Skip to main content
Log in

Fabrication of Non-enzymatic Electrochemical Glucose Sensor Based on Nano-copper Oxide Micro Hollow-spheres

  • Research Paper
  • Nanobiotechnology
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

In the present study, an electrochemical glucose biosensor has been developed based on nano-copper oxide micro hollow spheres. The nano-copper oxide micro hollow spheres were synthesized via hydrothermal method using pluronic F-127 as a surfactant. For structural characterization of CuO hollow sphere structures, the scanning electron microscopy and X-ray diffraction spectroscopy were applied. The performance parameters of the sensor were improved by optimizing the modification process. The electrochemical characteristics of the proposed glucose biosensor were investigated by using cyclic voltammetry and chronoamperometry techniques in both 0.1 M and 1 M NaOH solutions. The results revealed that the proposed electrode has a wide dynamic range from 1 µM to 11.50 mM for glucose detection at 0.1 M NaOH solution which covers two linear ranges from 1 µM to 3 mM and from 3 mM to 11.50 mM. The sensitivities of the two linear ranges were obtained as 25.0 ± 0.8 µA·mM−1·cm−2 and 13.6 ±0.3 µA·mM−1·cm−2, respectively. An extremely wide linear range from 1 µM to 16 mM with a sensitivity of 35.2 ± 0.4 µA·mM−1 cm−2 was achieved for the 1 M NaOH solution. The sensor achieved a 1 µM practical lowest limit of detection which is an excellent low limit of detection at both NaOH concentrations compared to some important previously reported works. In addition, the good tolerance toward the interfering species and the satisfactory behavior in real sample analysis verified the promising performance of the proposed sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Laing, S. P., A. J. Swerdlow, S. D. Slater, J. L. Botha, A. C. Burden, N. R. Waugh, A. W. Smith, R. D. Hill, P. J. Bingley, C. C. Patterson, Z. Qiao, and H. Keen (1999) The British Diabetic Association Cohort Study, II: cause-specific mortality in patients with insulin-treated diabetes mellitus. Diabet. Med. 16: 466–471.

    CAS  PubMed  Google Scholar 

  2. Sreedevi, V. and P. R. A. V. Kumar (2017) A review on type 2 diabetes mellitus associated with cognitive disfunction and dementia and future perspective. World J. Pharm. Pharm. Sci. 6: 579–600

    CAS  Google Scholar 

  3. World Health Organization (2017) Global report on diabetes. https://www.who.int/diabetes/global-report/en/.

  4. Brethauer, S. A., A. Aminian, H. Romero-Talamás, E. Batayyah, J. Mackey, L. Kennedy, S. R. Kashyap, J. P. Kirwan, T. Rogula, M. Kroh, B. Chand, and P. R. Schauer (2013) Can diabetes be surgically cured? Long-term metabolic effects of bariatric surgery in obese patients with type 2 diabetes mellitus. Ann. Surg. 258: 628–636.

    PubMed  PubMed Central  Google Scholar 

  5. Buse, J. B., S. Caprio, W. T. Cefalu, A. Ceriello, S. Del Prato, S. E. Inzucchi, S. McLaughlin, G. L. Phillips, R. P. Robertson, F. Rubino, R. Kahn, and M. S. Kirkman (2009) How do we define cure of diabetes? Diabetes Care. 32: 2133–2135.

    PubMed  PubMed Central  Google Scholar 

  6. Bhalla, N., P. Jolly, N. Formisano, and P. Estrela (2016) Introduction to biosensors. Essays Biochem. 60: 1–8.

    PubMed  PubMed Central  Google Scholar 

  7. Yoo, E. H. and S. Y. Lee (2010) Glucose biosensors: an overview of use in clinical practice. Sensors. 10: 4558–4576.

    PubMed  Google Scholar 

  8. Mastrototaro, J. J., K. W. Johnson, R. J. Morff, D. Lipson, C. C. Andrew, and D. J. Allen (1991) An electroenzymatic glucose sensor fabricated on a flexible substrate. Sens. Actuators B Chem. 5: 139–144.

    CAS  Google Scholar 

  9. Reitz, E., W. Jia, M. Gentile, Y. Wang, and Y. Lei (2008) CuO nanospheres based nonenzymatic glucose sensor. Electroanalysis. 20: 2482–2486.

    CAS  Google Scholar 

  10. Shichiri, M., N. Asakawa, Y. Yamasaki, R. Kawamori, and H. Abe (1986) Telemetry glucose monitoring device with needle-type glucose sensor: a useful tool for blood glucose monitoring in diabetic individuals. Diabetes Care. 9: 298–301.

    CAS  PubMed  Google Scholar 

  11. Wang, J., D. F. Thomas, and A. Chen (2008) Nonenzymatic electrochemical glucose sensor based on nanoporous PtPb networks. Anal. Chem. 80: 997–1004.

    CAS  PubMed  Google Scholar 

  12. Yang, H. and Y. Zhu (2005) A high performance glucose biosensor enhanced via nanosized SiO2. Anal. Chim. Acta. 554: 92–97.

    CAS  Google Scholar 

  13. Foroughi, F., M. Rahsepar, M. J. Hadianfard, and H. Kim (2018) Microwave-assisted synthesis of graphene modified CuO nanoparticles for voltammetric enzyme-free sensing of glucose at biological pH values. Microchim. Acta. 185: 57.

    Google Scholar 

  14. Espro, C., N. Donato, S. Galvagno, D. Aloisio, S. G. Leonardi, and G. Neri (2014) CuO nanowires-based electrodes for glucose sensors. Chem. Eng. Trans. 41: 415–420.

    Google Scholar 

  15. Chakraborty, P., S. Dhar, K. Debnath, and S. P. Mondal (2019) Glucose and hydrogen peroxide dual-mode electrochemical sensing using hydrothermally grown CuO nanorods. J. Electroanal. Chem. 833: 213–220.

    CAS  Google Scholar 

  16. Liu, Z., B. Yadian, H. Liu, C. Liu, B. Zhang, R. V. Ramanujan, and Y. Huang (2013) Fabrication of hybrid CuO/Pt/Si nanoarray for non-enzymatic glucose sensing. Electrochem. Commun. 33: 138–141.

    Google Scholar 

  17. Rahman, M., A. J. S. Ahammad, J. H. Jin, S. J. Ahn, and J. J. Lee (2010) A comprehensive review of glucose biosensors based on nanostructured metal-oxides. Sensors. 10: 4855–4886.

    CAS  PubMed  Google Scholar 

  18. Ahammad, A. J. S., A. Al Mamun, T. Akter, M. A. Mamun, S. Faraezi, and F. Z. Monira (2016) Enzyme-free impedimetric glucose sensor based on gold nanoparticles/polyaniline composite film. J. Solid State Electrochem. 20: 1933–1939.

    CAS  Google Scholar 

  19. Yan, X., J. Yang, L. Ma, X. Tong, Y. Wang, G. Jin, and X. Y. Guo (2015) Size-controlled synthesis of Cu2O nanoparticles on reduced graphene oxide sheets and their application as non-enzymatic glucose sensor materials. J. Solid State Electrochem. 19: 3195–3199.

    CAS  Google Scholar 

  20. Yi, W., J. Liu, H. Chen, Y. Gao, and H. Li (2015) Copper/nickel nanoparticle decorated carbon nanotubes for nonenzymatic glucose biosensor. J. Solid State Electrochem. 19: 1511–1521.

    CAS  Google Scholar 

  21. Liu, L., Y. Chen, H. Lv, G. Wang, X. Hu, and C. Wang (2015) Construction of a non-enzymatic glucose sensor based on copper nanoparticles/poly(o-phenylenediamine) nanocomposites. J. Solid State Electrochem. 19: 731–738.

    CAS  Google Scholar 

  22. Qi, J., X. Lai, J. Wang, H. Tang, H. Ren, Y. Yang, Q. Jin, L. Zhang, R. Yu, G. Ma, Z. Su, H. Zhao, and D. Wang (2015) Multi-shelled hollow micro-/nanostructures. Chem. Soc. Rev. 44: 6749–6773.

    CAS  PubMed  Google Scholar 

  23. Wang, X., J. Feng, Y. Bai, Q. Zhang, and Y. Yin (2016) Synthesis, properties, and applications of hollow micro-/nanostructures. Chem. Rev. 116: 10983–11060.

    CAS  PubMed  Google Scholar 

  24. Prasad, M. S., R. Chen, Y. Li, D. Rekha, D. Li, H. Ni, and N. Y. Sreedhar (2018) Polypyrrole supported with copper nanoparticles modified alkali anodized steel electrode for probing of glucose in real samples. IEEE Sens. J. 18: 5203–5212.

    CAS  Google Scholar 

  25. Li, R., X. Liu, H. Wang, Y. Wu, K. C. Chan, and Z. Lu (2019) Sandwich nanoporous framework decorated with vertical CuO nanowire arrays for electrochemical glucose sensing. Electrochim. Acta. 299: 470–478.

    CAS  Google Scholar 

  26. Kim, K., S. Kim, H. N. Lee, Y. M. Park, Y. S. Bae, and H. J. Kim (2019) Electrochemically derived CuO nanorod from copper-based metal-organic framework for non-enzymatic detection of glucose. Appl. Surf. Sci. 479: 720–726.

    CAS  Google Scholar 

  27. Chakraborty, P., S. Dhar, N. Deka, K. Debnath, and S. P. Mondal (2020) Non-enzymatic salivary glucose detection using porous CuO nanostructures. Sens. Actuators B Chem. 302: 127134.

    CAS  Google Scholar 

  28. Liu, B., X. Hu, Y. Deng, S. Yang, and C. Sun (2011) Electrocatalytic dechlorination of chloroacetic acids by silver nanoparticles modified glassy carbon electrode. J. Solid State Electrochem. 16: 927–930.

    Google Scholar 

  29. Zhang, L., Z. Shi, and Q. Lang (2011) Fabrication of poly(orthanilic acid)-multiwalled carbon nanotubes composite film-modified glassy carbon electrode and its use for the simultaneous determination of uric acid and dopamine in the presence of ascorbic acid. J. Solid State Electrochem. 15: 801–809.

    CAS  Google Scholar 

  30. Wang, L., F. Yu, F. Wang, and Z. Chen (2016) Electrochemical detection of DNA methylation using a glassy carbon electrode modified with a composite made from carbon nanotubes and β-cyclodextrin. J. Solid State Electrochem. 20: 1263–1270.

    CAS  Google Scholar 

  31. Houshmand, M., A. Jabbari, H. Heli, M. Hajjizadeh, and A. A. Moosavi-Movahedi (2008) Electrocatalytic oxidation of aspirin and acetaminophen on a cobalt hydroxide nanoparticles modified glassy carbon electrode. J. Solid State Electrochem. 12: 1117–1128.

    CAS  Google Scholar 

  32. Yang, Z., Y. Tang, J. Li, Y. Zhang, and X. Hu (2014) Facile synthesis of tetragonal columnar-shaped TiO2 nanorods for the construction of sensitive electrochemical glucose biosensor. Biosens. Bioelectron. 54: 528–533.

    CAS  PubMed  Google Scholar 

  33. Du, G. H. and G. Van Tendeloo (2004) Cu(OH)2 nanowires, CuO nanowires and CuO nanobelts. Chem. Phys. Lett. 393: 64–69.

    CAS  Google Scholar 

  34. Barragan, J. T. C., S. Kogikoski, E. T. S. G. da Silva, and L. T. Kubota (2018) Insight into the electro-oxidation mechanism of glucose and other carbohydrates by CuO-based electrodes. Anal. Chem. 90: 3357–3365.

    CAS  PubMed  Google Scholar 

  35. Esmaeeli, A., A. Ghaffarinejad, A. Zahedi, and O. Vahidi (2018) Copper oxide-polyaniline nanofiber modified fluorine doped tin oxide (FTO) electrode as non-enzymatic glucose sensor. Sens. Actuators B Chem. 266: 294–301.

    CAS  Google Scholar 

  36. Ahmad, R., N. Tripathy, M. S. Ahn, K. S. Bhat, T. Mahmoudi, Y. Wang, J. Y. Yoo, D. W. Kwon, H. Y. Yang, and Y. B. Hahn (2017) Highly efficient non-enzymatic glucose sensor based on CuO modified vertically-grown ZnO nanorods on electrode. Sci. Rep. 7: 5715.

    PubMed  PubMed Central  Google Scholar 

  37. Karikalan, N., R. Karthik, S. M. Chen, C. Karuppiah, and A. Elangovan (2017) Sonochemical synthesis of sulfur doped reduced graphene oxide supported CuS nanoparticles for the non-enzymatic glucose sensor applications. Sci. Rep. 7: 2494.

    PubMed  PubMed Central  Google Scholar 

  38. Zhang, S., N. Wang, H. Yu, Y. Niu, and C. Sun (2005) Covalent attachment of glucose oxidase to an Au electrode modified with gold nanoparticles for use as glucose biosensor. Bioelectrochemistry. 67: 15–22.

    CAS  PubMed  Google Scholar 

  39. Kaushik, A., R. Khan, P. R. Solanki, P. Pandey, J. Alam, S. Ahmad, and B. D. Malhotra (2008) Iron oxide nanoparticles-chitosan composite based glucose biosensor. Biosens Bioelectron. 24: 676–683.

    CAS  PubMed  Google Scholar 

  40. Rakhi, R. B., P. Nayak, C. Xia, and H. N. Alshareef (2016) Novel amperometric glucose biosensor based on MXene nanocomposite. Sci. Rep. 6: 36422.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Shamsipur, M., Z. Karimi, M. A. Tabrizi, and S. Rostamnia (2017) Highly sensitive non-enzymatic electrochemical glucose sensor by Nafion/SBA-15-Cu (II) modified glassy carbon electrode. J. Electroanal. Chem. 799: 406–412.

    CAS  Google Scholar 

  42. Zhang, L., C. Ye, X. Li, Y. Ding, H. Liang, G. Zhao, and Y. Wang (2018) A CuNi/C nanosheet array based on a metal-organic framework derivate as a supersensitive non-enzymatic glucose sensor. Nano-Micro Lett. 10: 28.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zoheir Kordrostami or Mohsen Sorouri.

Ethics declarations

The authors declare no conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haghparas, Z., Kordrostami, Z., Sorouri, M. et al. Fabrication of Non-enzymatic Electrochemical Glucose Sensor Based on Nano-copper Oxide Micro Hollow-spheres. Biotechnol Bioproc E 25, 528–535 (2020). https://doi.org/10.1007/s12257-020-0058-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-020-0058-x

Keywords

Navigation