Skip to main content
Log in

A Novel Two-stage pH Control Strategy for the Production of 5-Aminolevulinic Acid Using Recombinant Streptomyces coelicolor

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

5-aminolevulinic acid (ALA) has extensive use in photodynamic cancer therapy, tumor diagnosis, and agriculture. In the microbial production of ALA, most efforts have focused on engineering enzymes and the metabolic pathways involved in ALA biosynthesis. The aim of this study was to enhance ALA production using recombinant Streptomyces coelicolor expressing the ALA synthase gene (hem A) of Rhodobacter sphaeroides with a novel two-stage pH control strategy. Batch cultures were performed in production medium at different pH values. Although cells grew well at neutral pH (6.8–7.2), the highest amount of ALA was produced with a long culture time (140 h) at a weakly acidic pH (5.5–6.0). In response, a two-stage pH control strategy was developed in which pH was maintained at 6.8–7.2 for cell growth and then shifted to 5.5–6.0 to promote ALA synthesis, resulting in a significant enhancement in ALA production compared to a one-stage pH control strategy. The titer of ALA was further improved up to 482 mg/L in the two-stage pH culture by supplying more glucose in the medium and shifting the pH during the early phase of cultivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, S., G. Zhang, X. Li, and J. Zhang (2014) Microbial production and applications of 5-aminolevulinic acid. Appl. Microbiol. Biotechnol. 98: 7349–7357.

    Article  CAS  Google Scholar 

  2. Sasaki, K., T. Tanaka, Y. Nishizawa, and M. Hayashi (1990) Production of a herbicide, 5-aminolevulinic acid, by Rhodobacter sphaeroides using the effluent of swine waste from an anaerobic digestor. Appl. Microbiol. Biotechnol. 32: 727–731.

    Article  CAS  Google Scholar 

  3. Nishikawa, S., K. Watanabe, T. Tanaka, N. Miyachi, Y. Hotta, and Y. Murooka (1999) Rhodobacter sphaeroides mutants which accumulate 5-aminolevulinic acid under aerobic and dark conditions. J. Biosci. Bioeng. 87: 798–804.

    Article  CAS  Google Scholar 

  4. Fu, W., J. Lin, and P. Cen (2007) 5-Aminolevulinate production with recombinant Escherichia coli using a rare codon optimizer host strain. Appl. Microbiol. Biotechnol. 75: 777–782.

    Article  CAS  Google Scholar 

  5. Lin, J., W. Fu, and P. Cen (2009) Characterization of 5-aminolevulinate synthase from Agrobacterium radiobacter, screening new inhibitors for 5-aminolevulinate dehydratase from Escherichia coli and their potential use for high 5-aminolevulinate production. Bioresour. Technol. 100: 2293–2297.

    Article  CAS  Google Scholar 

  6. Zhang, J., Z. Kang, J. Chen, and G. Du (2015) Optimization of the heme biosynthesis pathway for the production of 5-aminolevulinic acid in Escherichia coli. Sci. Rep. 5: 8584.

    Article  CAS  Google Scholar 

  7. Li, F., Y. Wang, K. Gong, Q. Wang, Q. Liang, and Q. Qi (2014) Constitutive expression of RyhB regulates the heme biosynthesis pathway and increases the 5-aminolevulinic acid accumulation in Escherichia coli. FEMS Microbiol. Lett. 350: 209–215.

    Article  CAS  Google Scholar 

  8. Zhang, J., H. Weng, Z. Zhou, G. Du, and Z. Kang (2019) Engineering of multiple modular pathways for high-yield production of 5-aminolevulinic acid in Escherichia coli. Bioresour. Technol. 274: 353–360.

    Article  CAS  Google Scholar 

  9. Cui, Z., Z. Jiang, J. Zhang, H. Zheng, X. Jiang, K. Gong, Q. Liang, Q. Wang, and Q. Qi (2019) Stable and efficient biosynthesis of 5-aminolevulinic acid using plasmid-free Escherichia coli. J. Agric. Food Chem. 67: 1478–1483.

    Article  CAS  Google Scholar 

  10. Chen, J., Y. Wang, X. Guo, D. Rao, W. Zhou, P. Zheng, J. Sun, and Y. Ma (2020) Efficient bioproduction of 5-aminolevulinic acid, a promising biostimulant and nutrient, from renewable bioresources by engineered Corynebacterium glutamicum. Biotechnol. Biofuels. 13: 41.

    Article  CAS  Google Scholar 

  11. Ko, Y. J., S. K. You, M. Kim, E. Lee, S. K. Shin, H. M. Park, Y. Oh, and S. O. Han (2019) Enhanced production of 5-aminolevulinic acid via flux redistribution of TCA cycle toward L-glutamate in Corynebacterium glutamicum. Biotechnol. Bioprocess Eng. 24: 915–923.

    Article  CAS  Google Scholar 

  12. Yang, P., W. Liu, X. Cheng, J. Wang, Q. Wang, and Q. Qi (2016) A new strategy for production of 5-aminolevulinic acid in recombinant Corynebacterium glutamicum with high yield. Appl. Environ. Microbiol. 82: 2709–2717.

    Article  CAS  Google Scholar 

  13. Feng, L., Y. Zhang, J. Fu, Y. Mao, T. Chen, X. Zhao, and Z. Wang (2016) Metabolic engineering of Corynebacterium glutamicum for efficient production of 5-aminolevulinic acid. Biotechnol. Bioeng. 113: 1284–1293.

    Article  CAS  Google Scholar 

  14. Hara, K. Y., M. Saito, H. Kato, K. Morikawa, H. Kikukawa, H. Namura, T. Fujimoto, Y. Hirono-Hara, S. Watanabe, K. Kanamaru, and A. Kondo (2019) 5-Aminolevulinic acid fermentation using engineered Saccharomyces cerevisiae. Microb. Cell Fact. 18: 194.

    Article  Google Scholar 

  15. Zhu, C., J. Chen, Y. Wang, L. Wang, X. Guo, N. Chen, P. Zheng, J. Sun, and Y. Ma (2019) Enhancing 5-aminolevulinic acid tolerance and production by engineering the antioxidant defense system of Escherichia coli. Biotechnol. Bioeng. 116: 2018–2028.

    Article  CAS  Google Scholar 

  16. Lee, D. H., W. J. Jun, D. H. Shin, H. Y. Cho, and B. S. Hong (2005) Effect of culture conditions on production of 5-aminolevulinic acid by recombinant Escherichia coli. Biosci. Biotechnol. Biochem. 69: 470–476.

    Article  CAS  Google Scholar 

  17. Bunke, A., O. Zerbe, H. Schmid, G. Burmeister, H. P. Merkle, and B. Gander (2000) Degradation mechanism and stability of 5-aminolevulinic acid. J. Pharm. Sci. 89: 1335–1341.

    Article  CAS  Google Scholar 

  18. Yen, H. W., H. P. Hsiao, and L. J. Chen (2013) The enhancement of rapamycin production using Streptomyces hygroscopicus through a simple pH-shifted control. J. Taiwan Inst. Chem. Eng. 44: 743–747.

    Article  CAS  Google Scholar 

  19. Ren, F., L. Chen, S. Xiong, and Q. Tong (2017) Enhanced acarbose production by Streptomyces M37 using a two-stage fermentation strategy. PLoS One. 12: e0166985.

    Article  Google Scholar 

  20. Chen, X. S., S. Li, L. J. Liao, X. D. Ren, F. Li, L. Tang, J. H. Zhang, and Z. G. Mao (2011) Production of ε-poly-L-lysine using a novel two-stage pH control strategy by Streptomyces sp. M-Z18 from glycerol. Bioprocess Biosyst. Eng. 34: 561–567.

    Article  CAS  Google Scholar 

  21. Tran, N. T., D. N. Pham, and C. J. Kim (2019) Production of 5-aminolevulinic acid by recombinant Streptomyces coelicolor expressing hemA from Rhodobacter sphaeroides. Biotechnol. Bioprocess Eng. 24: 488–499.

    Article  CAS  Google Scholar 

  22. Petricek, M., K. Petrickova, L. Havlicek, and J. Felsoberg (2006) Occurrence of two 5-aminolevulinate biosynthetic pathways in Streptomyces nodosus subsp. asukaensis is linked with the production of asukamycin. J. Bacteriol. 188: 5113–5123.

    Article  CAS  Google Scholar 

  23. Kieser, T., M. J. Bibb, M. J. Buttner, K. F. Chater, and D. A. Hopwood (2000) Practical Streptomyces genetics. John Innes Centre, Norwich, UK.

    Google Scholar 

  24. Sohoni, S. V., P. M. Bapat, and A. E. Lantz (2012) Robust, small-scale cultivation platform for Streptomyces coelicolor. Microb. Cell Fact. 11: 9.

    Article  CAS  Google Scholar 

  25. Kim, C. J., Y. K. Chang, and G. T. Chun (2000) Enhancement of kasugamycin production by pH shock in batch cultures of Streptomyces kasugaensis. Biotechnol. Prog. 16: 548–552.

    Article  CAS  Google Scholar 

  26. Viollier, P. H., W. Minas, G. E. Dale, M. Folcher, and C. J. Thompson (2001) Role of acid metabolism in Streptomyces coelicolor morphological differentiation and antibiotic biosynthesis. J. Bacteriol. 183: 3184–3192.

    Article  CAS  Google Scholar 

  27. Yuzbashev, T. V., E. Y. Yuzbasheva, I. A. Laptev, T. I. Sobolevskaya, T. V. Vybornaya, A. S. Larina, I. T. Gvilava, S. V. Antonova, and S. P. Sineoky (2011) Is it possible to produce succinic acid at a low pH? Bioeng. Bugs. 2: 115–119.

    Article  Google Scholar 

  28. Guan, N. and L. Liu (2020) Microbial response to acid stress: mechanisms and applications. Appl. Microbiol. Biotechnol. 104: 51–65.

    Article  CAS  Google Scholar 

  29. Pan, L., X. S. Chen, K. F. Wang, and Z. G. Mao (2020) Mechanisms of response to pH shock in microbial fermentation. Bioprocess Biosyst. Eng. 43: 361–372.

    Article  CAS  Google Scholar 

  30. Stancik, L. M., D. M. Stancik, B. Schmidt, D. M. Barnhart, Y. N. Yoncheva, and J. L. Slonczewski (2002) pH-dependent expression of periplasmic proteins and amino acid catabolism in Escherichia coli. J. Bacteriol. 184: 4246–4258.

    Article  CAS  Google Scholar 

  31. Doull, J. L. and L. C. Vining (1990) Nutritional control of actinorhodin production by Streptomyces coelicolor A3(2): suppressive effects of nitrogen and phosphate. Appl. Microbiol. Biotechnol. 32: 449–454.

    Article  CAS  Google Scholar 

  32. Kontro, M., U. Lignell, M. R. Hirvonen, and A. Nevalainen (2005) pH effects on 10 Streptomyces spp. growth and sporulation depend on nutrients. Lett. Appl. Microbiol. 41: 32–38.

    Article  CAS  Google Scholar 

  33. Wang, C., X. Ren, C. Yu, J. Wang, L. Wang, X. Zhuge, and X. Liu (2020) Physiological and transcriptional responses of Streptomyces albulus to acid stress in the biosynthesis of ε-poly-L-lysine. Front. Microbiol. 11: 1379.

    Article  Google Scholar 

  34. Tretter, L., A. Patocs, and C. Chinopoulos (2016) Succinate, an intermediate in metabolism, signal transduction, ROS, hypoxia, and tumorigenesis. Biochim. Biophys. Acta. 1857: 1086–1101.

    Article  CAS  Google Scholar 

  35. Zhang, X., T. Bao, Z. Rao, T. Yang, Z. Xu, S. Yang, and H. Li (2014) Two-stage pH control strategy based on the pH preference of acetoin reductase regulates acetoin and 2,3-butanediol distribution in Bacillus subtilis. PLoS One. 9: e91187.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants (NRF-2012R1A1A2007214, 2017R1D1A1B03029032, and 2020R1F1A1054433) of the Basic Science Research Program through the National Research foundation (NRF) funded by the Ministry of Education, Science and Technology, Republic of Korea. The authors declare no conflicts of interest.

Neither ethical approval nor informed consent was required for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Joon Kim.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pham, D.N., Kim, CJ. A Novel Two-stage pH Control Strategy for the Production of 5-Aminolevulinic Acid Using Recombinant Streptomyces coelicolor. Biotechnol Bioproc E 26, 669–676 (2021). https://doi.org/10.1007/s12257-020-0376-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-020-0376-z

Keywords

Navigation