Skip to main content

Advertisement

Log in

Epigenetics and neural stem cell commitment

表观调控与神经干细胞分化

  • Minireview
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Neural stem cell is presently the research hotspot in neuroscience. Recent progress indicates that epigenetic modulation is closely related to the self-renewal and differentiation of neural stem cell. Epigenetics refer to the study of mitotical/meiotical heritage changes in gene function that cannot be explained by changes in the DNA sequence. Major epigenetic mechanisms include DNA methylation, histone modification, chromatin remodeling, genomic imprinting, and non-coding RNA. In this review, we focus on the new insights into the epigenetic mechanism for neural stem cells fate.

摘要

神经干细胞是当前神经科学领域的研究热点。 最近的研究显示表观调控与神经干细胞的分化关系密切, 而且为神经干细胞的移植治疗提供可能的细胞来源。 表观调控是指在基因的DNA序列未改变的情况下, 基因功能发生可遗传的变化而导致细胞表型发生改变, 主要机制包括 DNA 甲基化、 组蛋白修饰、 基因印迹、 染色体重组以及非编码小 RNA 等。 本综述就表观调控对神经干细胞分化作用的最新进展作一回顾。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wu CT, Morris JR. Genes, genetics and epigenetics: a correspondence. Science 2001, 293: 1103–1105.

    Article  CAS  Google Scholar 

  2. Hsieh J, Gage FH. Epigenetic control of neural stem cell fate. Curr Opin Genet Dev 2004, 14: 461–469.

    Article  PubMed  CAS  Google Scholar 

  3. Toru Kondo. Epigenetic alchemy for cell fate conversion. Curr Opin Genet Dev 2006, 16: 502–507.

    Article  CAS  Google Scholar 

  4. Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 2003, 33Suppl: 245–254.

    Article  PubMed  CAS  Google Scholar 

  5. Feng J, Chang H, Li E, Fan G. Dynamic expression of de novo DNA methyltransferases Dnmt3a and Dnmt3b in the central nervous system. J Neurosci Res 2005, 79: 734–746

    Article  PubMed  CAS  Google Scholar 

  6. Zhao X, Ueba T, Christie BR, Barkho B, McConnell MJ, Nakashima K, et al. Mice lacking methyl-CpG binding protein 1 have deficits in adult neurogenesis and hippocampal function. Proc Natl Acad Sci USA 2003, 100: 6777–6782.

    Article  PubMed  CAS  Google Scholar 

  7. Hendrich B, Guy J, Ramsahoye B, Wilson VA, Bird A. Closely related proteins MBD2 and MBD3 play distinctive but inter-acting roles in mouse development. Genes Dev 2001, 15: 710–723.

    Article  PubMed  CAS  Google Scholar 

  8. Millar CB, Guy J, Sansom OJ, Selfridge J, MacDougall E, Hendrich B, et al. Enhanced CpG mutability and tumorigenesis in MBD4-deficient mice. Science 2002, 297: 403–405.

    Article  PubMed  CAS  Google Scholar 

  9. Jung BP, Jugloff DG, Zhang G, Logan R, Brown S, Eubanks JH. The expression of methyl CpG binding factor MeCP2 correlates with cellular differentiation in the developing rat brain and in cultured cells. J Neurobiol 2003, 55: 86–96.

    Article  PubMed  CAS  Google Scholar 

  10. Chen WG, Chang Q, Lin Y, Meissner A, West AE, Griffith EC, et al. Derepression of BDNF transcription involves calcium-dependent phosphorylation of MeCP2. Science 2003, 302:885–889.

    Article  PubMed  CAS  Google Scholar 

  11. Martinowich K, Hattori D, Wu H, Fouse S, He F, Hu Y, et al. DNA methylation-related chromatin remodeling in activitydependent BDNF gene regulation. Science 2003, 302: 890–893.

    Article  PubMed  CAS  Google Scholar 

  12. Hsieh J, Gage FH. Chromatin remodeling in neural development and plasticity. Curr Opin Cell Biol 2005, 17: 664–671.

    Article  PubMed  CAS  Google Scholar 

  13. Jenuwein T, Allis CD. Translating the histone code. Science 2001, 293: 1074–1080.

    Article  PubMed  CAS  Google Scholar 

  14. Shiio Y, Eisenman RN. Histone sumoylation is associated with transcriptional repression. Proc Natl Acad Sci USA 2003, 100:13225–13230.

    Article  PubMed  CAS  Google Scholar 

  15. Lund AH, van Lohuizen M. Epigenetics and cancer. Genes Dev 2004, 18: 2315–2335.

    Article  PubMed  CAS  Google Scholar 

  16. Egger G, Liang G, Aparicio A, Jones PA. Epigenetics in human disease and prospects for epigenetic therapy. Nature 2004, 429: 457–463.

    Article  PubMed  CAS  Google Scholar 

  17. Vega RB, Matsuda K, Oh J, Barbosa AC, Yang X, Meadows E, et al. Histone deacetylase 4 controls chondrocyte hypertrophy during skeletogenesis. Cell 2004, 119: 555–566.

    Article  PubMed  CAS  Google Scholar 

  18. Thiagalingam S, Cheng KH, Lee HJ, Mineva N, Thiagalingam A, Ponte JF. Histone deacetylases: unique players in shaping the epigenetic histone code. Ann NY Acad Sci 2003, 983: 84–100.

    Article  PubMed  CAS  Google Scholar 

  19. Mejat A, Ramond F, Bassel-Duby R, Khochbin S, Olson EN, Schaeffer L. Histone deacetylase 9 couples neuronal activity to muscle chromatin acetylation and gene expression. Nat Neurosci 2005, 8: 313–321.

    Article  PubMed  CAS  Google Scholar 

  20. Tsankova NM, Kumar A, Nestler EJ. Histone modifications at gene promoter regions in rat hippocampus after acute and chronic electroconvulsive seizures. J Neurosci 2004, 24: 5603–5610.

    Article  PubMed  CAS  Google Scholar 

  21. Song MR, Ghosh A. FGF2-induced chromatin remodeling regulates CNTF-mediated gene expression and astrocyte differentiation. Nat Neurosci 2004, 7: 229–235.

    Article  PubMed  CAS  Google Scholar 

  22. Somech R, Izraeli S, J Simon A. Histone deacetylase inhibitors-a new tool to treat cancer. Cancer Treat Rev 2004, 30:461–472.

    Article  PubMed  CAS  Google Scholar 

  23. Lee JH, Hart SR, Skalnik DG. Histone deacetylase activity is required for embryonic stem cell differentiation. Genesis 2004, 38: 32–38.

    Article  PubMed  CAS  Google Scholar 

  24. Shen S, Li J, Casaccia-Bonnefil P. Histone modifications affect timing of oligodendrocyte progenitor differentiation in the developing rat brain. J Cell Biol 2005, 169: 577–589.

    Article  PubMed  CAS  Google Scholar 

  25. Hsieh J, Nakashima K, Kuwabara T, Mejia E, Gage FH. Histone deacetylase inhibition-mediated neuronal differentiation of multipotent adult neural progenitor cells. Proc Natl Acad Sci USA 2004, 101: 16659–16664.

    Article  PubMed  CAS  Google Scholar 

  26. Arney KL. H19 and Igf2—enhancing the confusion? Trends Genet 2003, 19: 17–23.

    Article  PubMed  CAS  Google Scholar 

  27. Gabory A, Ripoche MA, Yoshimizu T, Dandolo L. The H19 gene: regulation and function of a non-coding RNA. Cytogenet Genome Res 2006, 113: 188–193.

    Article  PubMed  CAS  Google Scholar 

  28. Rugg-Gunn PJ, Ferguson-Smith AC, Pedersen RA. Epigenetic status of human embryonic stem cells. Nat Genet 2005, 37:585–587.

    Article  PubMed  CAS  Google Scholar 

  29. Rugg-Gunn PJ, Ferguson-Smith AC, Pedersen RA. Human embryonic stem cells as a model for studying epigenetic regulation during early development. Cell cycle 2005, 4: 1323–1326.

    PubMed  CAS  Google Scholar 

  30. Szabo PE, Tang SH, Silva FJ, Tsark WM, Mann JR. Role of CTCF binding sites in the Igf2/H19 imprinting control region. Mol Cell Biol 2004, 24: 4791–4800.

    Article  PubMed  CAS  Google Scholar 

  31. Lewis A, Murrell A. Genomic imprinting: CTCF protects the boundaries. Curr Biol 2004, 14: R284–R286.

    Article  PubMed  CAS  Google Scholar 

  32. Delaval K, Feil R. Epigenetic regulation of mammalian genomic imprinting. Curr Opin Genet Dev 2004, 14: 188–195.

    Article  PubMed  CAS  Google Scholar 

  33. Kono T, Obata Y, Wu Q, Niwa K, Ono Y, Yamamoto Y, et al. Birth of parthenogenetic mice that can develop to adulthood. Nature 2004, 428: 860–864.

    Article  PubMed  CAS  Google Scholar 

  34. Sparago A, Cerrato F, Vernucci M, Ferrero GB, Silengo MC, Riccio A. Microdeletion in the human H19 DMR result in loss of IGF2 imprinting and Beckwith-Wiedemann syndrome. Nat Genet 2004, 36: 958–960

    Article  PubMed  CAS  Google Scholar 

  35. Prawitt D, Enklaar T, Gartner-Rupprecht B, Spangenberg C, Oswald M, Lausch E, et al. Microdeletion of target sites for insulator protein CTCF in a chromosome 11p15 imprinting center in Beckwith-Wiedemann syndrome and Wilms’ tumor. Proc Natl Acad Sci USA, 2005. 102: 4085–4090

    Article  PubMed  CAS  Google Scholar 

  36. Cho KS, Elizondo LI, Boerkoel CF. Advances in chromatin remodeling and human disease. Curr Opin Genet Dev 2004, 14: 308–315.

    Article  PubMed  CAS  Google Scholar 

  37. Langst G, Becker PB. Nucleosome remodeling: one mechanism, many phenomena? Biochim Biophys Acta 2004, 1677: 58–63.

    PubMed  CAS  Google Scholar 

  38. Muller C, Calkhoven CF, Sha X, Leutz A. The CCAAT enhancer-binding protein α (CEBPα) requires a SWI/SNF complex for proliferation arrest. J Biol Chem 2004, 279: 7353–7358.

    Article  PubMed  CAS  Google Scholar 

  39. Kondo T, Raff M. Chromatin remodeling and histone modification in the conversion of oligodendrocyte precursors to neural stem cells. Genes Dev 2004, 18: 2963–2972.

    Article  PubMed  CAS  Google Scholar 

  40. Seo S, Richardson GA, Kroll KL. The SWI/SNF chromatin remodeling protein Brg1 is required for vertebrate neurogenesis and mediates transactivation of Ngn and NeuroD. Development 2005, 132:105–115.

    Article  PubMed  CAS  Google Scholar 

  41. Molofsky AV, He S, Bydon M, Morrison SJ, Pardal R. Bmi-1 promotes neural stem cell self-renewal and neural development but not mouse growth and survival by repressing the p16Ink4a and p19Arf senescence pathways. Genes Dev 2005, 19: 1432–1437.

    Article  PubMed  CAS  Google Scholar 

  42. Crosio C, Heitz E, Allis CD, Borrelli E, Sassone-Corsi P. Chromatin remodeling and neuronal response: multiple signaling pathways induce specific histone H3 modifications and early gene expression in hippocampal neurons. J Cell Sci 2003, 116(Pt 24): 4905–4914.

    Article  PubMed  CAS  Google Scholar 

  43. Harfe BD. MicroRNAs in vertebrate development. Curr Opin Genet Dev 2005, 15: 410–415.

    Article  PubMed  CAS  Google Scholar 

  44. Grewal SI, Moazed D. Heterochromatin and epigenetic control of gene expression. Science 2003, 301: 798–802.

    Article  PubMed  CAS  Google Scholar 

  45. Chang S, Johnston RJ, Frøkjaer-Jensen C, Lockery S, Hobert O. MicroRNAs act sequentially and asymmetrically to control chemosensory laterality in the nematode. Nature 2004, 430:785–789.

    Article  PubMed  CAS  Google Scholar 

  46. Leaman D, Chen PY, Fak J, Yalcin A, Pearce M, Unnerstall U, et al. Antisense-mediated depletion reveals essential and specific functions of microRNAs in Drosophila development. Cell 2005, 121: 1097–1108.

    Article  PubMed  CAS  Google Scholar 

  47. Giraldez AJ, Cinalli RM, Glasner ME, Enright AJ, Thomson JM, Baskerville S, et al. MicroRNAs regulate brain morphogenesis in zebrafish. Science 2005, 308: 833–838.

    Article  PubMed  CAS  Google Scholar 

  48. Yekta S, Shih IH, Bartel DP. MicroRNA-directed cleavage of HOXB8 mRNA. Science 2004, 304: 594–596.

    Article  PubMed  CAS  Google Scholar 

  49. Zhao Y, Samal E, Srivastava D. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature 2005, 436: 214–220.

    Article  PubMed  CAS  Google Scholar 

  50. Chen CZ, Li L, Lodish HF, Bartel DP. MicroRNAs modulate hematopoietic lineage differentiation. Science 2004, 303: 83–86.

    Article  PubMed  CAS  Google Scholar 

  51. He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 2004, 5: 522–531.

    Article  PubMed  CAS  Google Scholar 

  52. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004, 116: 281–297.

    Article  PubMed  CAS  Google Scholar 

  53. Kim VN. MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 2005, 6: 376–85.

    Article  PubMed  CAS  Google Scholar 

  54. Kuwabara T, Hsieh J, Nakashima K, Taira K, Gage FH. A small modulatory dsRNA specifies the fate of adult neural stem cell. Cell 2004, 116: 779–793.

    Article  PubMed  CAS  Google Scholar 

  55. Ballas N, Battaglioli E, Atouf F, Andres ME, Chenoweth J, Anderson ME, et al. Regulation of neuronal traits by a novel transcriptional complex. Neuron 2001, 31: 353–365.

    Article  PubMed  CAS  Google Scholar 

  56. Chong J A, Tapia-Ramirez J, Kim S, Toledo-Aral JJ, Zheng Y, Boutros MC, et al. REST: A mammalian silencer protein that restricts sodium channel gene expression to neurons. Cell 1995, 80: 949–957.

    Article  PubMed  CAS  Google Scholar 

  57. Schoenherr CJ, Anderson DJ. The neuron-restrictive silencer factor (NRSF): a coordinate repressor of multiple neuronspecific genes. Science 1995, 267: 1360–1363.

    Article  PubMed  CAS  Google Scholar 

  58. Bruce AW, Donaldson IJ, Wood IC, Yerbury SA, Sadowski MI, Chapman M, et al. Genome-wide analysis of repressor element 1 silencing transcription factor/neuron-restrictive silencing factor (REST/NRSF) target genes. Proc Natl Acad Sci USA 2004, 101: 10458–10463.

    Article  PubMed  CAS  Google Scholar 

  59. Lunyak VV, Burgess R, Prefontaine GG, Nelson C, Sze SH, Chenoweth J, et al. Corepressor-dependent silencing of chromosomal regions encoding neuronal genes. Science 2002, 298:1747–1752.

    Article  PubMed  CAS  Google Scholar 

  60. Su X, Kameoka S, Lentz S, Majumder S. Activation of REST/ NRSF target genes in neural stem cell is sufficient to cause neuronal differentiation. Mol Cell Biol 2004, 24: 8018–8025.

    Article  PubMed  CAS  Google Scholar 

  61. Naruse Y, Aoki T, Kojima T, Mori N. Neural restrictive silencer factor recruits mSin3 and histone deacetylase complex to repress neuron specific target genes. Proc Natl Acad Sci USA 1999, 96: 13691–13696.

    Article  PubMed  CAS  Google Scholar 

  62. Jepsen K, Hermanson O, Onami TM, Gleiberman AS, Lunyak V, McEvilly RJ, et al. Combinatorial roles of the nuclear receptor corepressor in transcription and development. Cell 2000, 102: 753–763.

    Article  PubMed  CAS  Google Scholar 

  63. Wang XF, Yu PP, Lu PH. NRSE, NRSF and their modulatory effects on the expression of neuronal-specific genes. Prog Biochem Biophys 2005, 32: 595–599. (Chinese)

    CAS  Google Scholar 

  64. Roloff TC, Nuber UA. Chromatin, epigenetics and stem cells. Eur J Cell Biol 2005, 84: 123–135.

    Article  PubMed  CAS  Google Scholar 

  65. Cheng LC, Tavazoie M, Doetsch F. Stem cells: from epigenetics to microRNAs. Neuron 2005, 46: 363–367.

    Article  PubMed  CAS  Google Scholar 

  66. Ballas N, Grunseich C, Lu DD, Speh JC, Mandel G. REST and its corepressors mediate plasticity of neuronal gene chromatin throughout neurogenesis. Cell 2005, 121: 645–657.

    Article  PubMed  CAS  Google Scholar 

  67. Conaco C, Otto S, Han JJ, Mandel G. Reciprocal actions of REST and a microRNA promote neuronal identity. Proc Natl Acad Sci USA 2006, 103: 2422–2427.

    Article  PubMed  CAS  Google Scholar 

  68. Taupin P. Neurogenesis in the adult central nervous system. C R Biol 2006, 329: 465–475

    Article  PubMed  Google Scholar 

  69. Watanabe Y, Kameoka S, Gopalakrishnan V, Aldape KD, Pan ZZ, Lang FF, et al. Conversion of myoblasts to physiologically active neuronal phenotype. Genes Dev 2004, 18: 889–900.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Hong Zhu  (朱剑虹).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, HL., Zhu, JH. Epigenetics and neural stem cell commitment. Neurosci. Bull. 23, 241–248 (2007). https://doi.org/10.1007/s12264-007-0036-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-007-0036-8

Key words

关键词

CLC number

Navigation