Palazzolo I, Poletti A. Post-translational modifications of expanded polyglutamine proteins: impact on neurotoxicity. Hum Mol Genet 2009, 18(R1): R40–47.

    Article  CAS  PubMed  Google Scholar 

  66. Joyoti B. Protein palmitoylation and dynamic modulation of protein function. Curr Sci 2004, 87: 212–217.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng-Hong Qin  (秦正红).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Lin, F. & Qin, ZH. The role of post-translational modifications of huntingtin in the pathogenesis of Huntington’s disease. Neurosci. Bull. 26, 153–162 (2010). https://doi.org/10.1007/s12264-010-1118-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-010-1118-6

Keywords

关键词

Navigation