Skip to main content
Log in

Theobromine, a Methylxanthine in Cocoa Bean, Stimulates Thermogenesis by Inducing White Fat Browning and Activating Brown Adipocytes

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Natural medicinal compounds to treat obesity have recently attracted a great deal of attention because of the serious side effects of synthetic anti-obesity drugs. Recent advances have been made to identify natural products showing thermogenic activity, which is responsible for energy expenditure in brown or brown-like (beige) adipocytes. Here, we explored the thermogenic effects of theobromine, one of the most abundant methylxanthines in cocoa, on 3T3-L1 white adipocytes and HIB1B brown adipocytes. Theobromine markedly increased the expression levels of brown-fat signature proteins (PGC-1α, PRDM16, and UCP1) and beige-specific genes (Cd137, Cidea, Cited1, Tbx1, and Tmen26) in 3T3-L1 white adipocytes and remarkably elevated the expression levels of brown fatspecific genes (Cidea, Lhx8, Ppargc1, Prdm16, Ucp1, and Zic1) in HIB1B brown adipocytes. Theobromine also reduced the expression of the key adipogenic transcription factors, C/EBPα and PPARγ, in white adipocytes, while enhancing their expression in HIB1B cells. In addition, theobromine regulated lipolytic events and fat oxidation by upregulating the expression of pACC, ATGL, pHSL, ACOX, and CPT1. Additional mechanistic study revealed that theobromine activates β3-AR and AMPK. In summary, our results provide evidence for the first time indicating that theobromine has a potential beneficial effect on browning of white adipocytes and improves lipid catabolic metabolism in both cultured white and brown adipocytes via β-adrenergic signaling and AMPK activation. Consumption of theobromine may be a feasible way to activate thermogenesis and improve systematic lipid metabolism to protect against obesity and other metabolic disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. González–Muniesa, P., M. A. Mártinez–González, F. B. Hu, J. P. Després, Y. Matsuzawa, R. J. F Loos, J. A. Moreno, G. A. Bray, and J. A. Martinez (2017) Obesity. Nat. Rev. Dis. Primers. 3: 17034.

    Article  PubMed  Google Scholar 

  2. Vermaak, I., A. M. Viljoen, and J. H. Hamman (2011) Natural products in anti–obesity therapy. Nat. Prod. Rep. 28: 1493–1533.

    Article  CAS  PubMed  Google Scholar 

  3. Fu, C., Y. Jiang, J. Guo, and Z. Su (2016) Natural Products with Anti–obesity Effects and Different Mechanisms of Action. J. Agric. Food Chem. 64: 9571–9585.

    Article  CAS  PubMed  Google Scholar 

  4. Bonet, M. L., P. Oliver, and A. Palou (2013) Pharmacological and nutritional agents promoting browning of white adipose tissue. Biochim. Biophys. Acta 1831: 969–985.

    Article  CAS  PubMed  Google Scholar 

  5. Wankhade, U. D., M. Shen, H. Yadav, and K. M. Thakali (2016) Novel browning agents, mechanisms, and therapeutic potentials of brown adipose tissue. Biomed. Res. Int. 2365609.

    Google Scholar 

  6. van Marken Lichtenbelt, W. D., J. W. Vanhommerig, N. M. Smulders, J. M. Drossaerts, G. J. Kemerink, N. D. Bouvy, P. Schrauwen, and G. J. Teule (2009) Cold–activated brown adipose tissue in healthy men. New Eng. J. Med. 360: 1500–1508.

    Article  CAS  PubMed  Google Scholar 

  7. Wang, W. and P. Seale (2016) Control of brown and beige fat development. Nat. Rev. Mol. Cell Biol. 17: 691–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Azhar, Y., A. Parmar, C. N. Miller, J. S. Samuels, and S. Rayalam (2016) Phytochemicals as novel agents for the induction of browning in white adipose tissue. Nutr. Metab. (Lond) 13: 89.

    Article  CAS  Google Scholar 

  9. Mopuri, R. and S. Islam (2017) Medicinal plants and phytochemicals with anti–obesogenic potentials: A review. Biomed. Pharmacother. 89: 1442–1452.

    Article  CAS  PubMed  Google Scholar 

  10. Carragetaa, D. F., T. R. Diasa, M. G. Alvesb, P. F. Oliveirab, M. P. Monteirod, and B. M. Silva (2018) Anti–obesity potential of natural methylxanthines. J. Funct Food 43: 84–94.

    Article  CAS  Google Scholar 

  11. Hurst, W. J., S. M. Jr Tarka, T. G. Powis, F. Jr Valdez, and T. R. Hester (2002) Cacao usage by the earliest Maya civilization. Nature 418: 289–290.

    Article  CAS  PubMed  Google Scholar 

  12. Arnaud, M. J. (2011) Pharmacokinetics and metabolism of natural methylxanthines in animal and man. Handb. Exp. Pharmacol. 200: 33–91.

    Article  CAS  Google Scholar 

  13. Kim, J., J. Kim, J. Shim, C. Y. Lee, K. W. Lee, and H. J. Lee (2014) Cocoa phytochemicals: recent advances in molecular mechanisms on health. Crit. Rev. Food Sci. Nutr. 54: 1458–1472.

    Article  CAS  PubMed  Google Scholar 

  14. Monteiro, J., M. G. Alves, P. F. Oliveira, and B. M. Silva (2018) Pharmacological potential of methylxanthines: Retrospective analysis and future expectations. Crit. Rev. Food Sci. Nutr. 6: 1–29.

    Article  CAS  Google Scholar 

  15. Yang, X. R., E. Wat, Y. P. Wang, C. H. Ko, C. M. Koon, W. S. Siu, S. Gao, D. W. Cheung, C. B. Lau, C. X. Ye, and P. C. Leung (2013) Effect of dietary cocoa tea (Camellia ptilophylla) supplementation on high–fat diet–Induced obesity, hepatic steatosis, and hyperlipidemia in mice. Evid. Based Complement Alternat. Med. 2013: 783860.

  16. Li, K. K., L. C. Liu, H. T. Shiu, H. L. Wong, W. S. Siu, C. Zhang, X. Q. Han, C. X. Ye, P. C. Leung, and C. H. Ko (2016) Cocoa tea (Camellia ptilophylla) water extract inhibits adipocyte differentiation in mouse 3T3–L1 preadipocytes. Sci. Rep. 6: 20172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Eteng, M., H. Ibekwe, U. Umoh, P. Ebong, I. Umoh, and E. Eyong (2006) Theobromine rich cocoa powder induces weight loss and changes in lipid profile of obese Wistar rats. Discov. Innov. 18: 191–196.

    Google Scholar 

  18. Martínez–Pinilla, E., A. Oñatibia–Astibia, and R. Franco (2015) The relevance of theobromine for the beneficial effects of cocoa consumption. Front Pharmacol. 6: 30.

    PubMed  PubMed Central  Google Scholar 

  19. Papadimitriou, A., K. C. Silva, E. B. Peixoto, C. M. Borges, J. M. Lopes de Faria, and J. B. Lopes de Faria (2015) Theobromine increases NAD+/Sirt–1 activity and protects the kidney under diabetic conditions. Am. J. Physiol. Renal. Physiol. 308: F209–25.

    Article  CAS  PubMed  Google Scholar 

  20. Sugimoto, N., S. Miwa, Y. Hitomi, H. Nakamura, H. Tsuchiya, and A. Yachie (2014) Theobromine, the primary methylxanthine found in Theobroma cacao, prevents malignant glioblastoma proliferation by negatively regulating phosphodiesterase–4, extracellular signal–regulated kinase, Akt/mammalian target of rapamycin kinase, and nuclear factor–kappa B. Nutr. Cancer 66: 419–423.

    Article  CAS  PubMed  Google Scholar 

  21. Mitchell, E. S., M. Slettenaar, N. vd Meer, C. Transler, L. Jans, F. Quadt, and M. Berry (2011) Differential contributions of theobromine and caffeine on mood, psychomotor performance and blood pressure. Physiol. Behav. 104: 816–822.

    Article  CAS  PubMed  Google Scholar 

  22. Jang, Y. J., H. J. Koo, E. H. Sohn, S. C. Kang, D. K. Rhee, and S. Pyo (2015) Theobromine inhibits differentiation of 3T3–L1 cells during the early stage of adipogenesis via AMPK and MAPK signaling pathways. Food Funct. 6: 2365–2374.

    Article  CAS  PubMed  Google Scholar 

  23. Mitani, T., S. Watanabe, Y. Yoshioka, S. Katayama, S. Nakamura, and H. Ashida (2017) Theobromine suppreßses adipogenesis through enhancement of CCAAT–enhancer–binding protein ß degradation by adenosine receptor A1. Biochim. Biophys. Acta 64: 2438–2448.

    Article  CAS  Google Scholar 

  24. Jacobs, D. M., L. Smolders, Y. Lin, N. de Roo, E. A. Trautwein, J. van Duynhoven, R. P. Mensink, J. Plat, and V. V. Mihaleva (2017) Effect of theobromine consumption on serum lipoprotein profiles in apparently healthy humans with low HDL–cholesterol concentrations. Front Mol. Biosci. 4: 59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Martín–Peláez, S., M. Camps–Bossacoma, M. Massot–Cladera, M. Rigo–Adrover, A. Franch, F. J. Pérez–Cano, and M. Castell (2017). Effect of cocoa’s theobromine on intestinal microbiota of rats. Mol. Nutr. Food Res. 61: 1700238.

    Article  CAS  Google Scholar 

  26. Mosmann, T. (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65: 55–63.

    Article  CAS  Google Scholar 

  27. Mursu, J., S. Voutilainen, T. Nurmi, T. H. Rissanen, J. K. Virtanen, J. Kaikkonen, K. Nyyssönen, and J. T. Salonen (2004) Dark chocolate consumption increases HDL cholesterol concentration and chocolate fatty acids may inhibit lipid peroxidation in healthy humans. Free Radic. Biol. Med. 37: 1351–1359.

    Article  CAS  PubMed  Google Scholar 

  28. Khan, N., M. Monagas, C. Andres–Lacueva, R. Casas, M. Urpí–Sardà, R. M. Lamuela–Raventós, and R. Estruch (2012) Regular consumption of cocoa powder with milk increases HDL cholesterol and reduces oxidized LDL levels in subjects at highrisk of cardiovascular disease. Nutr. Metab. Cardiovasc. Dis. 22: 1046–1053.

    Article  CAS  PubMed  Google Scholar 

  29. Neufinger, N., Y. E. Zebregs, E. A. Schuring, and E. A. Trautwein (2013) Effect of cocoa and theobromine consumption on serum HDL–cholesterol concentrations: a randomized controlled trial. Am. J. Clin. Nutr. 97: 1201–1209.

    Article  CAS  Google Scholar 

  30. Smolders, L., R. P. Mensink, M. V. Boekschoten, R. J. J. de Ridder, and J. Plat (2018) Theobromine does not affect postprandial lipid metabolism and duodenal gene expression, but has unfavorable effects on postprandial glucose and insulin responses in humans. Clin. Nutr. 37: 719–727.

    Article  CAS  PubMed  Google Scholar 

  31. Dulloo, A. G., J. Seydoux, L. Girardier, P. Chantre, and J. Vandermander (2000) Green tea and thermogenesis: interactions between catechin–polyphenols, caffeine and sympathetic activity. Int. J. Obes. Relat. Metab. Disord. 24: 252–258.

    Article  CAS  PubMed  Google Scholar 

  32. Acheson, K. J., G. Gremaud, I. Meirim, F. Montigon, Y. Krebs, L. B. Fay, L. J. Gay, P. Schneiter, C. Schindler, and L. Tappy (2004) Metabolic effects of caffeine in humans: lipid oxidation or futile cycling? Am. J. Clin. Nutr. 79: 40–46.

    Article  CAS  Google Scholar 

  33. Lopez–Garcia, E., R. M. van Dam, S. Rajpathak, W. C. Willett, J. E. Manson, and F. B. Hu (2006) Changes in caffeine intake and long–term weight change in men and women. Am. J. Clin. Nutr. 83: 674–680.

    Article  PubMed  Google Scholar 

  34. Daly, J. W (2007) Caffeine analogs: biomedical impact. Cell Mol. Life Sci. 64: 2153–2169.

    Article  CAS  PubMed  Google Scholar 

  35. Wu, C. and S. Rajagopalan (2016) Phosphodiesterase–4 inhibition as a therapeutic strategy for metabolic disorders. Obesity Rev. 17: 429–441.

    Article  CAS  Google Scholar 

  36. Rasouli, M. and M. Zahraie (2006) Suppression of VLDL associated triacylglycerol secretion by both a–and ß–adrenoceptor agonists in isolated rat hepatocytes. Eur. J. Pharmacol. 545: 109–114.

    Article  CAS  PubMed  Google Scholar 

  37. Green, R. D. and L. R. Stanberry (1977) Elevation of cyclic amp in C–1300 murine neuroblastoma by adenosine and related compounds and the antagonism of this response by methylxanthines. Biochem. Pharmacol. 26: 37–43.

    Article  CAS  PubMed  Google Scholar 

  38. Morimoto, C., K. Kameda, T. Tsujita, and H. Okuda (2001) Relationships between lipolysis induced by various lipolytic agents and hormone–sensitive lipase in rat fat cells. J. Lipid. Res. 42: 120–127.

    CAS  PubMed  Google Scholar 

  39. Wu, L., L. Zhang, B. Li, H. Jiang, Y. Duan, Z. Xie, L. Shuai, J. Li, and J. Li (2018) AMP–activated protein kinase (AMPK) regulates energy metabolism through modulating thermogenesis in adipose tissue. Front Physiol. 9: 122.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Koh, H. J., M. F. Hirshman, H. He, Y. Li, Y. Manabe, J. A. Balschi, and L. J. Goodyear (2007) Adrenaline is a critical mediator of acute exercise–induced AMP–activated protein kinase activation in adipocytes. Biochem. J. 403: 473–481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Seino, S., H. Takahashi, W. Fujimoto, and T. Shibasaki (2009) Roles of cAMP signalling in insulin granule exocytosis. Diabetes Obes. Metab. 11: 180–188.

    Article  CAS  PubMed  Google Scholar 

  42. Nakabayashi, H., T. Hashimoto, H. Ashida, S. Nishiumi, and K. Kanazawa (2008) Inhibitory effects of caffeine and its metabolites on intracellular lipid accumulation in murine 3T3–L1 adipocytes. Biofactors 34: 293–302.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong Won Yun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jang, M.H., Kang, N.H., Mukherjee, S. et al. Theobromine, a Methylxanthine in Cocoa Bean, Stimulates Thermogenesis by Inducing White Fat Browning and Activating Brown Adipocytes. Biotechnol Bioproc E 23, 617–626 (2018). https://doi.org/10.1007/s12257-018-0434-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-018-0434-y

Keywords

Navigation