Skip to main content
Log in

Fusion of Carbohydrate Binding Modules to Bifunctional Cellulase to Enhance Binding Affinity and Cellulolytic Activity

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Bifunctional cellulase (glycoside hydrolase 5, GH5) from Bacillus sp. D04 having both endo- and exoglucanase activities was fused with two types of carbohydrate binding modules (CBMs). CBM3 from Bacillus sp. D04 and CBM9 from Thermotoga maritima Xyn10A were added to GH5 to hydrolyze microcrystalline cellulose (Avicel) as well as water-soluble cellulose (carboxymethyl cellulose, CMC). The optimum temperature of GH5 was 50oC, while it increased to 60oC for the fusion GH5-CBM3 and GH5-CBM9, indicating that addition of CBM increased the thermostability of the enzyme. Addition of CBM3 and CBM9 enhanced the GH5 affinity (KM), for which KM decreased from 104 to 33.9 ~ 35.1 mg/mL for CMC, and from 115 to 55.5 ~ 80.3 mg/mL for Avicel, respectively. The catalytic efficiency (kcat/KM) also increased from 4.80 to 5.36 ~ 6.46 (mL/mg)/sec for CMC, and from 1.77 to 2.40 ~ 4.45 (mL/mg)/sec for Avicel, respectively, by addition of CBM3 and CBM9.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Crawford, R. L. (1981) Lignin biodegradation and transformation. John Wiley and Sons, NY, USA.

    Google Scholar 

  2. Updegraff, D. M. (1969) Semimicro determination of cellulose in biological materials. Anal. Biochem. 32: 420–424.

    Article  CAS  Google Scholar 

  3. Trache, D., M. Hazwan Hussin, C. T. H. Chuin, S. Sabar, M. R. Nurul Fazita, O. F. A. Taiwo, T. M. Hassan, and M. K. Mohamad Haafiz (2016) Microcrystalline cellulose: Isolation, characterization and bio-composites application-A review. Int. J. Biol. Macromol. 93: 789–894.

    Article  CAS  Google Scholar 

  4. Olson, D. G., J. E. McBride, A. Joe Shaw, and L. R. Lynd (2011) Recent progress in consolidated bioprocessing. Curr. Opin. Biotechnol. 23: 396–405.

    Article  Google Scholar 

  5. Sawant, S. S., B. K. Salunke, T. K. Tran, and B. S. Kim (2016) Lignocellulosic and marine biomass as resource for production of polyhydroxyalkanoates. Korean J. Chem. Eng. 33: 1505–1513.

    Article  CAS  Google Scholar 

  6. Zhao, L., Q. Pang, J. Xie, J. Pei, F. Wang, and S. Fan (2013) Enzymatic properties of Thermoanaerobacterium thermosaccharolyticum β-glucosidase fused to Clostridium cellulovorans cellulose binding domain and its application in hydrolysis of microcrystalline cellulose. BMC Biotechnol. 13: 101.

    Article  CAS  Google Scholar 

  7. Thongekkaew, J., H. Ikeda, K. Masaki, and H. Iefuji (2013) Fusion of cellulose binding domain from Trichoderma reesei CBHI to Cryptococcus sp. S-2 cellulase enhances its binding affinity and its cellulolytic activity to insoluble cellulosic substrates. Enz. Microb. Technol. 52: 241–246.

    Article  CAS  Google Scholar 

  8. Henrissat, B., M. Claeyssens, P. Tomme, L. Lemesle, and J. P. Mornon (1989) Cellulase families revealed by hydrophobic cluster analysis. Gene 81: 83–95.

    Article  CAS  Google Scholar 

  9. Gilkes, N. R., B. Henrissat, D. G. Kilburn, R. C. Miller Jr, and R. A. Warren (1991) Domains in microbial β-1,4-glycanases: Sequence conservation, function, and enzyme families. Microbiol. Rev. 55: 303–315.

    CAS  Google Scholar 

  10. Boraston, A. B., D. N. Bolam, H. J. Gilbert, and G. J. Davies (2004) Carbohydrate-binding modules: Fine-tuning polysaccharide recognition. Biochem. J. 382: 769–781.

    Article  CAS  Google Scholar 

  11. Hashimoto, H. (2006) Recent structural studies of carbohydratebinding modules. Cell. Mol. Life Sci. 63: 2954–2967.

    Article  CAS  Google Scholar 

  12. Shoseyov, O., Z. Shani, and I. Levy (2006) Carbohydrate binding modules: Biochemical properties and novel applications. Microbiol. Mol. Biol. Rev. 70: 283–295.

    Article  CAS  Google Scholar 

  13. Poole, D. M., E. Morag, R. Lamed, E. A. Bayer, G. P. Hazlewood, and H. J. Gilbert (1992) Identification of the cellulose-binding domain of the cellulosome subunit S1 from Clostridium thermocellum YS. FEMS Microbiol. Lett. 78: 181–186.

    Article  CAS  Google Scholar 

  14. Ye, X., Z. Zhu, C. Zhang, and Y. H Zhang (2011) Fusion of a family 9 cellulose-binding module improves catalytic potential of Clostridium thermocellum cellodextrin phosphorylase on insoluble cellulose. Appl. Microbiol. Biotechnol. 92: 551–560.

    Article  CAS  Google Scholar 

  15. Walker J. A., T. E. Takasuka, K. Deng, C. M. Bianchetti, H. S. Udell, B. M. Prom, H. Kim, P. D. Adams, T. R. Northen, and B. G. Fox (2015) Multifunctional cellulase catalysis targeted by fusion to different carbohydrate-binding modules. Biotechnol. Biofuels 8: 220.

    Article  Google Scholar 

  16. Han, S. J., Y. J. Yoo, and H. S. Kang (1995) Characterization of a bifunctional cellulase and its structural gene. The Cel gene of Bacillus sp. D04 has exo-and endoglucanase activity. J. Biol. Chem. 270: 26012–26019.

    Article  CAS  Google Scholar 

  17. Bokinsky, G., P. P. Peralta-Yahya, A. George, B. M. Holmes, E. J. Steen, J. Dietrich, T. S. Lee, D. Tullman-Ercek, C. A. Voigt, B. A. Simmons, and J. D. Keasling (2011) Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia coli. Proc. Nat. Acad. Sci. 108: 19949–19954.

    Article  CAS  Google Scholar 

  18. Alkotaini, B., N. S. Han, and B. S. Kim (2016) Enhanced catalytic efficiency of endo-β-agarase I by fusion of carbohydrate-binding modules for agar prehydrolysis. Enz. Microb. Technol. 93: 142–149.

    Article  Google Scholar 

  19. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.

    Article  CAS  Google Scholar 

  20. Yin, L. J., P. S Huang, and H. H. Lin (2010) Isolation of cellulaseproducing bacteria and characterization of the cellulase from the isolated bacterium Cellulomonas sp. YJ5. J. Agric. Food Chem. 58: 9833–9837.

    Article  CAS  Google Scholar 

  21. Jean, C. R. S., H. S. G. Luis, C. S. S. José, P. M. F. Rosa, L. T. M. P. Maria, C. R. José, and A. J. João (2013) Purification and biochemical characterization of glucose–cellobiose-tolerant cellulases from Scytalidium thermophilum. Folia Microbiol. 58: 561–568.

    Article  Google Scholar 

  22. Wang, G., X. W. Zhang, L. Wang, K. K. Wang, F. L. Peng, and L. S. Wang (2012) The activity and kinetic properties of cellulases in substrates containing metal ions and acid radicals. Adv. Biol. Chem. 2: 390–395.

    Article  CAS  Google Scholar 

  23. Chen, X., J. L. Zaro, and W. C. Shen (2013) Fusion protein linkers: Property, design and functionality. Adv. Drug Deliv. Rev. 65: 1357–1369.

    Article  CAS  Google Scholar 

  24. Eisenthal, R., M. J. Danson, and D. W. Hough (2007) Catalytic efficiency and k cat/K M: A useful comparator? Trends Biotechnol. 25: 247–249.

    Article  CAS  Google Scholar 

  25. Robson, L. M. and G. H. Chambliss (1989) Cellulases of bacterial origin. Enz. Microb. Technol. 11: 626–644.

    Article  CAS  Google Scholar 

  26. Heptinstall, J., J. C. Stewart, and M. Seras (1986) Fluorimetric estimation of exo-cellobiohydrolase and β-D-glucosidase activities in cellulase from Aspergillus fumigatus Fresenius. Enz. Microb. Technol. 8: 70–74.

    Article  CAS  Google Scholar 

  27. Foumani, M., T. V. Vuong, B. MacCormick, and E. R. Master (2015) Enhanced polysaccharide binding and activity on linear β-glucans through addition of carbohydrate-binding modules to either terminus of a glucooligosaccharide oxidase. PloS One 10: e0125398.

    Article  Google Scholar 

  28. Peng, H., Y. Zheng, M. Chen, Y. Wang, Y. Xiao, and Y. Gao (2014) A starch-binding domain identified in α-amylase (AmyP) represents a new family of carbohydrate-binding modules that contribute to enzymatic hydrolysis of soluble starch. FEBS Lett. 588: 1161–1167.

    Article  CAS  Google Scholar 

  29. Telke, A. A., S. S. Ghatge, S. H. Kang, S. Thangapandian, K. W. Lee, H. D. Shin, Y. Um, and S. W. Kim (2012) Construction and characterization of chimeric cellulases with enhanced catalytic activity towards insoluble cellulosic substrates. Bioresour. Technol. 112: 10–17.

    Article  CAS  Google Scholar 

  30. Notenboom, V., A. B. Boraston, D. G. Kilburn, and D. R. Rose (2001) Crystal structures of the family 9 carbohydrate-binding module from Thermotoga maritima xylanase 10A in native and ligand-bound forms. Biochemistry 40: 6248–6256.

    Article  CAS  Google Scholar 

  31. Ramírez, C. C., A. S. Hernández, F. N. R. Orduña, Y. G. Huante, G. Zúñiga, and M. E. H. Lara (2016) Expression, purification and characterization of an endoglucanase from Serratia proteamaculans CDBB-1961, isolated from the gut of Dendroctonus adjunctus (Coleoptera: Scolytinae). AMB Exp. 6: 63.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beom Soo Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maharjan, A., Alkotaini, B. & Kim, B.S. Fusion of Carbohydrate Binding Modules to Bifunctional Cellulase to Enhance Binding Affinity and Cellulolytic Activity. Biotechnol Bioproc E 23, 79–85 (2018). https://doi.org/10.1007/s12257-018-0011-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-018-0011-4

Keywords

Navigation