Skip to main content
Log in

To the Final Goal: Can We Predict and Suggest Mutations for Protein to Develop Desired Phenotype?

  • Review Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Directed evolution of proteins is a good approach to develop desired phenotypes from existing proteins. Fully experimental protein evolution usually utilizes randomization of a given protein sequence by error-prone PCR or gene shuffling followed by high-throughput selection or timeconsuming screening method. However, these random methods create mutant library full of deleterious mutations. In addition, they need high-throughput screening or selection method to search for positive clones from an enormous size of mutant library. Construction of a mutant library while retaining the original function is important for efficient protein evolution because it greatly reduces time and effort for the identification of positive mutants. Therefore, researchers have tried to reduce the size of mutant library by minimizing the occurrence of deleterious mutants. Such efforts have led to the creation of a concept of ‘small but smart library’. For this goal, neutral drift theory has been applied. Although smart library greatly reduces the library size, it is still the beyond the capacity of low-throughput assay. In parallel, computational analysis of protein structure and efforts to discriminate mutatable residues from all residues of a given protein have been consistently pursued. Accumulated knowledge of protein evolution through random mutation and selection has improved our understanding of functions of amino acids in protein structure. Protein evolution by rational design is being developed based on such understanding. In this review, we describe how the use of semi-rationally designed library rather than completely random one has impacted the overall procedure of directed evolution. We also describe efforts made to evaluate the effect of single mutation. Such efforts will bring lazy boys to the final goal - computational mutation suggestion system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Roodveldt, C., A. Aharoni, and D. S. Tawfik (2005) Directed evolution of proteins for heterologous expression and stability. Curr. Opin. Struct. Biol. 15: 50–56.

    Article  CAS  Google Scholar 

  2. Cadwell, R. C. and G. F. Joyce (1992) Randomization of genes by PCR mutagenesis. PCR Methods Appl. 2: 28–33.

    Article  CAS  Google Scholar 

  3. Leung, D. W., E. Chen, and D. V. Goeddel (1989) A method for random mutagenesis of a defined DNA segment using a modified polymerase chain reaction. Technique 1: 11–15.

    Google Scholar 

  4. Stemmer, W. P. (1994) Rapid evolution of a protein in vitro by DNA shuffling. Nature 370: 389–391.

    Article  CAS  Google Scholar 

  5. Hwang, B. -Y., J. -M. Oh, J. Kim, and B. -G. Kim (2006) Proantibiotic substrates for the identification of enantioselective hydrolases. Biotechnol. Lett. 28: 1181–1185.

    Article  CAS  Google Scholar 

  6. Lin, H., H. Tao, and V. W. Cornish (2004) Directed evolution of a glycosynthase via chemical complementation. J. Am. Chem. Soc. 126: 15051–15059.

    Article  CAS  Google Scholar 

  7. Alexeeva, M., R. Carr, and N. J. Turner (2003) Directed evolution of enzymes: new biocatalysts for asymmetric synthesis. Org. Biomol. Chem. 1: 4133–4137.

    Article  CAS  Google Scholar 

  8. Park, S. -H., H. -Y. Park, J. K. Sohng, H. C. Lee, K. Liou, Y. J. Yoon, and B. -G. Kim (2009) Expanding substrate specificity of GT-B fold glycosyltransferase via domain swapping and highthroughput screening. Biotechnol. Bioeng. 102: 988–994.

    Article  CAS  Google Scholar 

  9. Leemhuis, H., R. M. Kelly, and L. Dijkhuizen (2009) Directed evolution of enzymes: Library screening strategies. IUBMB Life 61: 222–228.

    Article  CAS  Google Scholar 

  10. Boersma, Y. L., M. J. Droge, and W. J. Quax (2007) Selection strategies for improved biocatalysts. FEBS J. 274: 2181–2195.

    Article  CAS  Google Scholar 

  11. Savile, C. K., J. M. Janey, E. C. Mundorff, J. C. Moore, S. Tam, W. R. Jarvis, J. C. Colbeck, A. Krebber, F. J. Fleitz, J. Brands, P. N. Devine, G. W. Huisman, and G. J. Hughes (2010) Biocatalytic asymmetric synthesis of chiral amines from ketones applied to sitagliptin manufacture. Science 329: 305–309.

    Article  CAS  Google Scholar 

  12. Lutz, S. (2010) Beyond directed evolution–semi-rational protein engineering and design. Curr. Opin. Biotechnol. 21: 734–743.

    Article  CAS  Google Scholar 

  13. Bornscheuer, U. T., G. W. Huisman, R. J. Kazlauskas, S. Lutz, J. C. Moore, and K. Robins (2012) Engineering the third wave of biocatalysis. Nature 485: 185–194.

    Article  CAS  Google Scholar 

  14. Chica, R. A., N. Doucet, and J. N. Pelletier (2005) Semi-rational approaches to engineering enzyme activity: Combining the benefits of directed evolution and rational design. Curr. Opin. Biotechnol. 16: 378–384.

    Article  CAS  Google Scholar 

  15. Wong, T. S., D. Zhurina, and U. Schwaneberg (2006) The diversity challenge in directed protein evolution. Comb. Chem. High Throughput Screen 9: 271–288.

    Article  CAS  Google Scholar 

  16. Zhao, H. and F. H. Arnold (1997) Functional and nonfunctional mutations distinguished by random recombination of homologous genes. Proc. Natl. Acad. Sci. USA 94: 7997–8000.

    Article  CAS  Google Scholar 

  17. Kimura, M. (1968) Evolutionary rate at the molecular level. Nature 217: 624–626.

    Article  CAS  Google Scholar 

  18. DePristo, M. A., D. M. Weinreich, and D. L. Hartl (2005) Missense meanderings in sequence space: A biophysical view of protein evolution. Nat. Rev. Genet. 6: 678–687.

    Article  CAS  Google Scholar 

  19. Bloom, J. D., A. Raval, and C. O. Wilke (2007) Thermodynamics of neutral protein evolution. Genetics 175: 255–266.

    Article  CAS  Google Scholar 

  20. Bloom, J. D., J. J. Silberg, C. O. Wilke, D. A. Drummond, C. Adami, and F. H. Arnold (2005) Thermodynamic prediction of protein neutrality. Proc. Natl. Acad. Sci. USA 102: 606–611.

    Article  CAS  Google Scholar 

  21. Besenmatter, W., P. Kast, and D. Hilvert (2007) Relative tolerance of mesostable and thermostable protein homologs to extensive mutation. Proteins 66: 500–506.

    Article  CAS  Google Scholar 

  22. Bloom, J. D., S. T. Labthavikul, C. R. Otey, and F. H. Arnold (2006) Protein stability promotes evolvability. Proc. Natl. Acad. Sci. USA 103: 5869–5874.

    Article  CAS  Google Scholar 

  23. Gupta, R. D. and D. S. Tawfik (2008) Directed enzyme evolution via small and effective neutral drift libraries. Nat. Methods 5: 939–942.

    Article  CAS  Google Scholar 

  24. Bloom, J. D., P. A. Romero, Z. Lu, and F. H. Arnold (2007) Neutral genetic drift can alter promiscuous protein functions, potentially aiding functional evolution. Biol. Direct 2: 17.

    Article  Google Scholar 

  25. Smith, W. S., J. R. Hale, and C. Neylon (2011) Applying neutral drift to the directed molecular evolution of a β-glucuronidase into a β-galactosidase: Two different evolutionary pathways lead to the same variant. BMC Res. Notes 4: 138.

    Article  CAS  Google Scholar 

  26. Matsumura, I. and A. D. Ellington (2001) In vitro evolution of beta-glucuronidase into a beta-galactosidase proceeds through non-specific intermediates. J. Mol. Biol. 305: 331–339.

    Article  CAS  Google Scholar 

  27. Ehren, J., S. Govindarajan, B. Moron, J. Minshull, and C. Khosla (2008) Protein engineering of improved prolyl endopeptidases for celiac sprue therapy. Protein Eng. Des. Sel. 21: 699–707.

    Article  CAS  Google Scholar 

  28. Nobili, A., M. G. Gall, I. V. Pavlidis, M. L. Thompson, M. Schmidt, and U. T. Bornscheuer (2013) Use of 'small but smart' libraries to enhance the enantioselectivity of an esterase from Bacillus stearothermophilus towards tetrahydrofuran-3-yl acetate. FEBS J. 280: 3084–3093.

    Article  CAS  Google Scholar 

  29. Jochens, H. and U. T. Bornscheuer (2010) Natural diversity to guide focused directed evolution. ChemBioChem 11: 1861–1866.

    Article  CAS  Google Scholar 

  30. Trudeau, D. L., M. A. Smith, and F. H. Arnold (2013) Innovation by homologous recombination. Curr. Opin. Chem. Biol. 17: 902–909.

    Article  CAS  Google Scholar 

  31. Saraf, M. C., A. R. Horswill, S. J. Benkovic, and C. D. Maranas (2004) FamClash: A method for ranking the activity of engineered enzymes. Proc. Natl. Acad. Sci. USA 101: 4142–4147.

    Article  CAS  Google Scholar 

  32. Pantazes, R. J., M. C. Saraf, and C. D. Maranas (2007) Optimal protein library design using recombination or point mutations based on sequence-based scoring functions. Protein Eng. Des. Sel. 20: 361–373.

    Article  CAS  Google Scholar 

  33. Socolich, M., S. W. Lockless, W. P. Russ, H. Lee, K. H. Gardner, and R. Ranganathan (2005) Evolutionary information for specifying a protein fold. Nature 437: 512–518.

    Article  CAS  Google Scholar 

  34. Meyer, M. M., J. J. Silberg, C. A. Voigt, J. B. Endelman, S. L. Mayo, Z. G. Wang, and F. H. Arnold (2003) Library analysis of SCHEMA-guided protein recombination. Protein Sci. 12: 1686–1693.

    Article  CAS  Google Scholar 

  35. Endelman, J. B., J. J. Silberg, Z. G. Wang, and F. H. Arnold (2004) Site-directed protein recombination as a shortest-path problem. Protein Eng. Des. Sel. 17: 589–594.

    Article  CAS  Google Scholar 

  36. Li, Y., D. A. Drummond, A. M. Sawayama, C. D. Snow, J. D. Bloom, and F. H. Arnold (2007) A diverse family of thermostable cytochrome P450s created by recombination of stabilizing fragments. Nat. Biotechnol. 25: 1051–1056.

    Article  CAS  Google Scholar 

  37. Reetz, M. T. and J. D. Carballeira (2007) Iterative saturation mutagenesis (ISM) for rapid directed evolution of functional enzymes. Nat. Protoc. 2: 891–903.

    Article  CAS  Google Scholar 

  38. Xie, Y., J. An, G. Yang, G. Wu, Y. Zhang, L. Cui, and Y. Feng (2014) Enhanced enzyme kinetic stability by increasing rigidity within the active site. J. Biol. Chem. 289: 7994–8006.

    Article  CAS  Google Scholar 

  39. Kuipers, R. K., H. J. Joosten, W. J. van Berkel, N. G. Leferink, E. Rooijen, E. Ittmann, F. van Zimmeren, H. Jochens, U. Bornscheuer, G. Vriend, V. A. dos Santos, and P. J. Schaap (2010) 3DM: Systematic analysis of heterogeneous superfamily data to discover protein functionalities. Proteins 78: 2101–2113.

    CAS  Google Scholar 

  40. Jochens, H., D. Aerts, and U. T. Bornscheuer (2010) Thermostabilization of an esterase by alignment-guided focussed directed evolution. Protein Eng. Des. Sel. 23: 903–909.

    Article  CAS  Google Scholar 

  41. Genz, M., O. Melse, S. Schmidt, C. Vickers, M. Dörr, T. van den Bergh, H. -J. Joosten, and U. T. Bornscheuer (2016) Engineering the amine transaminase from Vibrio fluvialis towards branched-chain substrates. ChemCatChem 8: 3199–3202.

    Article  Google Scholar 

  42. Ashkenazy, H., E. Erez, E. Martz, T. Pupko, and N. Ben-Tal (2010) ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic Acids Res. 38: W529–533.

    Article  CAS  Google Scholar 

  43. Dror, A., E. Shemesh, N. Dayan, and A. Fishman (2014) Protein engineering by random mutagenesis and structure-guided consensus of Geobacillus stearothermophilus Lipase T6 for enhanced stability in methanol. Appl. Environ. Microbiol. 80: 1515–1527.

    Article  Google Scholar 

  44. Pavelka, A., E. Chovancova, and J. Damborsky (2009) HotSpot Wizard: A web server for identification of hot spots in protein engineering. Nucleic Acids Res. 37: W376–383.

    Article  CAS  Google Scholar 

  45. Ebert, M. C. and J. N. Pelletier (2017) Computational tools for enzyme improvement: Why everyone can - and should - use them. Curr. Opin. Chem. Biol. 37: 89–96.

    Article  CAS  Google Scholar 

  46. Choi, Y. H., J. H. Kim, B. S. Park, and B. -G. Kim (2016) Solubilization and iterative saturation mutagenesis of a1,3-fucosyltransferase from Helicobacter pylori to enhance its catalytic efficiency. Biotechnol. Bioeng. 113: 1666–1675.

    Article  CAS  Google Scholar 

  47. Amitai, G., A. Shemesh, E. Sitbon, M. Shklar, D. Netanely, I. Venger, and S. Pietrokovski (2004) Network analysis of protein structures identifies functional residues. J. Mol. Biol. 344: 1135–1146.

    Article  CAS  Google Scholar 

  48. Brinda, K. V. and S. Vishveshwara (2005) A network representation of protein structures: implications for protein stability. Biophys. J. 89: 4159–4170.

    Article  CAS  Google Scholar 

  49. Vendruscolo, M., N. V. Dokholyan, E. Paci, and M. Karplus (2002) Small-world view of the amino acids that play a key role in protein folding. Phys. Rev. E 65: 061910.

    Article  CAS  Google Scholar 

  50. Piovesan, D., G. Minervini, and S. C. Tosatto (2016) The RING 2.0 web server for high quality residue interaction networks. Nucleic Acids Res. 44: W367–374.

    Article  CAS  Google Scholar 

  51. Fokas, A. S., D. J. Cole, S. E. Ahnert, and A. W. Chin (2016) Residue geometry networks: A rigidity-based approach to the amino acid network and evolutionary rate analysis. Sci. Rep. 6: 33213.

    Article  CAS  Google Scholar 

  52. Chakrabarty, B. and N. Parekh (2016) NAPS: Network Analysis of Protein Structures. Nucleic Acids Res. 44: W375–382.

    Article  CAS  Google Scholar 

  53. Vorobjev, Y. N. (2011) Advances in implicit models of water solvent to compute conformational free energy and molecular dynamics of proteins at constant pH. Adv. Protein Chem. Struct. Biol. 85: 281–322.

    Article  CAS  Google Scholar 

  54. Skyner, R. E., J. L. McDonagh, C. R. Groom, T. van Mourik, and J. B. Mitchell (2015) A review of methods for the calculation of solution free energies and the modelling of systems in solution. Phys. Chem. Chem. Phys. 17: 6174–6191.

    Article  CAS  Google Scholar 

  55. Simons, K. T., C. Kooperberg, E. Huang, and D. Baker (1997) Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and Bayesian scoring functions. J. Mol. Biol. 268: 209–225.

    Article  CAS  Google Scholar 

  56. Simons, K. T., I. Ruczinski, C. Kooperberg, B. A. Fox, C. Bystroff, and D. Baker (1999) Improved recognition of nativelike protein structures using a combination of sequence-dependent and sequence-independent features of proteins. Proteins 34: 82–95.

    Article  CAS  Google Scholar 

  57. Guerois, R., J. E. Nielsen, and L. Serrano (2002) Predicting changes in the stability of proteins and protein complexes: a study of more than 1000 mutations. J. Mol. Biol. 320: 369–387.

    Article  CAS  Google Scholar 

  58. Schymkowitz, J., J. Borg, F. Stricher, R. Nys, F. Rousseau, and L. Serrano (2005) The FoldX web server: an online force field. Nucleic Acids Res. 33: W382–388.

    Article  CAS  Google Scholar 

  59. Seo, J. -H., D. Kyung, K. Joo, J. Lee, and B. -G. Kim (2011) Necessary and sufficient conditions for the asymmetric synthesis of chiral amines using ω-aminotransferases. Biotechnol. Bioeng. 108: 253–263.

    Article  CAS  Google Scholar 

  60. Bose, J. L. (2016) Chemical and UV Mutagenesis. Methods Mol. Biol. 1373: 111–115.

    Article  CAS  Google Scholar 

  61. Packer, M. S. and D. R. Liu (2015) Methods for the directed evolution of proteins. Nat. Rev. Genet. 16: 379–394.

    Article  CAS  Google Scholar 

  62. Neylon, C. (2004) Chemical and biochemical strategies for the randomization of protein encoding DNA sequences: library construction methods for directed evolution. Nucleic Acids Res. 32: 1448–1459.

    Article  CAS  Google Scholar 

  63. Vanhercke, T., C. Ampe, L. Tirry, and P. Denolf (2005) Reducing mutational bias in random protein libraries. Anal. Biochem. 339: 9–14.

    Article  CAS  Google Scholar 

  64. Reidhaar-Olson, J. F. and R. T. Sauer (1988) Combinatorial cassette mutagenesis as a probe of the informational content of protein sequences. Science 241: 53–57.

    Article  CAS  Google Scholar 

  65. Siloto, R. M. P. and R. J. Weselake (2012) Site saturation mutagenesis: Methods and applications in protein engineering. Biocatal. Agric. Biotechnol. 1: 181–189.

    CAS  Google Scholar 

  66. Murakami, H., T. Hohsaka, and M. Sisido (2002) Random insertion and deletion of arbitrary number of bases for codonbased random mutation of DNAs. Nat. Biotechnol. 20: 76–81.

    Article  CAS  Google Scholar 

  67. Crameri, A., S. A. Raillard, E. Bermudez, and W. P. Stemmer (1998) DNA shuffling of a family of genes from diverse species accelerates directed evolution. Nature 391: 288–291.

    Article  CAS  Google Scholar 

  68. Zhao, H., L. Giver, Z. Shao, J. A. Affholter, and F. H. Arnold (1998) Molecular evolution by staggered extension process (StEP) in vitro recombination. Nat. Biotechnol. 16: 258–261.

    Article  CAS  Google Scholar 

  69. Coco, W. M., W. E. Levinson, M. J. Crist, H. J. Hektor, A. Darzins, P. T. Pienkos, C. H. Squires, and D. J. Monticello (2001) DNA shuffling method for generating highly recombined genes and evolved enzymes. Nat. Biotechnol. 19: 354–359.

    Article  CAS  Google Scholar 

  70. Zha, D., A. Eipper, and M. T. Reetz (2003) Assembly of designed oligonucleotides as an efficient method for gene recombination: A new tool in directed evolution. ChemBioChem 4: 34–39.

    Article  CAS  Google Scholar 

  71. Ostermeier, M., J. H. Shim, and S. J. Benkovic (1999) A combinatorial approach to hybrid enzymes independent of DNA homology. Nat. Biotechnol. 17: 1205–1209.

    Article  CAS  Google Scholar 

  72. Sieber, V., C. A. Martinez, and F. H. Arnold (2001) Libraries of hybrid proteins from distantly related sequences. Nat. Biotechnol. 19: 456–460.

    Article  CAS  Google Scholar 

  73. Bittker, J. A., B. V. Le, J. M. Liu, and D. R. Liu (2004) Directed evolution of protein enzymes using nonhomologous random recombination. Proc. Natl. Acad. Sci. USA 101: 7011–7016.

    Article  CAS  Google Scholar 

  74. Lutz, S., M. Ostermeier, G. L. Moore, C. D. Maranas, and S. J. Benkovic (2001) Creating multiple-crossover DNA libraries independent of sequence identity. Proc. Natl. Acad. Sci. USA 98: 11248–11253.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byung-Gee Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seo, JH., Min, WK., Lee, SG. et al. To the Final Goal: Can We Predict and Suggest Mutations for Protein to Develop Desired Phenotype?. Biotechnol Bioproc E 23, 134–143 (2018). https://doi.org/10.1007/s12257-018-0064-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-018-0064-4

Keywords

Navigation