Skip to main content
Log in

HLB-1 functions as a new regulator for the organization and function of neuromuscular junctions in nematode Caenorhabditis elegans

HBL-1 参与秀丽线虫神经肌肉接头组装与功能的调控

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Objective To study the role of HLB-1 in regulating the organization and function of neuromuscular junctions in nematode Caenorhabditis elegans

Methods

To evaluate the functions of HLB-1 in regulating the organization and function of neuromuscular junctions, effects of hlb-1 mutation on the synaptic structures were revealed by uncovering the expression patterns of SNB-1::GFP and UNC-49::GFP, and pharmacologic assays with aldicarb and levamisole were also used to test the synaptic functions. Further rescue and mosaic analysis confirmed HLB-1’s role in regulating the organization and function of neuromuscular junctions.

Results

Loss of HLB-1 function did not result in defects in neuronal outgrowth or neuronal loss, but caused obvious defects of SNB-1::GFP and UNC-49::GFP puncta localization, suggesting the altered presynaptic and postsynaptic structures. The mutant animals exhibited severe defects in locomotion behaviors and altered responses to an inhibitor of acetylcholinesterase and a cholinergic agonist, indicating the altered presynaptic and postsynaptic functions. Rescue and mosaic analysis experiments suggested that HLB-1 regulated synaptic functions in a cell nonautonomously way. Moreover, HLB-1 expression was not required for the presynaptic active zone morphology. Genetic evidence further demonstrated that hlb-1 acted in a parallel pathway with syd-2 to regulate the synaptic functions.

Conclusion

HLB-1 appeared as a new regulator for the organization and function of neuromuscular junctions in C. elegans.

摘要

目的

研究基因 hlb-1 在秀丽线虫神经肌肉接头组装与功能调节中的作用。

方法

通过 SNB-1::GFP 与 UNC-49::GFP 表达模式分析神经突触的结构变化, 通过涕灭威与左旋四咪唑药物实验分析神经突触的功能变化, 从而解析 HLB-1 在神经肌肉接头组装与功能调节中的作用。进一步通过恢复与嵌合分析实验, 对 HLB-1 在神经肌肉接头组装与功能调节中的作用予以确认。

结果

基因 hlb-1 功能的丧失会导致神经元生长缺陷和神经元的损失。 hlb-1 的基因突变会引发SNB-1::GFP与UNC-49::GFP表达模式的改变, 暗示前突触与后突触结构的改变。 hlb-1的基因突变可以引起明显的运动行为损伤, 同时对涕灭威、 左旋四咪唑的抗性也存在缺陷, 表明hlb-1 突变体中前突触与后突触功能的改变。 恢复与嵌合分析实验表明 HLB-1 对于突触功能的调控是细胞非自主性的。 而且, HLB-1 的表达并非前突触活动区形态建成所必需。遗传分析进一步指出 hlb-1syd-2 作用于平行的通路上调控着神经突触的功能。

结论

HLB-1 功能上作为秀丽线虫神经肌肉接头组装与功能的新调节因子发挥作用。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Katz B. The Release of Neural Transmitter Substances. Liverpool Univ Press, Liverpool, 1969.

    Google Scholar 

  2. Sun Y, Zhao YN, Wang DY. Computational analysis of genetic loci required for synapse structure and function and their corresponding microRNAs in C. elegans. Neurosci Bull 2006, 22: 339–349.

    PubMed  CAS  Google Scholar 

  3. Garner CC, Kindler S, Gundelfinger ED. Molecular determinants of presynaptic active zones. Curr Opin Neurobiol 2000, 10: 321–327.

    Article  PubMed  CAS  Google Scholar 

  4. Shen LL, Wang DY. Differentiation and function of presynaptic active zone. Neurosci Bull 2005, 21: 335–343.

    CAS  Google Scholar 

  5. Cowan WM, Südhof TC, Steven CF. Synapses. Johns Hopkins Univ Press, Baltimore, 2001.

    Google Scholar 

  6. Harlow ML, Ress D, Stoschek A, Marshall RM, McMahan UJ. The architecture of active zone material at the frog’s neuromuscular junction. Nature 2001, 409: 479–484.

    Article  PubMed  CAS  Google Scholar 

  7. Koushika SP, Richmond JE, Hadwiger G, Weimer RM, Jorgensen EM, Nonet ML. A post-docking role for active zone protein Rim. Nat Neurosci 2001, 4: 997–1005.

    Article  PubMed  CAS  Google Scholar 

  8. Richmond JE, Davis WS, Jorgensen EM. UNC-13 is required for synaptic vesicle fusion in C. elegans. Nat Neurosci 1999, 2: 959–964.

    Article  PubMed  CAS  Google Scholar 

  9. Zhen M, Jin Y. The liprin protein SYD-2 regulates the differentiation of presynaptic termini in C. elegans. Nature 1999, 401: 371–375.

    PubMed  CAS  Google Scholar 

  10. Dai Y, Taru H, Deken SL, Grill B, Ackley B, Nonet ML, et al. SYD-2 Liprin-α organized presynaptic active zone formation through ELKs. Nat Neurosci 2006, 9: 1479–1487.

    Article  PubMed  CAS  Google Scholar 

  11. Wang DY, Wang Y. Screening for genetic loci affecting the active zone formation in C. elegans. Neurosci Bull 2006, 22: 301–304.

    PubMed  CAS  Google Scholar 

  12. Serra-Pagès C, Medley QG, Tang M, Hart A, Streuli M. Liprins, a family of LAR transmembrane protein-tyrosine phosphataseinteracting proteins. J Biol Chem 1998, 273: 15611–15620.

    Article  PubMed  Google Scholar 

  13. Brenner S. The genetics of Caenorhabdits elegans. Genetics 1974, 77: 71–94.

    PubMed  CAS  Google Scholar 

  14. Mello CC, Kramer JM, Stinchcomb D, Ambros V. Efficient gene transfer in C. elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J 1991, 10: 3959–3970.

    PubMed  CAS  Google Scholar 

  15. Tsalik EL, Hobert O. Functional mapping of neurons that control locomotory behavior in Caenorhabditis elegans. J Neurobiol 2003, 56: 178–197.

    Article  PubMed  Google Scholar 

  16. Huang C, Xiong C, Kornfeld K. Measurements of age-related changes of physiological processes that predict lifespan of Caenorhabditis elegans. Proc Natl Acad Sci USA 2004, 101: 8084–8089.

    Article  PubMed  CAS  Google Scholar 

  17. Wang DY, Wang Y. Phenotypic and behavioral defects caused by barium exposure in nematode Caenorhabditis elegans. Arch Environ Contam Toxicol 2008, 54: 447–453.

    Article  PubMed  CAS  Google Scholar 

  18. Bargmann CI, Horvitz HR. Chemosensory neurons with overlapping functions direct chemotaxis to multiple chemicals in C. elegans. Neuron 1991, 7: 729–742.

    Article  PubMed  CAS  Google Scholar 

  19. Ye HY, Ye BP, Wang DY. Trace administration of vitamin E can retrieve and prevent UV-irradiation- and metal exposureinduced memory deficits in nematode Caenorhabditis elegans. Neurobiol Learn Mem 2008, 90: 10–18.

    Article  PubMed  CAS  Google Scholar 

  20. Nakata K, Abrams B, Grill B, Goncharov A, Huang X, Chisholm AD, et al. Regulation of DLK-1 and p38 MAP kinase pathway by the ubiquitin ligase RPM-1 is required for presynaptic development. Cell 2005, 120: 407–420.

    Article  PubMed  CAS  Google Scholar 

  21. Ackley BD, Kang SH, Crew JR, Suh C, Jin Y, Kramer JM. The basement membrane components Nidogen and type XVIII collagen regulates organization of neuromuscular junctions in Caenorhabditis elegans. J Neurosci 2003, 23: 3577–3587.

    PubMed  CAS  Google Scholar 

  22. Ackley BD, Harrington RJ, Hudson ML, Williams L, Kenyon CJ, Chisholm AD, et al. The two isoforms of the Caenorhabditis elegans leukocyte-common antigen related receptor tyrosine phosphatase PTP-3 function independently in axon guidance and synapse formation. J Neurosci 2005, 25: 7517–7528.

    Article  PubMed  CAS  Google Scholar 

  23. Morse DP, Bass BL. Long RNA hairpins that contain inosine are present in Caenorhabditis elegans poly(A)+ RNA. Proc Natl Acad Sci USA 1999, 96: 6048–6053.

    Article  PubMed  CAS  Google Scholar 

  24. Kim J, Poole DS, Waggoner LE, Kempf A, Ramirez DS, Treschow PA, et al. Genes affecting the activity of nicotinic receptors involved in Caenorhabditis elegans egg-laying behavior. Genetics 2001, 157: 1599–1610.

    PubMed  CAS  Google Scholar 

  25. Jorgensen EM, Hartwieg E, Schuske K, Nonet ML, Jin YS, Horvitz HR. Defective recycling of synaptic vesicles in synaptotagmin mutants of Caenorhabitis elegans. Nature 1995, 378: 196–199.

    Article  PubMed  CAS  Google Scholar 

  26. Yochem J, Gu Y, Han M. A new marker for mosaic analysis in Caenorhabditis elegans indicates a fusion between hyp6 and hyp7, two major components of hypodermis. Genetics 1998, 149: 1323–1334.

    PubMed  CAS  Google Scholar 

  27. Miller KG, Alfonso A, Nguyen M, Crowell JA, Johnson CD, Rand JB. A genetic selection for Caenorhabdits elegans synaptic transmission mutants. Proc Natl Acad Sci USA 1996, 93: 12593–12598.

    Article  PubMed  CAS  Google Scholar 

  28. Waggoner LE, Dickinson KA, Poole DS, Tabuse Y, Miwa J, Schafer WR. Long-term nicotine adaptation in Caenorhabditis elegans involves PKC-dependent changes in nicotinic receptor abundance. J Neurosci 2000, 20: 8802–8811.

    PubMed  CAS  Google Scholar 

  29. Jin Y, Jorgensen E, Hartwieg E, Horvitz HR. The Caenorhabditis elegans gene unc-25 encodes glutamic acid decarboxylase and is required for synaptic transmission but not synaptic development. J Neurosci 1999, 19: 539–548.

    PubMed  CAS  Google Scholar 

  30. Yeh E, Kawano T, Weimer RM, Bessereau J, Zhen M. Identification of genes involved in synaptogenesis using a fluorescent active zone marker in Caenorhabditis elegans. J Neurosci 2005, 25: 3833–3841.

    Article  PubMed  CAS  Google Scholar 

  31. Patel MR, Lehrman EK, Poon VY, Crump JG, Zhen M, Bargmann CI, et al. Hierarchical assembly of presynaptic components in defined C. elegans synapses. Nat Neurosci 2006, 9: 1488–1498.

    Article  PubMed  CAS  Google Scholar 

  32. Schoch S, Castillo P, Jo T, Mukherjee K, Geppert M, Wang Y, et al. RIM1α forms a protein scaffold for regulating neurotransmitter release at the active zone. Nature 2002, 415: 321–326.

    Article  PubMed  CAS  Google Scholar 

  33. Shin H, Wyszynski M, Huh K, Valtschanoff JG, Lee J, Jaewon K, et al. Association of the kinesin motor KIF1A with the multimodular protein liprin-α. J Biol Chem 2003, 278: 11393–11401.

    Article  PubMed  CAS  Google Scholar 

  34. Wyszynski M, Kim E, Dunah AW, Passafaro M, Valtschanoff JG, Serra-Pages C, et al. Interaction between GRIP and liprinalpha/SYD2 is required for AMPA receptor targeting. Neuron 2002, 34: 39–52.

    Article  PubMed  CAS  Google Scholar 

  35. Dunah AW, Hueske E, Wyszynski M, Hoogenraad CC, Jaworski J, Pak DT, et al. LAR receptor protein tyrosine phosphatases in the development and maintenance of excitatory synapses. Nat Neurosci 2005, 8: 458–467.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Da-Yong Wang  (王大勇).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, DY., Wang, Y. HLB-1 functions as a new regulator for the organization and function of neuromuscular junctions in nematode Caenorhabditis elegans . Neurosci. Bull. 25, 75–86 (2009). https://doi.org/10.1007/s12264-009-0119-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-009-0119-9

Keywords

关键词

CLC number

Navigation