Skip to main content
Log in

Neural circuits and temporal plasticity in hindlimb representation of rat primary somatosensory cortex: revisited by multi-electrode array on brain slices

大鼠初级躯体感觉皮层后肢代表区的神经回路和时间可塑性: 平面微电极阵列记录技术的应用

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Objective

The well-established planar multi-electrode array recording technique was used to investigate neural circuits and temporal plasticity in the hindlimb representation of the rat primary somatosensory cortex (S1 area).

Methods

Freshly dissociated acute brain slices of rats were subject to constant perfusion with oxygenated artificial cerebrospinal fluid (95% O2 and 5% CO2), and were mounted on a Med64 probe (64 electrodes, 8×8 array) for simultaneous multi-site electrophysiological recordings. Current sources and sinks across all the 64 electrodes were transformed into two-dimensional current source density images by bilinear interpolation at each point of the 64 electrodes.

Results

The local intracortical connection, which is involved in mediation of downward information flow across layers II–VI, was identified by electrical stimulation (ES) at layers II–III. The thalamocortical connection, which is mainly involved in mediation of upward information flow across layers II–IV, was also characterized by ES at layer IV. The thalamocortical afferent projections were likely to make more synaptic contacts with S1 neurons than the intracortical connections did. Moreover, the S1 area was shown to be more easily activated and more intensively innervated by the thalamocortical afferent projections than by the intracortical connections. Finally, bursting conditioning stimulus (CS) applied within layer IV of the S1 area could successfully induce long-term potentiation (LTP) in 5 of the 6 slices (83.3%), while the same CS application at layers II–III induced no LTP in any of the 6 tested slices.

Conclusion

The rat hindlimb representation of S1 area is likely to have at least 2 patterns of neural circuits on brain slices: one is the intracortical circuit (ICC) formed by interlaminar connections from layers II–III, and the other is the thalamocortical circuit (TCC) mediated by afferent connections from layer IV. Besides, ICC of the S1 area is spatially limited, with less plasticity, while TCC is spatially extensive and exhibits a better plasticity in response to somatosensory afferent stimulation. The present data provide a useful experimental model for further studying microcircuit properties in S1 cortex at the network level in vitro.

摘要

目的

运用平面微电极阵列记录技术探讨大鼠初级躯体感觉皮层(primary somatosensory cortex, S1 area)后肢代表区的神经回路和时间可塑性。

方法

将急性分离的大鼠脑片置于MED-64 系统的电极平皿中, 持续灌流通入 95% O2 和5% CO2 混合气的人工脑脊液, 随后进行多电极同时同步记录。 利用双线性内插法计算出64个点的电流源与电流井, 并将其转换为二维电流源密度分布图。

结果

刺激S1 后肢代表区脑片的II–III层, 可鉴定出局部皮层内的连接回路, 而刺激IV 层(丘脑传入的主要终末端)则鉴定出丘脑皮层间的连接回路。 首先, 丘脑皮层投射的激活可以诱发更多的有效场电位, 并且与S1 区更多的神经元建立突触联系。 与之相比, 皮层内回路的激活引起的电反应活动范围则较小。 其次, 刺激IV 层在每一刺激强度下诱发的场电位幅度远远大于刺激II–III的场电位幅度, 即S1 区更容易被丘脑皮层连接回路的投射纤维所激活。 最后, 在S1 区IV 层给予强直刺激可以记录到长达两个小时的局部场电位幅度的增加, 长时程增强(long-term potentiation, LTP)的诱出率约为83.3% (5/6 例)。 相反, 在II–III层, 同样的强直刺激并未能明显诱导LTP的发生。

结论

大鼠S1区的后肢代表区似乎存在两种不同类型的神经回路, 一种是由层间联系介导的皮层内回路, 另一种则是由丘脑皮层传入介导的丘脑皮层连接回路。 皮层内回路在空间上联系较局限且可塑性不强, 而丘脑皮层回路的空间连接范围则相对较广, 对躯体感觉信息的传入也显示出很强的可塑性。 本结果为进一步在体外神经网络水平研究S1 区的神经回路特性提供了很好的实验模型。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Knierim J. Information processing in neural networks. In: From molecules to networks. Edited by Byrne J, Roberts J. Amsterdam: Elsevier Academic Press, 2009: 513–537.

    Google Scholar 

  2. Byrne J, LaBar K, LeDoux J, Schafe G, Sweatt J, Thompson R. Learning and memory: Basic mechanisms. In: From molecules to networks. Edited by Byrne J, Roberts J. Amsterdam: Elsevier Academic Press, 2009: 539–608.

    Google Scholar 

  3. Mountcastle V. Perceptual neuroscience: The cerebral cortex. Cambridge: Harvard University Press, 1998: 486.

    Google Scholar 

  4. Jaw FS, Kao YC, Chen CP, Liao WL. Cerebral columnar organization of the first nociceptive component induced by CO2 laser on the tail of the rat. Neuroscience 2009, 158(2): 945–950.

    Article  CAS  PubMed  Google Scholar 

  5. Salin PA, Prince DA. Spontaneous GABAA receptor-mediated inhibitory currents in adult rat somatosensory cortex. J Neurophysiol 1996, 75(4): 1573–1588.

    CAS  PubMed  Google Scholar 

  6. Zhang ZW, Deschenes M. Intracortical axonal projections of lamina VI cells of the primary somatosensory cortex in the rat: a single-cell labeling study. J Neurosci 1997, 17(16): 6365–6379.

    CAS  PubMed  Google Scholar 

  7. Bodor AL, Katona I, Nyiri G, Mackie K, Ledent C, Hajos N, et al. Endocannabinoid signaling in rat somatosensory cortex: laminar differences and involvement of specific interneuron types. J Neurosci 2005, 25(29): 6845–6856.

    Article  CAS  PubMed  Google Scholar 

  8. Cauli B, Audinat E, Lambolez B, Angulo MC, Ropert N, Tsuzuki K, et al. Molecular and physiological diversity of cortical nonpyramidal cells. J Neurosci 1997, 17(10): 3894–3906.

    CAS  PubMed  Google Scholar 

  9. Lamour Y, Guilbaud G, Willer JC. Rat somatosensory (SmI) cortex: II. Laminar and columnar organization of noxious and non-noxious inputs. Exp Brain Res 1983, 49(1): 46–54.

    CAS  PubMed  Google Scholar 

  10. Lamour Y, Willer JC, Guilbaud G. Rat somatosensory (SmI) cortex: I. Characteristics of neuronal responses to noxious stimulation and comparison with responses to non-noxious stimulation. Exp Brain Res 1983, 49(1): 35–45.

    CAS  PubMed  Google Scholar 

  11. Taketani M, Baudry M. Advances in network electrophysiology: Using multi-electrode arrays. Singapore: Springer, 2006: 478.

    Google Scholar 

  12. Colgin LL, Moser EI. Neuroscience: rewinding the memory record. Nature 2006, 440(7084): 615–617.

    Article  CAS  PubMed  Google Scholar 

  13. Duport S, Millerin C, Muller D, Correges P. A metallic multisite recording system designed for continuous long-term monitoring of electrophysiological activity in slice cultures. Biosens Bioelectron 1999, 14(4): 369–376.

    Article  CAS  PubMed  Google Scholar 

  14. Hofmann F, Bading H. Long term recordings with microelectrode arrays: studies of transcription-dependent neuronal plasticity and axonal regeneration. J Physiol (Paris) 2006, 99(2–3): 125–132.

    Article  CAS  Google Scholar 

  15. Morin FO, Takamura Y, Tamiya E. Investigating neuronal activity with planar microelectrode arrays: achievements and new perspectives. J Biosci Bioeng 2005, 100(2): 131–143.

    Article  CAS  PubMed  Google Scholar 

  16. Steidl EM, Neveu E, Bertrand D, Buisson B. The adult rat hippocampal slice revisited with multi-electrode arrays. Brain Res 2006, 1096(1): 70–84.

    Article  CAS  PubMed  Google Scholar 

  17. van Bergen A, Papanikolaou T, Schuker A, Moller A, Schlosshauer B. Long-term stimulation of mouse hippocampal slice culture on microelectrode array. Brain Res Protoc 2003, 11(2): 123–133.

    Article  Google Scholar 

  18. Shimono K, Brucher F, Granger R, Lynch G, Taketani M. Origins and distribution of cholinergically induced beta rhythms in hippocampal slices. J Neurosci 2000, 20(22): 8462–8473.

    CAS  PubMed  Google Scholar 

  19. Shimono K, Kubota D, Brucher F, Taketani M, Lynch G. Asymmetrical distribution of the Schaffer projections within the apical dendrites of hippocampal field CA1. Brain Res 2002, 950(1–2): 279–287.

    Article  CAS  PubMed  Google Scholar 

  20. Zhao XY, Liu MG, Yuan DL, Wang Y, He Y, Wang DD, et al. Nociception-induced spatial and temporal plasticity of synaptic connection and function in the hippocampal formation of rats: a multi-electrode array recording. Mol Pain 2009, 5: 55.

    Article  PubMed  Google Scholar 

  21. Krause M, Jia Y. Serotonergic modulation of carbachol-induced rhythmic activity in hippocampal slices. Neuropharmacology 2005, 48(3): 381–390.

    Article  CAS  PubMed  Google Scholar 

  22. Oka H, Shimono K, Ogawa R, Sugihara H, Taketani M. A new planar multielectrode array for extracellular recording: application to hippocampal acute slice. J Neurosci Methods 1999, 93(1): 61–67.

    Article  CAS  PubMed  Google Scholar 

  23. He Y, Liu MG, Gong KR, Chen J. Differential effects of long and short train theta burst stimulation on LTP induction in rat anterior cingulate cortex slices: multi-electrode array recordings. Neurosci Bull 2009, 25(5): 309–318.

    Article  PubMed  Google Scholar 

  24. Agmon A, Connors BW. Thalamocortical responses of mouse somatosensory (barrel) cortex in vitro. Neuroscience 1991, 41(2–3): 365–379.

    Article  CAS  PubMed  Google Scholar 

  25. Kotter R, Staiger JF, Zilles K, Luhmann HJ. Analysing functional connectivity in brain slices by a combination of infrared video microscopy, flash photolysis of caged compounds and scanning methods. Neuroscience 1998, 86(1): 265–277.

    Article  CAS  PubMed  Google Scholar 

  26. Bakker R, Schubert D, Levels K, Bezgin G, Bojak I, Kotter R. Classification of cortical microcircuits based on micro-electrodearray data from slices of rat barrel cortex. Neural Netw 2009, 22(8): 1159–1168.

    Article  PubMed  Google Scholar 

  27. Staiger JF, Kotter R, Zilles K, Luhmann HJ. Laminar characteristics of functional connectivity in rat barrel cortex revealed by stimulation with caged-glutamate. Neurosci Res 2000, 37(1): 49–58.

    Article  CAS  PubMed  Google Scholar 

  28. Paxinos G, Watson C. The rat brain in stereotaxic coordinates. 5th ed. San Diego: Elsevier Academic Press, 2005: 367.

    Google Scholar 

  29. Burkhalter A. Intrinsic connections of rat primary visual cortex: laminar organization of axonal projections. J Comp Neurol 1989, 279(2): 171–186.

    Article  CAS  PubMed  Google Scholar 

  30. Callaway EM, Wiser AK. Contributions of individual layer 2–5 spiny neurons to local circuits in macaque primary visual cortex. Vis Neurosci 1996, 13(5): 907–922.

    Article  CAS  PubMed  Google Scholar 

  31. Gilbert CD, Wiesel TN. Morphology and intracortical projections of functionally characterised neurones in the cat visual cortex. Nature 1979, 280(5718): 120–125.

    Article  CAS  PubMed  Google Scholar 

  32. Hubel DH, Wiesel TN. Receptive fields and functional architecture of monkey striate cortex. J Physiol 1968, 195(1): 215–243.

    CAS  PubMed  Google Scholar 

  33. Petersen CC, Sakmann B. The excitatory neuronal network of rat layer 4 barrel cortex. J Neurosci 2000, 20(20): 7579–7586.

    CAS  PubMed  Google Scholar 

  34. Chang Y, Yan LH, Zhang FK, Gong KR, Liu MG, Xiao Y, et al. Spatiotemporal characteristics of pain-associated neuronal activities in primary somatosensory cortex induced by peripheral persistent nociception. Neurosci Lett 2008, 448(1): 134–138.

    Article  CAS  PubMed  Google Scholar 

  35. Feldmeyer D, Sakmann B. Synaptic efficacy and reliability of excitatory connections between the principal neurones of the input (layer 4) and output layer (layer 5) of the neocortex. J Physiol 2000, 525Pt 1: 31–39.

    Article  CAS  PubMed  Google Scholar 

  36. Alloway KD, Johnson MJ, Wallace MB. Thalamocortical interactions in the somatosensory system: interpretations of latency and cross-correlation analyses. J Neurophysiol 1993, 70(3): 892–908.

    CAS  PubMed  Google Scholar 

  37. Gottlieb JP, Keller A. Intrinsic circuitry and physiological properties of pyramidal neurons in rat barrel cortex. Exp Brain Res 1997, 115(1): 47–60.

    Article  CAS  PubMed  Google Scholar 

  38. Heusler P, Cebulla B, Boehmer G, Dinse HR. A repetitive intracortical microstimulation pattern induces long-lasting synaptic depression in brain slices of the rat primary somatosensory cortex. Exp Brain Res 2000, 135(3): 300–310.

    Article  CAS  PubMed  Google Scholar 

  39. Roman FS, Truchet B, Marchetti E, Chaillan FA, Soumireu-Mourat B. Correlations between electrophysiological observations of synaptic plasticity modifications and behavioral performance in mammals. Prog Neurobiol 1999, 58(1): 61–87.

    Article  CAS  PubMed  Google Scholar 

  40. Bear MF, Kirkwood A. Neocortical long-term potentiation. Curr Opin Neurobiol 1993, 3(2): 197–202.

    Article  CAS  PubMed  Google Scholar 

  41. Castro-Alamancos MA, Donoghue JP, Connors BW. Different forms of synaptic plasticity in somatosensory and motor areas of the neocortex. J Neurosci 1995, 15(7 Pt 2): 5324–5333.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Chen  (陈军).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, DD., Li, Z., Chang, Y. et al. Neural circuits and temporal plasticity in hindlimb representation of rat primary somatosensory cortex: revisited by multi-electrode array on brain slices. Neurosci. Bull. 26, 175–187 (2010). https://doi.org/10.1007/s12264-010-0308-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-010-0308-6

Keywords

关键词

Navigation