Skip to main content
Log in

Applications of Natural and Synthetic Melanins as Biosorbents and Adhesive Coatings

  • Review Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Natural and synthetic melanins are promising pigments for several uses, such as biosorbents and bioadhesives. Further, their high biocompatibilities and excellent biological activities potentially allow them to be ideal biomaterials for environmental and biotechnological applications. Naturally occurring melanin has been used as a biosorbent for the environmental treatment of organic chemicals and for metal ion removal, and melanins have been chemically engineered to function more efficiently. In addition, melanin has been engineered for use as an adhesive coating material, and its polymeric properties have been enhanced for medical applications. Clearly, given melanin’s high biocompatibility and biodegradability, it is a very viable biopolymer for further applications in environmental biotechnology fields. In this review, we highlight the uses of melanin as a biosorbent and bioadhesive in biotechnology fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Park, J., H. Moon, and S. Hong (2019) Recent advances in melanin-like nanomaterials in biomedical applications: a mini review. Biomater. Res. 23: 24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Caldas, M., A. C. Santos, F. Veiga, R. Rebelo, R. L. Reis, and V. M. Correlo (2020) Melanin nanoparticles as a promising tool for biomedical applications — a review. Acta Biomater. 105: 26–43.

    Article  CAS  PubMed  Google Scholar 

  3. Patel, R. P., M. R. Okun, L. M. Edelstein, and D. Epstein (1971) Biochemical studies of the peroxidase-mediated oxidation of tyrosine to melanin: demonstration of the hydroxylation of tyrosine by plant and human peroxidases. Biochem. J. 124: 439–441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ito, S. (1992) Melanin-related metabolites as markers of melanoma: a review. J. Dermatol. 19: 802–805.

    Article  CAS  PubMed  Google Scholar 

  5. Li, S., L. Yang, J. Li, T. Chen, and M. Ye (2019) Structure, molecular modification, and anti-radiation activity of melanin from Lachnum YM156 on ultraviolet B-induced injury in mice. Appl. Biochem. Biotechnol. 188: 555–567.

    Article  CAS  PubMed  Google Scholar 

  6. Seo, D. and K. Y. Choi (2020) Heterologous production of pyomelanin biopolymer using 4-hydroxyphenylpyruvate dioxygenase isolated from Ralstonia pickettii in Escherichia coli. Biochem. Eng. J. 157: 107548.

    Article  CAS  Google Scholar 

  7. Wang, Z., T. Tschirhart, Z. Schultzhaus, E. E. Kelly, A. Chen, E. Oh, O. Nag, E. R. Glaser, E. Kim, P. F. Lloyd, P. T. Charles, W. Li, D. Leary, J. Compton, D. A. Phillips, A. Dhinojwala, G. F. Payne, and G. J. Vora (2020) Melanin produced by the fastgrowing marine bacterium Vibrio natriegens through heterologous biosynthesis: characterization and application. Appl. Environ. Microbiol. 86: e02749–e02719.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Li, C., C. Ji, and B. Tang (2018) Purification, characterisation and biological activity of melanin from Streptomyces sp. FEMS Microbiol. Lett. 365: fny077

    CAS  Google Scholar 

  9. Arun, G., M. Eyini, and P. Gunasekaran (2015) Characterization and biological activities of extracellular melanin produced by Schizophyllum commune (Fries). Indian J. Exp. Biol. 53: 380–387.

    CAS  PubMed  Google Scholar 

  10. Chakraborty, D. P. and S. Roy (2003) Chemical and biological aspects of melanin. Alkaloids. Chem. Biol. 60: 345–391.

    Article  CAS  PubMed  Google Scholar 

  11. Park, H., I. Yang, M. Choi, K. S. Jang, J. C. Jung, and K. Y. Choi (2020) Engineering of melanin biopolymer by co-expression of MelC tyrosinase with CYP102G4 monooxygenase: Structural composition understanding by 15 tesla FT-ICR MS analysis. Biochem. Eng. J. 157: 107530.

    Article  CAS  Google Scholar 

  12. Li, Y., Y. Xie, Z. Wang, N. Zang, F. Carniato, Y. Huang, C. M. Andolina, L. R. Parent, T. B. Ditri, E. D. Walter, M. Botta, J. D. Rinehart, and N. C. Gianneschi (2016) Structure and function of iron-loaded synthetic melanin. ACS Nano. 10: 10186–10194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li, Y., J. Liu, Y. Wang, H. W. Chan, L. Wang, and W. Chan (2015) Mass spectrometric and spectrophotometric analyses reveal an alternative structure and a new formation mechanism for melanin. Anal. Chem. 87: 7958–7963.

    Article  CAS  PubMed  Google Scholar 

  14. Wilczek, A. and Y. Mishima (1995) Inhibitory effects of melanin monomers, dihydroxyindole-2-carboxylic acid (DHICA) and dihydroxyindole (DHI) on mammalian tyrosinase, with a special reference to the role of DHICA/DHI ratio in melanogenesis. Pigment Cell Res. 8: 105–112.

    Article  CAS  PubMed  Google Scholar 

  15. Wang, Y., J. Su, T. Li, P. Ma, H. Bai, Y. Xie, M. Chen, and W. Dong (2017) A Novel UV-shielding and transparent polymer film: When bioinspired dopamine-melanin hollow nanoparticles join polymers. ACS Appl. Mater. Interfaces. 9: 36281–36289.

    Article  CAS  PubMed  Google Scholar 

  16. Brash, D. E. (2016) UV-induced melanin chemiexcitation: A new mode of melanoma pathogenesis. Toxicol. Pathol. 44: 552–554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Matta, M., A. Pezzella, and A. Troisi (2020) Relation between local structure, electric dipole, and charge carrier dynamics in DHICA melanin: A model for biocompatible semiconductors. J. Phys. Chem. Lett. 11: 1045–1051.

    Article  CAS  PubMed  Google Scholar 

  18. Kwon, I. S., Y. J. Kim, L. Klosterman, M. Forssell, G. K. Fedder, and C. J. Bettinger (2016) In vitro electrochemical characterization of polydopamine melanin as a tissue stimulating electrode material. J. Mater. Chem. B. 4: 3031–3036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kim, Y. J., A. Khetan, W. Wu, S. E. Chun, V. Viswanathan, J. F. Whitacre, and C. J. Bettinger (2016) Evidence of porphyrin-like structures in natural melanin pigments using electrochemical fingerprinting. Adv. Mater. 28: 3173–3180.

    Article  CAS  PubMed  Google Scholar 

  20. Yumusak, C., A. J. Prochazkova, D. H. Apaydin, H. Seelajaroen, N. S. Sariciftci, M. Weiter, J. Krajcovic, Y. Qin, W. Zhang, J. Zhan, and A. Kovalenko (2019) Indigoidine — Biosynthesized organic semiconductor. Dyes Pigm. 171: 107768.

    Article  CAS  Google Scholar 

  21. Schroeder, R. L. and J. P. Gerber (2014) A reappraisal of Fe(III) adsorption by melanin. J. Neural Transm. (Vienna). 121: 1483–1491.

    Article  CAS  Google Scholar 

  22. Liu, Y., L. Hong, V. R. Kempf, K. Wakamatsu, S. Ito, and J. D. Simon (2004) Ion-exchange and adsorption of Fe(III) by Sepia melanin. Pigment Cell Res. 17: 262–269.

    Article  CAS  PubMed  Google Scholar 

  23. Herrera, A. S., M. del Carmen Arias Esparza, P. E. Solis Arias, M. Avila-Rodriguez, G. E. Barreto, Y. Li, S. O. Bachurin, and G. Aliev (2016) Unsuspected intrinsic property of melanin to dissociate water can be used for the treatment of CNS diseases. CNS Neurol Disord. Drug Targets. 15: 135–140.

    Article  CAS  PubMed  Google Scholar 

  24. Lapouge, C. and J. P. Cornard (2007) Reaction pathways involved in the mechanism of AlIII chelation with caffeic acid: catechol and carboxylic functions competition. Chemphyschem. 8: 473–479.

    Article  CAS  PubMed  Google Scholar 

  25. Sanchez, P., N. Galvez, E. Colacio, E. Minones, and J. M. Dominguez-Vera (2005) Catechol releases iron(III) from ferritin by direct chelation without iron(II) production. Dalton Trans. 2005: 811–813.

    Article  Google Scholar 

  26. Rath, S. P., K. K. Rajak, and A. Chakravorty (1999) Synthesis, structure, and catecholase reaction of a vanadate ester system incorporating monoionized catechol chelation. Inorg. Chem. 38: 4376–4377.

    Article  CAS  PubMed  Google Scholar 

  27. Lan, M., S. Zhao, X. Wei, K. Zhang, Z. Zhang, S. Wu, P. Wang, and W. Zhang (2019) Pyrene-derivatized highly fluorescent carbon dots for the sensitive and selective determination of ferric ions and dopamine. Dyes Pigm. 170: 107574.

    Article  CAS  Google Scholar 

  28. Girdthep, S., J. Sirirak, D. Daranarong, R. Daengngern, and S. Chayabutra (2018) Physico-chemical characterization of natural lake pigments obtained from Caesalpinia Sappan Linn. and their composite films for poly(lactic acid)-based packaging materials. Dyes Pigm. 157: 27–39.

    Article  CAS  Google Scholar 

  29. Dayi, B., A. D. Kyzy, Y. Abduloglu, K. Cikrikci, and H. Ardag Akdogan (2018) Investigation of the ability of immobilized cells to different carriers in removal of selected dye and characterization of environmentally friendly laccase of Morchella esculenta. Dyes Pigm. 151: 15–21.

    Article  CAS  Google Scholar 

  30. Fujii, I., Y. Mori, A. Watanabe, Y. Kubo, G. Tsuji, and Y. Ebizuka (1999) Heterologous expression and product identification of Colletotrichum lagenarium polyketide synthase encoded by the PKS1 gene involved in melanin biosynthesis. Biosci. Biotechnol. Biochem. 63: 1445–1452.

    Article  CAS  PubMed  Google Scholar 

  31. Bolognese, F., C. Scanferla, E. Caruso, and V. T. Orlandi (2019) Bacterial melanin production by heterologous expression of 4- hydroxyphenylpyruvate dioxygenase from Pseudomonas aeruginosa. Int. J. Biol. Macromol. 133: 1072–1080.

    Article  CAS  PubMed  Google Scholar 

  32. Wang, W., T. Jing, X. Xia, L. Tang, Z. Huang, F. Liu, Z. Wang, H. Ran, M. Li, and J. Xia (2019) Melanin-loaded biocompatible photosensitive nanoparticles for controlled drug release in combined photothermal-chemotherapy guided by photoacoustic/ultrasound dual-modality imaging. Biomater. Sci. 7: 4060–4074.

    Article  CAS  PubMed  Google Scholar 

  33. Hong, S. H., Y. Sun, C. Tang, K. Cheng, R. Zhang, Q. Fan, L. Xu, D. Huang, A. Zhao, and Z. Cheng (2017) Chelator-free and biocompatible melanin nanoplatform with facile-loading gadolinium and copper-64 for bioimaging. Bioconjug Chem. 28: 1925–1930.

    Article  CAS  PubMed  Google Scholar 

  34. Estébanez, S., C. Lorente, M. G. Tosato, M. A. Miranda, M. L. Marín, V. Lhiaubet-Vallet, and A. H. Thomas (2019) Photochemical formation of a fluorescent thymidine-pterin adduct in DNA. Dyes Pigm. 160: 624–632.

    Article  CAS  Google Scholar 

  35. Sobotta, L., P. Skupin-Mrugalska, J. Piskorz, and J. Mielcarek (2019) Non-porphyrinoid photosensitizers mediated photodynamic inactivation against bacteria. Dyes Pigm. 163: 337–355.

    Article  CAS  Google Scholar 

  36. Pavan, M. E., N. I. Lopez, and M. J. Pettinari (2020) Melanin biosynthesis in bacteria, regulation and production perspectives. Appl. Microbiol. Biotechnol. 104: 1357–1370.

    Article  CAS  PubMed  Google Scholar 

  37. Martinez, L. M., A. Martinez, and G. Gosset (2019) Production of melanins with recombinant microorganisms. Front. Bioeng. Biotechnol. 7: 285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Xie, W., E. Pakdel, Y. Liang, Y. J. Kim, D. Liu, L. Sun, and X. Wang (2019) Natural eumelanin and its derivatives as multifunctional materials for bioinspired applications: A review. Biomacromolecules. 20: 4312–4331.

    Article  CAS  PubMed  Google Scholar 

  39. Song, L., X. Chen, Y. Xie, L. Zhong, X. Zhang, and Z. Cheng (2019) Non-iridescent, crack-free, conductive structural colors enhanced by flexible nanosheets of reduced graphene oxide. Dyes Pigm. 164: 222–226.

    Article  CAS  Google Scholar 

  40. Wang, X., Y. Li, L. Zhou, L. Chai, Q. Fan, and J. Shao (2019) Structural colouration of textiles with high colour contrast based on melanin-like nanospheres. Dyes Pigm. 169: 36–44.

    Article  CAS  Google Scholar 

  41. Chen, W., K. Hashimoto, Y. Omata, N. Ohgami, A. Tazaki, Y. Deng, L. Kondo-Ida, A. Intoh, and M. Kato (2019) Adsorption of molybdenum by melanin. Environ. Health Prev. Med. 24: 36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Pinto, A. L., L. Cruz, V. Gomes, H. Cruz, G. Calogero, V. de Freitas, F. Pina, A. J. Parola, and J. Carlos Lima (2019) Catechol versus carboxyl linkage impact on DSSC performance of synthetic pyranoflavylium salts. Dyes Pigm. 170: 107577.

    Article  CAS  Google Scholar 

  43. Hong, S., Y. Wang, S. Y. Park, and H. Lee (2018) Progressive fuzzy cation-pi assembly of biological catecholamines. Sci. Adv. 4: eaat7457.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Di Mauro, E., R. Xu, G. Soliveri, and C. Santato (2017) Natural melanin pigments and their interfaces with metal ions and oxides: emerging concepts and technologies. MRS Commun. 7: 141–151.

    Article  CAS  Google Scholar 

  45. Turner, A., L. Holmes, R. C. Thompson, and A. S. Fisher (2020) Metals and marine microplastics: Adsorption from the environment versus addition during manufacture, exemplified with lead. Water Res. 173: 115577.

    Article  CAS  PubMed  Google Scholar 

  46. Wu, Y., X. Qiu, S. Cao, J. Chen, X. Shi, Y. Du, and H. Deng (2019) Adsorption of natural composite sandwich-like nanofibrous mats for heavy metals in aquatic environment. J. Colloid Interface Sci. 539: 533–544.

    Article  CAS  PubMed  Google Scholar 

  47. Ham, K., B. S. Kim, and K. Y. Choi (2018) Enhanced ammonium removal efficiency by ion exchange process of synthetic zeolite after Na+ and heat pretreatment. Water Sci. Technol. 78: 1417–1425.

    Article  CAS  PubMed  Google Scholar 

  48. Algieri, C., L. Donato, P. Bonacci, and L. Giorno (2012) Tyrosinase immobilised on polyamide tubular membrane for the l-DOPA production: Total recycle and continuous reactor study. Biochem. Eng J. 66: 14–19.

    Article  CAS  Google Scholar 

  49. Lindroos, M., D. Hornstrom, G. Larsson, M. Gustavsson, and A. J. A. van Maris (2019) Continuous removal of the model pharmaceutical chloroquine from water using melanin-covered Escherichia coli in a membrane bioreactor. J. Hazard Mater. 365: 74–80.

    Article  CAS  PubMed  Google Scholar 

  50. Rizvi, A., B. Ahmed, A. Zaidi, and M. S. Khan (2019) Bioreduction of toxicity influenced by bioactive molecules secreted under metal stress by Azotobacter chroococcum. Ecotoxicology. 28: 302–322.

    Article  CAS  PubMed  Google Scholar 

  51. Manirethan, V., K. Raval, R. Rajan, H. Thaira, and R. M. Balakrishnan (2018) Data on the removal of heavy metals from aqueous solution by adsorption using melanin nanopigment obtained from marine source: Pseudomonas stutzeri. Data Brief. 20: 178–189.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Manirethan, V., K. Raval, R. Rajan, H. Thaira, and R. M. Balakrishnan (2018) Kinetic and thermodynamic studies on the adsorption of heavy metals from aqueous solution by melanin nanopigment obtained from marine source: Pseudomonas stutzeri. J. Environ. Manage. 214: 315–324.

    Article  CAS  PubMed  Google Scholar 

  53. Manirethan, V., K. Raval, and R. M. Balakrishnan (2020) Adsorptive removal of trivalent and pentavalent arsenic from aqueous solutions using iron and copper impregnated melanin extracted from the marine bacterium Pseudomonas stutzeri. Environ. Pollut. 257: 113576.

    Article  CAS  PubMed  Google Scholar 

  54. Solano, F. (2017) Melanin and melanin-related polymers as materials with biomedical and biotechnological applications-cuttlefish ink and mussel foot proteins as inspired biomolecules. Int. J. Mol. Sci. 18: 1561.

    Article  CAS  PubMed Central  Google Scholar 

  55. Kim, Y. J., W. Wu, S. E. Chun, J. F. Whitacre, and C. J. Bettinger (2013) Biologically derived melanin electrodes in aqueous sodium-ion energy storage devices. Proc. Natl. Acad. Sci. USA. 110: 20912–20917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Schroeder, R. L., P. Pendleton, and J. P. Gerber (2015) Physical factors affecting chloroquine binding to melanin. Colloids Surf. B Biointerfaces. 134: 8–16.

    Article  CAS  PubMed  Google Scholar 

  57. Schroeder, R. L. and J. P. Gerber (2014) Chloroquine and hydroxychloroquine binding to melanin: Some possible consequences for pathologies. Toxicol. Rep. 1: 963–968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Panzarasa, G., A. Osypova, G. Consolati, F. Quasso, G. Soliveri, J. Ribera, and F. W. M. R. Schwarze (2018) Preparation of a sepia melanin and poly(ethylene-alt-maleic anhydride) hybrid material as an adsorbent for water purification. Nanomaterials. 8: 54.

    Article  PubMed Central  CAS  Google Scholar 

  59. Cuong, A. M., N. T. Le Na, P. N. Thang, T. N. Diep, L. B. Thuy, N. L. Thanh, and N. D. Thang (2018) Melanin-embedded materials effectively remove hexavalent chromium (CrVI) from aqueous solution. Environ. Health Prev. Med. 23: 9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Yao, Z. Y., J. H. Qi, Y. Hu, and Y. Wang (2016) Insolubilization of chestnut shell pigment for Cu(II) adsorption from water. Molecules. 21: 405.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Fisher, O. Z., B. L. Larson, P. S. Hill, D. Graupner, M. T. Nguyen-Kim, N. S. Kehr, L. De Cola, R. Langer, and D. G. Anderson (2012) Melanin-like hydrogels derived from gallic macromers. Adv. Mater. 24: 3032–3036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Alekseeva, T. N., A. D. Durnev, A. V. Kulakova, A. V. Oreshchenko, L. V. Samusenok, B. N. Ogarkov, and S. B. Seredenin (2001) Effect of plant melanin pigment on the clastogenic effects of chemical mutagens in mice. Eksp Klin Farmakol. 64: 56–59.

    CAS  PubMed  Google Scholar 

  63. Saini, A. S. and J. S. Melo (2013) Biosorption of uranium by melanin: kinetic, equilibrium and thermodynamic studies. Bioresour. Technol. 149: 155–162.

    Article  CAS  PubMed  Google Scholar 

  64. Panzella, L., L. Melone, A. Pezzella, B. Rossi, N. Pastori, M. Perfetti, G. D’Errico, C. Punta, and M. d’Ischia (2016) Surfacefunctionalization of nanostructured cellulose aerogels by solid state eumelanin coating. Biomacromolecules. 17: 564–571.

    Article  CAS  PubMed  Google Scholar 

  65. Li, Y., L. Huang, W. He, Y. Chen, and B. Lou (2018) Preparation of functionalized magnetic Fe3O4@Au@polydopamine nanocomposites and their application for copper(II) removal. Polymers. 10: 570.

    Article  PubMed Central  CAS  Google Scholar 

  66. Perring, J., F. Crawshay-Williams, C. Huang, and H. E. Townley (2018) Bio-inspired melanin nanoparticles induce cancer cell death by iron adsorption. J. Mater. Sci. Mater Med. 29: 181.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Lee, H., S. M. Dellatore, W. M. Miller, and P. B. Messersmith (2007) Mussel-inspired surface chemistry for multifunctional coatings. Science. 318: 426–430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kang, S. M., N. S. Hwang, J. Yeom, S. Y. Park, P. B. Messersmith, I. S. Choi, R. Langer, D. G. Anderson, and H. Lee (2012) Onestep multipurpose surface functionalization by adhesive catecholamine. Adv. Funct. Mater. 22: 2949–2955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wei, Q., F. Zhang, J. Li, B. Li, and C. Zhao (2010) Oxidantinduced dopaminepolymerization for multifunctional coatings. Polym. Chem. 1: 1430–1433.

    Article  CAS  Google Scholar 

  70. Phua, S. L., L. Yang, C. L. Toh, D. Guoqiang, S. K. Lau, A. Dasari, and X. Lu (2013) Simultaneous enhancements of UV resistance and mechanical properties of polypropylene by incorporation of dopamine-modified clay. ACS Appl. Mater. Interfaces. 5: 1302–1309.

    Article  CAS  PubMed  Google Scholar 

  71. Jang, S., H. Gang, B. G. Kim, and K. Y. Choi (2018) FCS and ECH dependent production of phenolic aldehyde and melanin pigment from l-tyrosine in Escherichia coli. Enzyme Microb. Technol. 112: 59–64.

    Article  CAS  PubMed  Google Scholar 

  72. Ahn, S. Y., M. Choi, D. W. Jeong, S. Park, H. Park, K. S. Jang, and K. Y. Choi (2019) Synthesis and chemical composition analysis of protocatechualdehyde-based novel melanin dye by 15T FT-ICR: High dyeing performance on soft contact lens. Dyes Pigm. 160: 546–554.

    Article  CAS  Google Scholar 

  73. Jeon, J. R., T. T. Le, and Y. S. Chang (2016) Dihydroxynaphthalenebased mimicry of fungal melanogenesis for multifunctional coatings. Microb. Biotechnol. 9: 305–315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hwang, D. S., A. Masic, E. Prajatelistia, M. Iordachescu, and J. H. Waite (2013) Marine hydroid perisarc: a chitin- and melanin-reinforced composite with DOPA-iron(III) complexes. Acta Biomat. 9: 8110–8117.

    Article  CAS  Google Scholar 

  75. Garcia, B., J. Saiz-Poseu, R. Gras-Charles, J. Hernando, R. Alibes, F. Novio, J. Sedo, F. Busque, and D. Ruiz-Molina (2014) Mussel-inspired hydrophobic coatings for water-repellent textiles and oil removal. ACS Appl. Mater. Interfaces. 6: 17616–17625.

    Article  CAS  PubMed  Google Scholar 

  76. Bai, L., Y. Lim, J. Zhou, L. Liang, and H. Duan (2019) Bioinspired production of noniridescent structural colors by adhesive melaninlike particles. Langmuir. 35: 9878–9884.

    Article  CAS  PubMed  Google Scholar 

  77. Araujo, M., R. Viveiros, A. Philippart, M. Miola, S. Doumett, G. Baldi, J. Perez, A. R. Boccaccini, A. Aguiar-Ricardo, and E. Verne (2017) Bioactivity, mechanical properties and drug delivery ability of bioactive glass-ceramic scaffolds coated with a natural-derived polymer. Mater. Sci. Eng. C Mater. Biol. Appl. 77: 342–351.

    Article  CAS  PubMed  Google Scholar 

  78. Scognamiglio, F., A. Travan, G. Turco, M. Borgogna, E. Marsich, M. Pasqua, S. Paoletti, and I. Donati (2017) Adhesive coatings based on melanin-like nanoparticles for surgical membranes. Colloids Surf. B Biointerfaces. 155: 553–559.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwon-Young Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, S., Lee, C., Lee, J. et al. Applications of Natural and Synthetic Melanins as Biosorbents and Adhesive Coatings. Biotechnol Bioproc E 25, 646–654 (2020). https://doi.org/10.1007/s12257-020-0077-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-020-0077-7

Keywords

Navigation