Skip to main content
Log in

Recent Advances in Enzyme Engineering through Incorporation of Unnatural Amino Acids

  • Review Paper
  • Protein Engineering and Enzyme Biotechnology
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The development of new enzyme engineering technologies has been actively pursued as the industrial use of biocatalysts is rapidly increasing. Traditional enzyme engineering has been limited to changing the functional properties of enzymes by replacing one amino acid with the other 19 natural amino acids. However, the incorporation of unnatural amino acids (UAAs) has been exploited to manipulate efficient enzymes for biocatalysis. This has been an effective enzyme engineering technique by complementing and extending the limits of traditional enzymatic functional changes. This review paper describes the basic functions of the new functional groups of UAAs used in enzyme engineering and the utilization of UAAs in the formation of chemical bonds in the proteins. The recent developments of UAA-mediated enzymology and its applicability in industry, pharmaceutical and other research areas to overcome the limitations of existing enzymes is also emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ravikumar, Y., S. P. Nadarajan, T. H. Yoo, C. S. Lee, and H. Yun (2015) Incorporating unnatural amino acids to engineer biocatalysts for industrial bioprocess applications. Biotechnol. J. 10: 1862–1876.

    Article  CAS  PubMed  Google Scholar 

  2. Aissaoui, N., J. Landoulsi, L. Bergaoui, S. Boujday, and J.-F. Lambert (2013) Catalytic activity and thermostability of enzymes immobilized on silanized surface: Influence of the crosslinking agent. Enzyme Microb. Technol. 52: 336–343.

    Article  CAS  PubMed  Google Scholar 

  3. Baslé, E., N. Joubert, and M. Pucheault (2010) Protein chemical modification on endogenous amino acids. Chem Biol. 17: 213–227.

    Article  CAS  PubMed  Google Scholar 

  4. Drahl, C., B. F. Cravatt, and E. J. Sorensen (2005) Protein-reactive natural products. Angew. Chem. Int. Ed. Engl. 44: 5788–5809.

    Article  CAS  PubMed  Google Scholar 

  5. Kaiser, E. T. and D. S. Lawrence (1984) Chemical mutation of enzyme active sites. Science. 226: 505–511.

    Article  CAS  PubMed  Google Scholar 

  6. Ravikumar, Y., S. P. Nadarajan, T. H. Yoo, C. S. Lee, and H. Yun (2015) Unnatural amino acid mutagenesis-based enzyme engineering. Trends Biotechnol. 33: 462–470.

    Article  CAS  PubMed  Google Scholar 

  7. Zheng, S. and I. Kwon (2012) Manipulation of enzyme properties by noncanonical amino acid incorporation. Biotechnol. J. 7: 47–60.

    Google Scholar 

  8. Link, A. J., M. K. S. Vink, N. J. Agard, J. A. Prescher, C. R. Bertozzi, and D. A. Tirrell (2006) Discovery of aminoacyl-tRNA synthetase activity through cell-surface display of noncanonical amino acids. Proc. Natl. Acad. Sci. USA. 103: 10180–10185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Link, A. J. and D. A. Tirrell (2005) Reassignment of sense codons in vivo. Methods. 36: 291–298.

    Article  CAS  PubMed  Google Scholar 

  10. Minks, C., S. Alefelder, L. Moroder, R. Huber, and N. Budisa (2000) Towards new protein engineering: in vivo building and folding of protein shuttles for drug delivery and targeting by the selective pressure incorporation (SPI) method. Tetrahedron. 56: 9431–9442.

    Article  CAS  Google Scholar 

  11. Rajesh Mehta, K., C. Y. Yang, and J. K. Montclare (2011) Modulating substrate specificity of histone acetyltransferase with unnatural amino acids. Mol. BioSyst. 7: 3050–3055.

    Article  CAS  Google Scholar 

  12. Merkel, L., M. Schauer, G. Antranikian, and N. Budisa (2010) Parallel incorporation of different fluorinated amino acids: on the way to ‘teflon’ proteins. Chembiochem. 11: 1505–1507.

  13. Soumillion, P. and J. Fastrez (1998) Incorporation of 1,2,4-triazole-3-alanine into a mutant of phage lambda lysozyme containing a single histidine. Protein Eng. Des. Sel. 11: 213–217.

  14. Schlesinger, S. (1968) The effect of amino acid analogues on alkaline phosphatase formation in Escherichia coli K-12 II. Replacement of tryptophan by azatryptophan and by tryptazan. J. Biol. Chem. 243: 3877–3883.

    CAS  PubMed  Google Scholar 

  15. Wang, L., J. Xie, and P. G. Schultz (2006) Expanding the genetic code. Ann. Rev. Biophys. Biomol. Struct. 35: 225–249.

    Article  CAS  Google Scholar 

  16. Noren, C. J., S. J. Anthony-Cahill, M. C. Griffith, and P. G. Schultz (1989) A general method for site-specific incorporation of unnatural amino acids into proteins. Science. 244: 182–188.

    Article  CAS  PubMed  Google Scholar 

  17. Bain, J. D., E. S. Diala, C. G. Glabe, D. A. Wacker, M. H. Lyttle, T. A. Dix, and A. R. Chamberlin (1991) Site-specific incorporation of non-natural residues during in vitro protein biosynthesis with semi-synthetic aminoacyl-tRNAs. Biochemistry. 30: 5411–5421.

    Article  CAS  PubMed  Google Scholar 

  18. Furter, R. (1998) Expansion of the genetic code: site-directed p-fluoro-phenylalanine incorporation in Escherichia coli. Protein Sci. 7: 419–426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang, L., A. Brock, B. Herberich, and P. G. Schultz (2001) Expanding the genetic code of Escherichia coli. Science. 292: 498–500.

    Article  CAS  PubMed  Google Scholar 

  20. Cadwell, R. C. and G. F. Joyce (1992) Randomization of genes by PCR mutagenesis. Genome Res. 2: 28–33.

    Article  CAS  Google Scholar 

  21. Abou-Nader, M. and M. J. Benedik (2010) Rapid generation of random mutant libraries. Bioeng Bugs. 1: 337–340.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Vogel, H. J., D. J. Schibli, W. Jing, E. M. Lohmeier-Vogel, R. F. Epand, and R. M. Epand (2002) Towards a structure-function analysis of bovine lactoferricin and related tryptophan- and arginine-containing peptides. Biochem. Cell Biol. 80: 49–63.

    Article  CAS  PubMed  Google Scholar 

  23. Liu, C. C. and P. G. Schultz (2010) Adding new chemistries to the genetic code. Annu. Rev. Biochem. 79: 413–444.

    Article  CAS  PubMed  Google Scholar 

  24. Kirshenbaum, K., I. S. Carrico, and D. A. Tirrell (2002) Biosynthesis of proteins incorporating a versatile set of phenylalanine analogues. Chembiochem. 3: 235–237.

    Article  PubMed  Google Scholar 

  25. Tang, Y. and D. A. Tirrell (2002) Attenuation of the editing activity of the Escherichia coli leucyl-tRNA synthetase allows incorporation of novel amino acids into proteins in vivo. Biochemistry. 41: 10635–10645.

    Article  CAS  PubMed  Google Scholar 

  26. Wang, P., Y. Tang, and D. A. Tirrell (2003) Incorporation of trifluoroisoleucine into proteins in vivo. J. Am. Chem. Soc. 125: 6900–6906.

    Article  CAS  PubMed  Google Scholar 

  27. Zhao, S., J. Dai, M. Z. Hu, C. Liu, R. S. Meng, X. Liu, C. Wang, and T. Luo (2016) Photo-induced coupling reactions of tetrazoles with carboxylic acids in aqueous solution: application in protein labelling. Chem. Commun. 52: 4702–4705.

    Article  CAS  Google Scholar 

  28. Tanaka, Y., M. R. Bond, and J. J. Kohler (2008) Photocrosslinkers illuminate interactions in living cells. Mol. BioSyst. 4: 473–480.

    Article  CAS  PubMed  Google Scholar 

  29. Sato, S., S. Mimasu, A. Sato, N. Hino, K. Sakamoto, T. Umehara, and S. Yokoyama (2011) Crystallographic study of a site-specifically cross-linked protein complex with a genetically incorporated photoreactive amino acid. Biochemistry. 50: 250–257.

    Article  CAS  PubMed  Google Scholar 

  30. Liu, T., Y. Wang, X. Luo, J. Li, S. A. Reed, H. Xiao, T. S. Young, and P. G. Schultz (2016) Enhancing protein stability with extended disulfide bonds. Proc. Natl. Acad. Sci. USA. 113: 5910–5915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kadokura, H., F. Katzen, and J. Beckwith (2003) Protein disulfide bond formation in prokaryotes. Ann. Rev. Biochem. 72: 111–135.

    Article  CAS  PubMed  Google Scholar 

  32. Cappadocia, L. and C. D. Lima (2018) Ubiquitin-like protein conjugation: structures, chemistry, and mechanism. Chem. Rev. 118: 889–918.

    Article  CAS  PubMed  Google Scholar 

  33. Sevier, C. S. and C. A. Kaiser (2002) Formation and transfer of disulphide bonds in living cells. Nature Rev. Mol. Cell Biol. 3: 836–847.

    Article  CAS  Google Scholar 

  34. Mayer, C., D. G. Gillingham, T. R. Ward, and D. Hilvert (2011) An artificial metalloenzyme for olefin metathesis. Chem. Commun. 47: 12068–12070.

    Article  CAS  Google Scholar 

  35. Kuang, H. and M. D. Distefano (1998) Catalytic enantioselective reductive amination in a host—guest system based on a protein cavity. J. Am. Chem. Soc. 120: 1072–1073.

    Article  CAS  Google Scholar 

  36. Dombkowski, A. A., K. Z. Sultana, and D. B. Craig (2014) Protein disulfide engineering. FEBS Lett. 588: 206–212.

    Article  CAS  PubMed  Google Scholar 

  37. Wart, H. E. V., A. Lewis, H. A. Scheraga, and F. D. Saeva (1973) Disulfide bond dihedral angles from raman spectroscopy. Proc. Natl. Acad. Sci. USA. 70: 2619–2623.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Chin, J. W., S. W. Santoro, A. B. Martin, D. S. King, L. Wang, and P. G. Schultz (2002) Addition of p-azido-L-phenylalanine to the genetic code of Escherichia coli. J. Am. Chem. Soc. 124: 9026–9027.

    Article  CAS  PubMed  Google Scholar 

  39. Tippmann, E. M., W. Liu, D. Summerer, A. V. Mack, and P. G. Schultz (2007) A genetically encoded diazirine photocrosslinker in Escherichia coli. Chembiochem. 8: 2210–2214.

    Article  CAS  PubMed  Google Scholar 

  40. Ai, H. W., W. Shen, A. Sagi, P. R. Chen, and P. G. Schultz (2011) Probing Protein—protein interactions with a genetically encoded photo-crosslinking amino acid. Chembiochem. 12: 1854–1857.

    Article  CAS  PubMed  Google Scholar 

  41. Chou, C., R. Uprety, L. Davis, J. W. Chin, and A. Deiters (2011) Genetically encoding an aliphatic diazirine for protein photocrosslinking. Chem. Sci. 2: 480–483.

    Article  CAS  Google Scholar 

  42. Zhang, M., S. Lin, X. Song, J. Liu, Y. Q. Fu, X. Ge, X. Fu, Z. Chang, and P. R. Chen (2011) A genetically incorporated crosslinker reveals chaperone cooperation in acid resistance. Nat. Chem. Biol. 7: 671–677.

    Article  CAS  PubMed  Google Scholar 

  43. Lin, S., Z. J. Zhang, H. Xu, L. Li, S. Chen, J. Li, Z. Hao, and P. R. Chen (2011) Site-specific incorporation of photo-cross-linker and bio-orthogonal amino acids into enteric bacterial pathogens. J. Am. Chem. Soc. 133: 20581–20587.

    Article  CAS  PubMed  Google Scholar 

  44. Chin, J. W., A. B. Martin, D. S. King, L. Wang, and P. G. Schultz (2002) Addition of a photocrosslinking amino acid to the genetic code of Escherichia coli. Proc. Natl. Acad. Sci. USA. 99: 11020–11024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hino, N., M. Oyama, A. Sato, T. Mukai, F. Iraha, A. Hayashi, H. Kozuka-Hata, T. Yamamoto, S. Yokoyama and K. Sakamoto (2011) Genetic incorporation of a photocrosslinkable amino acid reveals novel protein complexes with GRB2 in mammalian cells. J. Mol. Biol. 406: 343–353.

    Article  CAS  PubMed  Google Scholar 

  46. Coin, I., V. Katritch, T. Sun, Z. Xiang, F. Y. Siu, M. Beyermann, R. C. Stevens, and L. Wang (2013) Genetically encoded chemical probes in cells reveal the binding path of urocortin-I to CRF class B GPCR. Cell. 155: 1258–1269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ray-Saha, S., T. Huber, and T. P. Sakmar (2014) Antibody epitopes on g protein-coupled receptors mapped with genetically encoded photoactivatable cross-linkers. Biochemistry. 53: 1302–1310.

    Article  CAS  PubMed  Google Scholar 

  48. Dugan, A., C. Y. Majmudar, R. Pricer, S. Niessen, J. K. Lancia, H. Y. Fung, B. F. Cravatt, and A. K. Mapp (2016) Discovery of enzymatic targets of transcriptional activators via in vivo covalent chemical capture. J. Am. Chem. Soc. 138: 12629–12635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wilkins, B. J., N. A. Rall, Y. Ostwal, T. Kruitwagen, K. Hiragami-Hamada, M. Winkler, Y. Barral, W. Fischle, and H. Neumann (2014) A cascade of histone modifications induces chromatin condensation in mitosis. Science. 343: 77–80.

    Article  CAS  PubMed  Google Scholar 

  50. Li, J. C., T. Liu, Y. Wang, A. P. Mehta, and P. G. Schultz (2018) Enhancing protein stability with genetically encoded noncanonical amino acids. J. Am. Chem. Soc. 140: 15997–16000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Banerjee, D., A. P. Liu, N. R. Voss, S. L. Schmid, and M. G. Finn (2010) Multivalent display and receptor-mediated endocytosis of transferrin on virus-like particles. ChemBioChem. 11: 1273–1279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rostovtsev, V. V., L. G. Green, V. V. Fokin, and K. B. Sharpless (2002) A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective ‘ligation’ of azides and terminal alkynes. Angew. Chem. Int. Ed. Engl. 41: 2596–2599.

    Article  CAS  PubMed  Google Scholar 

  53. Steinmetz, N. F., V. Hong, E. D. Spoerke, P. Lu, K. Breitenkamp, M. G. Finn, and M. Manchester (2009) Buckyballs meet viral nanoparticles: candidates for biomedicine. J. Am. Chem. Soc. 131: 17093–17095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Xuan, W., D. Collins, M. Koh, S. Shao, A. Yao, H. Xiao, P. Garner, and P. G. Schultz (2018) Site-specific incorporation of a thioester containing amino acid into proteins. ACS Chem. Biol. 13: 578–581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Xiang, Z., V. K. Lacey, H. Ren, J. Xu, D. J. Burban, P. A. Jennings, and L. Wang (2014) Proximity-enabled protein crosslinking through genetically encoding haloalkane unnatural amino acids. Angew. Chem. Int. Ed. Engl. 53: 2190–2193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chen, X. H., Z. Xiang, Y. S. Hu, V. K. Lacey, H. Cang, and L. Wang (2014) Genetically encoding an electrophilic amino acid for protein stapling and covalent binding to native receptors. ACS Chem. Biol. 9: 1956–1961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Xuan, W., S. Shao, and P. G. Schultz (2017) Protein crosslinking by genetically encoded nncanonical amino acids with reactive aryl carbamate side chains. Angew. Chem. Int. Ed. Engl. 56: 5096–5100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wang, N., B. Yang, C. Fu, H. Zhu, F. Zheng, T. Kobayashi, J. Liu, S. Li, C. Ma, P. G. Wang, Q. Wang, and L. Wang (2018) Genetically encoding fluorosulfate-l-tyrosine to react with lysine, histidine, and tyrosine via SuFEx in proteins in vivo. J. Am. Chem. Soc. 140: 4995–4999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Xuan, W., J. Li, X. Luo, and P. G. Schultz (2016) Genetic incorporation of a reactive isothiocyanate group into proteins. Angew. Chem. Int. Ed. Engl. 55: 10065–10068.

    Article  CAS  PubMed  Google Scholar 

  60. Kim, S., W. Ko, B. H. Sung, S. C. Kim, and H. S. Lee (2016) Direct protein—protein conjugation by genetically introducing bioorthogonal functional groups into proteins. Bioorg. Med. Chem. 24: 5816–5822.

    Article  CAS  PubMed  Google Scholar 

  61. Chen, X., J. L. Zaro, and W. C. Shen (2013) Fusion protein linkers: Property, design and functionality. Adv. Drug Deliv. Rev. 65: 1357–1369.

    Article  CAS  PubMed  Google Scholar 

  62. Bai, Y. and W. C. Shen (2006) Improving the oral efficacy of recombinant granulocyte colony-stimulating factor and transferrin fusion protein by spacer optimization. Pharm. Res. 23: 2116–2121.

    Article  CAS  PubMed  Google Scholar 

  63. McCormick, A. L., M. S. Thomas, and A. W. Heath (2001) Immunization with an interferon-gamma-gp120 fusion protein induces enhanced immune responses to human immunodeficiency virus gp120. J. Infect. Dis. 184: 1423–1430

    Article  CAS  PubMed  Google Scholar 

  64. Bergeron, L. M., L. Gomez, T. A. Whitehead, and D. S. Clark (2009) Self-renaturing enzymes: design of an enzyme-chaperone chimera as a new approach to enzyme stabilization. Biotechnol. Bioeng. 102: 1316–1322.

    Article  CAS  PubMed  Google Scholar 

  65. Bartlett, G. J., C. T. Porter, N. Borkakoti, and J. M. Thornton (2002) Analysis of catalytic residues in enzyme active sites. J. Mol. Biol. 324: 105–121.

    Article  CAS  PubMed  Google Scholar 

  66. McCall, K. A., C. Huang, and C. A. Fierke (2000) Function and mechanism of zinc metalloenzymes. J. Nutr. 130: 1437S–1446S.

    Article  CAS  PubMed  Google Scholar 

  67. Vallee, B. L. and D. S. Auld (1990) Zinc coordination, function, and structure of zinc enzymes and other proteins. Biochemistry. 29: 5647–5659.

    Article  CAS  PubMed  Google Scholar 

  68. Oikawa, A. (1959) The role of calcium in Taka-amylase A: II. The exchange reaction of calcium. J. Biochem. 46: 463–473.

    Article  CAS  Google Scholar 

  69. Toda, H., I. Kato, and K. Narita (1968) Correlation of the masked sulfhydryl group with the essential calcium in Takaamylase A. J. Biochem. 63: 295–301.

    CAS  PubMed  Google Scholar 

  70. Lu, Y., N. Yeung, N. Sieracki, and N. M. Marshall (2009) Design of functional metalloproteins. Nature. 460: 855–862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Waldron, K. J., J. C. Rutherford, D. Ford, and N. J. Robinson (2009) Metalloproteins and metal sensing. Nature. 460: 823–830

    Article  CAS  PubMed  Google Scholar 

  72. Rosati, F. and G. Roelfes (2010) Artificial metalloenzymes. ChemCatChem. 2: 916–927.

    Article  CAS  Google Scholar 

  73. Reetz, M. T., M. Rentzsch, A. Pletsch, A. Taglieber, F. Hollmann, R. J. Mondière, N. Dickmann, B. Höcker, S. Cerrone, M. C. Haeger, and R. Sterner (2008) A robust protein host for anchoring chelating ligands and organocatalysts. ChemBioChem. 9: 552–564.

    Article  CAS  PubMed  Google Scholar 

  74. Matsuo, T. and S. Hirota (2014) Artificial enzymes with protein scaffolds: structural design and modification. Bioorg. Med. Chem. 22: 5638–5656.

    Article  CAS  PubMed  Google Scholar 

  75. Drienovska, I., A. Rioz-Martínez, A. Draksharapu, and G. Roelfes (2015) Novel artificial metalloenzymes by in vivo incorporation of metal-binding unnatural amino acids. Chem. Sci. 6: 770–776.

    Article  CAS  PubMed  Google Scholar 

  76. Lee, H. S. and P. G. Schultz (2008) Biosynthesis of a site-specific DNA cleaving protein. J. Am. Chem. Soc. 130: 13194–13195.

    Article  CAS  PubMed  Google Scholar 

  77. Yang, H., P. Srivastava, C. Zhang, and J. C. Lewis (2014) A general method for artificial metalloenzyme formation through strain-promoted azide.alkyne cycloaddition. ChemBioChem. 15: 223–227.

    Article  CAS  PubMed  Google Scholar 

  78. Glazer, A. N. (1970) Specific chemical modification of proteins. Annu. Rev. Biochem. 39: 101–130.

    Article  CAS  PubMed  Google Scholar 

  79. Wong, L. S., F. Khan, and J. Micklefield (2009) Selective covalent protein immobilization: strategies and applications. Chem. Rev. 109: 4025–4053.

    Article  CAS  PubMed  Google Scholar 

  80. Umeda, A., G. N. Thibodeaux, J. Zhu, Y. A. Lee, and Z. J. Zhang (2009) Site-specific protein cross-linking with genetically incorporated 3,4-dihydroxy-L-phenylalanine. ChemBioChem. 10: 1302–1304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Yang, B., N. Ayyadurai, H. Yun, Y. S. Choi, B. H. Hwang, J. Huang, Q. Lu, H. Zeng, and H. J. Cha (2014) In vivo residuespecific dopa-incorporated engineered mussel bioglue with enhanced adhesion and water resistance. Angew. Chem. Int. Ed. Engl. 53: 13360–13364.

    Article  CAS  PubMed  Google Scholar 

  82. Ayyadurai, N., N. S. Prabhu, K. Deepankumar, Y. J. Jang, N. Chitrapriya, E. Song, N. Lee, S. K. Kim, B. G. Kim, N. Soundrarajan, S. Lee, H. J. Cha, N. Budisa, and H. Yun (2011) Bioconjugation of L-3,4-dihydroxyphenylalanine containing protein with a polysaccharide. Bioconjug Chem. 22: 551–555.

    Article  CAS  PubMed  Google Scholar 

  83. Deepankumar, K., S. P. Nadarajan, S. Mathew, S. G. Lee, T. H. Yoo, E. Y. Hong, B. G. Kim, and H. Yun (2015) Engineering transaminase for stability enhancement and site-specific immobilization through multiple noncanonical amino acids incorporation. ChemCatChem. 7: 417–421.

    Article  CAS  Google Scholar 

  84. Lim, S. I., Y. Mizuta, A. Takasu, Y. H. Kim, and I. Kwon (2014) Site-specific bioconjugation of a murine dihydrofolate reductase enzyme by copper(I)-catalyzed azide-alkyne cycloaddition with retained activity. PLoS One 9: e9840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Bornscheuer, U. T. and M. Pohl (2001) Improved biocatalysts by directed evolution and rational protein design. Curr. Opin. Chem. Biol. 5: 137–143.

    Article  CAS  PubMed  Google Scholar 

  86. Steinrauf, L. K., J. A. Hamilton, B. C. Braden, J. R. Murrell, and M. D. Benson (1993) X-ray crystal structure of the Ala-109→Thr variant of human transthyretin which produces euthyroid hyperthyroxinemia. J. Biol. Chem. 268: 2425–2430.

    CAS  PubMed  Google Scholar 

  87. Howard, E. I., R. Sanishvili, R. E. Cachau, A. Mitschler, B. Chevrier, P. Barth, V. Lamour, M. Van Zandt, E. Sibley, C. Bon, D. Moras, T. R. Schneider, A. Joachimiak, and A. Podjarny (2004) Ultrahigh resolution drug design I: details of interactions in human aldose reductase.inhibitor complex at 0.66 A. Proteins. 55: 792–804.

    Article  CAS  PubMed  Google Scholar 

  88. Yabe-Nishimura, C. (1998) Aldose reductase in glucose toxicity: a potential target for the prevention of diabetic complications. Pharmacol. Rev. 50: 21–33.

    CAS  PubMed  Google Scholar 

  89. Holliday, G. L., J. B. O. Mitchell, and J. M. Thornton (2009) Understanding the functional roles of amino acid residues in enzyme catalysis. J. Mol. Biol. 390: 560–577.

    Article  CAS  PubMed  Google Scholar 

  90. O’Hagan, D. (2008) Understanding organofluorine chemistry. An introduction to the C–F bond. Chem. Soc. Rev. 37: 308–319.

    Article  PubMed  Google Scholar 

  91. Purser, S., P. R. Moore, S. Swallow, and V. Gouverneur (2008) Fluorine in medicinal chemistry. Chem. Soc. Rev. 37: 320–330.

    Article  CAS  PubMed  Google Scholar 

  92. Bondi, A. (1964) van der Waals volumes and radii. J. Phys. Chem. 68: 441–451.

    Article  CAS  Google Scholar 

  93. Budisa, N., W. Wenger, and B. Wiltschi (2010) Residue-specific global fluorination of Candida antarctica lipase B in Pichia pastoris. Mol. Biosyst. 6: 1630–1639.

    Article  CAS  PubMed  Google Scholar 

  94. Mathew, S., S. P. Nadarajan, T. Chung, H. H. Park, and H. Yun (2016) Biochemical characterization of thermostable ω-transaminase from Sphaerobacter thermophilus and its application for producing aromatic β- and γ-amino acids. Enzyme Microb. Technol. 87-88: 52–60.

    Article  CAS  PubMed  Google Scholar 

  95. Mathew, S., K. Deepankumar, G. Shin, E. Y. Hong, B. G. Kim, T. Chung, H. Yun (2016) Identification of novel thermostable ω-transaminase and its application for enzymatic synthesis of chiral amines at high temperature. RSC Adv. 6: 69257–69260.

    Article  CAS  Google Scholar 

  96. Deepankumar, K., M. Shon, S. P. Nadarajan, G. Shin, S. Mathew, N. Ayyadurai, B. G. Kim, S. H. Choi, S. H. Lee, H. Yun (2014) Enhancing thermostability and organic solvent tolerance of ω-transaminase through global incorporation of fluorotyrosine. Adv. Synth. Catal. 356: 993–998.

    Article  CAS  Google Scholar 

  97. Ohtake, K., A. Yamaguchi, T. Mukai, H. Kashimura, N. Hirano, M. Haruki, S. Kohashi, K. Yamagishi, K. Murayama, Y. Tomabechi, T. Itagaki, R. Akasaka, M. Kawazoe, C. Takemoto, M. Shirouzu, S. Yokoyama, and K. Sakamoto (2015) Protein stabilization utilizing a redefined codon. Sci. Rep. 5: 9762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Hoesl, M. G., C. G. Acevedo-Rocha, S. Nehring, M. Royter, C. Wolschner, B. Wiltschi, and N. Budisa (2011) Lipase congeners designed by genetic code engineering. ChemCatChem. 3: 213–221.

    Article  CAS  Google Scholar 

  99. Ugwumba, I. N., K. Ozawa, Z. Q. Xu, F. Ely, J. L. Foo, A. J. Herlt, C. Coppin, S. Brown, M. C. Taylor, D. L. Ollis, L. N. Mander, G. Schenk, N. E. Dixon, G. Otting, J. G. Oakeshott, and C. J. Jackson (2011) Improving a natural enzyme activity through incorporation of unnatural amino acids. J. Am. Chem. Soc. 133: 326–333.

    Article  CAS  PubMed  Google Scholar 

  100. Windle, C. L., K. J. Simmons, J. R. Ault, C. H. Trinh, A. Nelson, A. R. Pearson, and A. Berry (2017) Extending enzyme molecular recognition with an expanded amino acid alphabet. Proc. Natl. Acad. Sci. USA. 114: 2610–2615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kim, S., B. H. Sung, S. C. Kim, and H. S. Lee (2018) Genetic incorporation of l-dihydroxyphenylalanine (DOPA) biosynthesized by a tyrosine phenol-lyase. Chem. Commun. 54: 3002–3005.

    Article  CAS  Google Scholar 

  102. Chen, Y., A. Loredo, A. Gordon, J. Tang, C. Yu, J. Ordonez, and H. Xiao (2018) A noncanonical amino acid-based relay system for site-specific protein labeling. Chem. Commun. 54: 7187–7190.

    Article  CAS  Google Scholar 

  103. Ma, Y., H. Biava, R. Contestabile, N. Budisa, and M. L. Di Salvo (2014) Coupling bioorthogonal chemistries with artificial metabolism: intracellular biosynthesis of azidohomoalanine and its incorporation into recombinant proteins. Molecules. 19: 1004–1022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This manuscript was supported by Konkuk University’s ‘Research Support for faculty on Sabbatical Leave’ program-2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyungdon Yun.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Won, Y., Pagar, A.D., Patil, M.D. et al. Recent Advances in Enzyme Engineering through Incorporation of Unnatural Amino Acids. Biotechnol Bioproc E 24, 592–604 (2019). https://doi.org/10.1007/s12257-019-0163-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-019-0163-x

Keywords

Navigation