Skip to main content
Log in

Inhibitory Functions of Novel Compounds from Dioscorea batatas Decne Peel on HMGB1-mediated Septic Responses

  • Research Paper
  • Biomedical Engineering
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Inhibition of high mobility group box 1 (HMGB1) signaling and restoration of endothelial integrity are emerging as promising therapeutic strategies for managing severe vascular inflammatory diseases. Dioscorea batatas Decne (DBD, Chinese yam), a perennial plant which belongs to Dioscoreaceae, is widely cultivated across Korea, Japan, China, and other tropical and subtropical regions, and both the aerial parts and roots of this plant are used for food and medicinal purposes. Here, we determined the effects of the two phenanthrene compounds from DBD peel, 2,7-dihydroxy-4,6-dimethoxyphenanthrene (1) and 6,7-dihydroxy-2,4-dimethoxyphenanthrene (2), on HMGB1-mediated septic responses and survival rate in cecal ligation and puncture (CLP)-induced septic model. The anti-inflammatory activities of compounds 1 and 2 were monitored by lipopolysaccharide (LPS)- or CLP-induced release of HMGB1. The anti-septic activities of compounds 1 and 2 were determined by measuring permeability, leukocyte adhesion and migration, and pro-inflammatory protein activation in HMGB1-activated human umbilical vein endothelial cells (HUVECs) and mice. Compounds 1 and 2 inhibited HMGB1 release and downregulated HMGB1-mediated inflammatory responses in HUVECs. Compounds 1 and 2 also inhibited HMGB1-induced hyperpermeability and leukocyte migration in mice. Additionally, treatment with compounds 1 and 2 reduced CLP-induced HMGB1 release and sepsis-related mortality and pulmonary damage in vivo. Our results indicate that the compounds 1 and 2 are potential therapeutic agents for treating severe vascular inflammatory diseases via HMGB1 signaling pathway inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Russell, J. A. (2006) Management of sepsis. N. Engl. J. Med. 355: 1699–1713.

    Article  CAS  Google Scholar 

  2. Andreu Ballester, J. C., F. Ballester, A. Gonzalez Sanchez, A. Almela Quilis, E. Colomer Rubio, and C. Penarroja Otero (2008) Epidemiology of sepsis in the Valencian Community (Spain), 1995–2004. Infect. Control Hosp. Epidemiol. 29: 630–634.

    Article  Google Scholar 

  3. Thachil, J., C. H. Toh, M. Levi, and H. G. Watson (2012) The withdrawal of activated protein C. from the use in patients with severe sepsis and DIC. [Amendment to the BCSH. guideline on disseminated intravascular coagulation]. Br. J. Haematol. 157: 493–494.

    Article  Google Scholar 

  4. Bhatia, M., M. He, H. Zhang, and S. Moochhala (2009) Sepsis as a model of SIRS. Front. Biosci. (Landmark Ed). 14: 4703–4711.

    Article  CAS  Google Scholar 

  5. Tracey, K. J., Y. Fong, D. G. Hesse, K. R. Manogue, A. T. Lee, G. C. Kuo, S. F. Lowry, and A. Cerami (1987) Anti-cachectin/TNF monoclonal antibodies prevent septic shock during lethal bacteraemia. Nature. 330: 662–664.

    Article  CAS  Google Scholar 

  6. Wang, H., H. Yang, C. J. Czura, A. E. Sama, and K. J. Tracey (2001) HMGB1 as a late mediator of lethal systemic inflammation. Am. J. Respir. Crit. Care Med. 164: 1768–1773.

    Article  CAS  Google Scholar 

  7. Ryu, H. Y., K. H. Bae, E. J. Kim, S. J. Park, B. H. Lee, and H. Y. Sohn (2007) Evaluation for the antimicrobial, antioxidant and antithrombosis activity of natural spices for fresh-cut yam. J. Life Sci. 17: 652–657.

    Article  Google Scholar 

  8. Kwon, J. E., J. B. Kwon, I. S. Kwun, and H. Y. Sohn (2010) Antimicrobial and antioxidant activity of the Discorea alata L. Korean J. Microbiol. Biotechnol. 38: 283–288.

    CAS  Google Scholar 

  9. Yang, W., Y. Wang, X. Li, and P. Yu (2015) Purification and structural characterization of Chinese yam polysaccharide and its activities. Carbohydr. Polym. 117: 1021–1027.

    Article  CAS  Google Scholar 

  10. Boudjada, A., A. Touil, C. Bensouici, H. Bendif, and S. Rhouati (2018) Phenanthrene and dihydrophenanthrene derivatives from Dioscorea communis with anticholinesterase, and antioxidant activities. Nat. Prod. Res. 33: 3278–3282.

    Article  Google Scholar 

  11. Byeon, S., J. Oh, J. S. Lim, J. S. Lee, and J. S. Kim (2018) Protective effects of Dioscorea batatas flesh and peel extracts against ethanol-induced gastric ulcer in mice. Nutrients. 10: 1680.

    Article  Google Scholar 

  12. Hou, W. C., F. L. Hsu, and M. H. Lee (2002) Yam (Dioscorea batatas) tuber mucilage exhibited antioxidant activities in vitro. Planta Med. 68: 1072–1076.

    Article  CAS  Google Scholar 

  13. Oh, M. H., P. J. Houghton, W. K. Whang, and J. H. Cho (2004) Screening of Korean herbal medicines used to improve cognitive function for anti-cholinesterase activity. Phytomedicine. 11: 544–548.

    Article  CAS  Google Scholar 

  14. Lu, Y., M. Jin, S. J. Park, K. H. Son, J. K. Son, and H. W. Chang (2011) Batatasin I., a naturally occurring phenanthrene derivative, isolated from tuberous roots of Dioscorea batatas suppresses eicosanoids generation and degranulation in bone marrow derived-mast cells. Biol. Pharm. Bull. 34: 1021–1025.

    Article  CAS  Google Scholar 

  15. Lee, W., S. Y. Jeong, M. J. Gu, J. S. Lim, E. K. Park, M. C. Baek, J. S. Kim, D. Hahn, and J. S. Bae (2019) Inhibitory effects of compounds isolated from Dioscorea batatas Decne peel on particulate matter-induced pulmonary injury in mice. J. Toxicol. Environ. Health A. 82: 727–740.

    Article  CAS  Google Scholar 

  16. Kim, J. E., W. Lee, S. Yang, S. H. Cho, M. C. Baek, G. Y Song, and J. S. Bae (2019) Suppressive effects of rare ginsenosides, Rkl and Rg5, on HMGB1-mediated septic responses. Food Chem. Toxicol. 124: 45–53.

    Article  CAS  Google Scholar 

  17. Lee, I. C. and J. S. Bae (2019) Pelargonidin protects against renal injury in a mouse model of sepsis. J Med Food. 22: 57–61.

    Article  CAS  Google Scholar 

  18. Lee, B. S., C. Lee, S. Yang, S. K. Ku, and J. S. Bae (2019) Renal protective effects of zingerone in a mouse model of sepsis. BMB Rep. 52: 271–276.

    Article  CAS  Google Scholar 

  19. Zhang, L. and M. C. Wang (2018) Growth inhibitory effect of mangiferin on thyroid cancer cell line TPC1. Biotechnol. Bioprocess Eng. 23: 649–654.

    Article  CAS  Google Scholar 

  20. Lee, W., S. K. Ku, J. E. Kim, G. E. Choi, G. Y Song, and J. S. Bae (2019) Pulmonary protective functions of rare ginsenoside Rg4 on particulate matter-induced inflammatory responses. Biotechnol. Bioprocess Eng. 24: 445–453.

    Article  CAS  Google Scholar 

  21. Lee, Y., M. H. Jeong, K. J. Kim, S. H. Baek, J. S. Hur, and Y. J. Son (2018) The extract of Ramalina litoralis inhibits osteoclast differentiation. Biotechnol. Bioprocess Eng. 23: 634–640.

    Article  CAS  Google Scholar 

  22. Lee, W., S. K. Ku, Y. M. Lee, and J. S. Bae (2014) Anti-septic effects of glyceollins in HMGB1-induced inflammatory responses in vitro and in vivo. Food Chem. Toxicol. 63: 1–8.

    Article  CAS  Google Scholar 

  23. Qin, Y. H., S. M. Dai, G. S. Tang, J. Zhang, D. Ren, Z. W. Wang, and Q. Shen (2009) HMGB1 enhances the proinflammatory activity of lipopolysaccharide by promoting the phosphorylation of MAPK. p38 through receptor for advanced glycation end products. J. Immunol. 183: 6244–6250.

    Article  CAS  Google Scholar 

  24. Sun, C., C. Liang, Y. Ren, Y. Zhen, Z. He, H. Wang, H. Tan, X. Pan, and Z. Wu (2009) Advanced glycation end products depress function of endothelial progenitor cells via p38 and ERK. 1/2 mitogen-activated protein kinase pathways. Basic Res. Cardiol. 104: 42–49.

    Article  CAS  Google Scholar 

  25. Palumbo, R., B. G. Galvez, T. Pusterla, F. De Marchis, G. Cossu, K. B. Marcu, and M. E. Bianchi (2007) Cells migrating to sites of tissue damage in response to the danger signal HMGB1 require NF-kappaB activation. J. Cell Biol. 179: 33–40.

    Article  CAS  Google Scholar 

  26. Erlandsson Harris, H. and U. Andersson (2004) Mini-review: The nuclear protein HMGB1 as a proinflammatory mediator. Eur. J. Immunol. 34: 1503–1512.

    Article  CAS  Google Scholar 

  27. Bae, J. S. (2012) Role of high mobility group box 1 in inflammatory disease: Focus on sepsis. Arch. Pharm. Res. 35: 1511–1523.

    Article  CAS  Google Scholar 

  28. Park, J. S., F. Gamboni-Robertson, Q. He, D. Svetkauskaite, J. Y. Kim, D. Strassheim, J. W. Sohn, S. Yamada, I. Maruyama, A. Banerjee, A. Ishizaka, and E. Abraham (2006) High mobility group box 1 protein interacts with multiple Toll-like receptors. Am. J. Physiol. Cell Physiol. 290: C917-C924.

    Article  CAS  Google Scholar 

  29. Astiz, M. E. and E. C. Rackow (1998) Septic shock. Lancet. 351: 1501–1505.

    Article  CAS  Google Scholar 

  30. Chong, J., A. Poutaraud, and P. Hugueney (2009) Metabolism and roles of stilbenes in plants. Plant. Sci. 177: 143–155.

    Article  CAS  Google Scholar 

  31. Udenigwe, C. C., V. R. Ramprasath, R. E. Aluko, and P. J. Jones (2008) Potential of resveratrol in anticancer and antiinflammatory therapy. Nutr. Rev. 66: 445–454.

    Article  Google Scholar 

  32. Bradamante, S., L. Barenghi, and A. Villa (2004) Cardiovascular protective effects of resveratrol. Cardiovasc. Drug Rev. 22: 169–188.

    Article  CAS  Google Scholar 

  33. Cardullo, N., C. Spatafora, N. Musso, V. Barresi, D. Condorelli, and C. Tringali (2015) Resveratrol-related polymethoxystilbene glycosides: Synthesis, antiproliferative activity, and glycosidase inhibition. J. Nat. Prod. 78: 2675–2683.

    Article  CAS  Google Scholar 

  34. Singh, N., M. Agrawal, and S. Dore (2013) Neuroprotective properties and mechanisms of resveratrol in in vitro and in vivo experimental cerebral stroke models. ACS Chem. Neurosci. 4: 1151–1162.

    Article  CAS  Google Scholar 

  35. Li, Q. S., Y. Li, G. S. Deora, and B. F. Ruan (2019) Derivatives and analogues of resveratrol: Recent advances in structural modification. Mini Rev. Med. Chem. 19: 809–825.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant provided by the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), which is funded by the Ministry of Health & Welfare, Republic of Korea (grant number: HI15C0001) and by the national Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2017R1A5A2015391).

The authors declare no conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dongyup Hahn or Jong-Sup Bae.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, S.Y., Kim, M., Park, E.K. et al. Inhibitory Functions of Novel Compounds from Dioscorea batatas Decne Peel on HMGB1-mediated Septic Responses. Biotechnol Bioproc E 25, 1–8 (2020). https://doi.org/10.1007/s12257-019-0382-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-019-0382-1

Keywords

Navigation